
Computing on Analog Neural Nets withArbitrary Real WeightsWolfgang MaassInstitute for Theoretical Computer ScienceTechnische Universitaet GrazKlosterwiesgasse 32/2A-8010 Graz, Austriae-mail: maass@igi.tu-graz.ac.at1 IntroductionWe examine in this chapter the computational power of high order analog feedfor-ward neural nets N , i.e. of circuits with analog computational elements in whichcertain parameters are treated as programmable parameters. We focus on neuralnets N of bounded depth in which each gate g computes a function from Rm intoR of the form < y1; : : : ; ym > 7!
g(Qg(y1; : : : ; ym)). We assume that for each gateg ;
g is some �xed piecewise polynomial activation function (also called responsefunction). This function is applied to some polynomial Qg(y1; : : : ; ym) of boundeddegree with arbitrary real coe�cients, where y1; : : : ; ym are the real valued inputsto gate g. One usually refers to the degree of the polynomial Qg as the \order" ofthe gate g. The coe�cients (\weights") of Qg are the programmable variables of N ,whose values may arise from some learning process.We are primarily interested in the case where the neural net N computes (re-spectively learns) a boolean valued function. For that purpose we assume that thereal valued output of the output gate gout of N is \rounded o�". More precisely, weassume that there is an \outer threshold" Tout (which belongs to the programmableparameters of N) such that the output of N is \1" whenever the real valued outputz of gout satis�es z � Tout, and \0" if z < Tout. In some results of this chapter wealso assume that the input < x1; : : : ; xn > of N is boolean-valued. It should benoted, that this does not a�ect the capacity of N to carry out on its intermediatelevels (i.e. in its \hidden units") computation over reals, whose real-valued resultsare then transmitted to the next layer of gates.Circuits of this type have rarely been considered in computational complex-ity theory, and they give rise to the principal question whether these intermediate

analog computational elements will allow the circuit to compute more complexboolean functions than a circuit with a similar layout but digital computational ele-ments. Note that circuits with analog computational elements have an extra sourceof potentially unlimited parallelism at their disposal, since they can execute opera-tions on numbers of arbitrary bit-length in one step, and they can transmit numbersof arbitrary bit-length from one gate to the next.One already knows quite a bit about the special case of such neural nets N whereeach gate g is a \linear threshold gate". In this case each polynomial Qg(y1; : : : ; ym)is of degree � 1 (i.e. a weighted sum), and each activation function
g in N is the\heaviside function" (also called \hard limiter") sgn de�ned bysgn(y) = (1 ; if y � 00 ; if y < 0(e.g. see [R], [Ni], [Mu], [MP], [PS], [HMPST], [GHR], [SR], [SBKH], [BH], [A],[L]). The \analog versus digital" issue does not arise in this case, since the outputof each gate is a single bit. Still, it requires some work to bound the potentialpower of arbitrary weights (in the weighted sums) for the computation of booleanfunctions on such circuit. Since there are only �nitely many boolean circuit inputs,it is obvious that only rational weights have to be considered. The key result forthe analysis of these circuits was the discovery of Muroga et. al. (see [Mu]) thatit is su�cient to consider for a linear threshold gate with m boolean inputs onlyweights �1; : : : ; �m and a bias �0 that are integers of size 2O(m logm) (this upperbound is optimal according to a recent result of Hastad [Has]). With the help ofthis a-priori-bound on the relevant bit-length of weights it is easy to show that thesame arrays (Fn)n2N of boolean functions Fn : f0; 1gn ! f0; 1g are computable byarrays (Nn)n2N of neural nets of depth O(1) and size O(nO(1)) with linear thresholdgates, no matter whether one uses as weights arbitrary reals, rationals, integers, orelements of f�1; 0; 1g; see [Mu], [CSV], [HMPST], [GHR], [MT]. The resulting classof arrays (Fn)n2N of boolean functions is called (nonuniform-) TC0 ([HMPST], [J]).In comparison, very little is known about upper bounds for the computationalpower and the learning complexity of feedforward neural nets whose gates g em-ploy more general types of activation functions
g. This holds in spite of the factthat \real neurons and real physical devices have continuous input-output relations"(Hop�eld [Ho]). In the analysis of information processing in natural neural systems,one usually views the �ring rate of a neuron as its current output. Such �ring ratesare known to change between a few and several hundred spikes per second (see ch.20 in [MR]). Hence the activation function
g of a gate g that models such a neuronshould have a \graded response". It should also be noted that the customary learn-ing algorithms for arti�cial neural nets (such as backwards propagation [RM]) arebased on gradient descent methods, which require that all gates g employ smoothactivation functions
g.In addition, it has frequently been pointed out that it is both biologically plau-2

sible and computationally relevant to consider gates g that pass to
g insteadof a weighted sum mPi=1�iyi + �0 some polynomial Qg(y1; : : : ; ym) of bounded de-gree, where y1; : : : ; ym are circuit inputs or outputs of the immediate predecessorsof g. Such gates are called sigma-pi units or high order gates in the literature(see p. 73 and ch. 10 in [RM], also [DR], [H], [PG], [MD]). From the point ofview of approximation theory there has been particular interest in the case whereQg(y1; : : : ; ym) = mPi=1�i(yi � ci)2 measures a \distance" of its input < y1; : : : ; ym >from some \center" < c1; : : : ; cm > (the latter may be determined through a learningprocess).Theorem 3.1 of this chapter provides the �rst upper bound for the computationalpower of high order feedforward neural nets with non-boolean activation functionsand arbitrary real weights. The power of feedforward neural nets with other acti-vation functions besides sgn has previously been investigated in [RM] (ch.10), [S1],[S2], [H], [MSS], [DS], [SS]. It was shown in [MSS] for a very general class of ac-tivation functions
g that neural nets (Nn)n2N of constant depth and size O(nO(1))with real weights of size O(nO(1)) and output-separation
(1=nO(1)) (between the un-rounded circuit-outputs for rejected and accepted inputs) can compute only booleanfunctions in TC0. It follows from a result of Sontag [S2] that the assumptions onthe weight-size and separation are essential for this upper bound: he constructedan arbitrarily smooth monotone function � (which can be made to satisfy the con-ditions on
g in the quoted result of [MSS]) and neural nets Nn of size 2 (!) withactivation function � such that Nn can compute with su�ciently large weights anyboolean function Fn : f0; 1gn ! f0; 1g (hence Nn has VC-dimension 2n).These results leave open the question about the computational power and learn-ing complexity of feedforward neural nets with arbitrary weights that employ \natu-ral" analog activation functions
g. For example there has previously been no upperbound for the set of boolean functions computable by analog neural nets with thevery simple piecewise linear function � de�ned by�(y) = 8><>: 0 ; if y � 0y ; if 0 � y � 11 ; if y � 1([L] refers to a gate g with
g = � as a \threshold logic element"). On the otherhand there exist results which suggest that such upper bound would be non-trivial.It has already been shown in [MSS] that constant size neural nets of depth 2 withactivation function � and small integer weights can compute more boolean functionsthan constant size neural nets of depth 2 with linear threshold gates (and arbitraryweights). [DS] exhibits an even stronger increase in computational power for thecase of quadratic activation functions.Hence even simple non-boolean activation functions provide more computationalpower to a neural net than the heaviside-function. However it has been open byhow much they can increase the computational power (in the presence of arbitrary3

weights). E. Sontag has pointed out that known methods do not even su�ce to showfor a constant depth neural net Nn of size O(nO(1)) with n inputs and activationfunction �, that there is any boolean function Fn : f0; 1gn ! f0; 1g that can not becomputed on Nn with a suitable weight-assignment. Correspondingly no better up-per bound than the trivial 2n could be given for the VC-dimension of such Nn (withn boolean inputs). From the technical point of view, this inability was caused by thelack of an upper bound on the amount of information that can be encoded in suchneural net by the assignment of weights. For the case of neural nets with heavisidegates this upper bound on the information-capacity of weights is provided by thequoted result of Muroga et. al. [Mu]. However this problem is substantially moredi�cult for neural nets with piecewise linear activation functions. For this modelit is no longer su�cient to analyze a single gate with boolean inputs and outputs.Even if the inputs and outputs of the neural net are boolean valued, the \signals"that are transmitted between the hidden units are real valued. Furthermore onecan give no a-priori bound on the precision required for such analog signals betweenhidden units, since one has no control over the maximal size of weights in the neuralnet. Obviously a large weight will magnify any imprecision. Note also that a com-putation on a multi-layer neural net of the here considered type involves products ofweights from subsequent levels. Hence, if some of the weights are arbitrarily large,one needs arbitrarily high precision for the other weights.The main technical contribution of this chapter are two new methods for reducingnonlinear problems about weights in multi-layer neural nets to linear problems fora transformed set of parameters. These two methods are presented in the sections 2and 3 of this chapter. We introduce in section 2 of this chapter a method that allowsus to prove an upper bound for the information-capacity of weights for neural netswith piecewise linear activation functions (hence in particular for �). It is shownthat for the computation of boolean functions on neural nets Nn of constant depthand polynomially in n many gates (where n is the number of input variables) it issu�cient to use as weights rational numbers with polynomially in n many bits. Asa consequence one can simulate any such analog neural net by a digital neural netof constant depth and polynomial size with the heaviside activation function (i.e.linear threshold gates) and binary weights (i.e. weights from f0; 1g). This resultalso implies that the VC-dimension of Nn can be bounded above by a polynomialin n.In section 3 we introduce another proof-technique, that allows us to derive thesame two consequences also for neural nets with piecewise polynomial activationfunctions and nonlinear gate-inputs Qg(y1; : : : ; ym) of bounded degree. These resultsshow that in spite of the previously quoted evidence for the superiority of non-boolean activation functions in neural nets, there is some limit to their computationalpower as long as the activation functions are piecewise polynomial. On the otherhand the polynomial upper bound on the VC-dimension of such neural nets may beinterpreted as good news: It shows that neural nets of this type can in principle betrained with a sequence of examples that is not too long.4

The \linearization" of the requirements on the weights that is carried out insections 2 and 3 has also implications for PAC-learning on analog neural nets (see[M 93c], or Theorem 4.7 in our later chapter on learning in this volume).The results of this chapter were �rst announced in [M 92], and an extendedabstract of these results appeared in [M 93a]. Another result of [M 93a], the con-struction of neural nets whose VC-dimension is superlinear in the number of weights,has subsequently been improved to apply also for depth 3. A full version of thatproof appears in [M 93b].De�nition 1.1 A network architecture (or \neural net") N of order k is alabelled acyclic directed graph hV;Ei. Its nodes of fan-in 0 are labelled by the inputvariables x1; : : : ; xn. Each node g of fan-in m > 0 is called a computation node (orgate), and is labelled by some activation function
g : R! R and some polynomialQg(y1; : : : ; ym) of degree � k. Furthermore N has a unique node of fan-out 0, whichis called the output node of N and which carries as an additional label a certain realnumber Tout (called \the outer threshold of N").The coe�cients of all polynomials Qg(y1; : : : ; ym) for gates g in N and the outerthreshold Tout are called the programmable parameters of N . Assume that N has wprogrammable parameters, and that some numbering of these has been �xed. Theneach assignment � 2 Rw of reals to the programmable parameters in N de�nes ananalog circuit N �, which computes a function x 7! N �(x) from Rn into f0; 1g inthe following way: Assume that some input x 2 Rn has been assigned to the inputnodes of N . If a gate g in N has m immediate predecessors in hV;Ei which outputy1; : : : ; ym 2 R, then g outputs
g(Qg(y1; : : : ; ym)). Finally, if gout is the output gateof N and gout gives the real valued output z (according to the preceding inductivede�nition) we de�ne N �(x) := (1 ; if z � Tout0 ; if z < Tout;where Tout is the outer threshold that has been assigned by � to gout.Any parameters that occur in the de�nitions of the activation functions
g of Nare referred to as architectural parameters of N .De�nition 1.2 A function
 : R ! R is called piecewise polynomial if thereare thresholds t1; : : : ; tk 2 R and polynomials P0; : : : ; Pk such that t1 < : : : < tkand for each i 2 f0; : : : ; kg : ti � x < ti+1)
(x) = Pi(x) (we set t0 := �1 andtk+1 :=1).If k is chosen minimal for
, we refer to k as the number of polynomial pieces of
, to P0; : : : ; Pk as the polynomial pieces of
, and to t1; : : : ; tk as the thresholds of
. Furthermore we refer to t1; : : : ; tk together with all coe�cients in the polynomialsP0; : : : ; Pk as the parameters of
. The maximal degree of P0; : : : ; Pk is called thedegree of
. If the degree of
 is � 1 then we call
 piecewise linear, and we referto P0; : : : ; Pk as the linear pieces of
.If
 occurs as activation function
g of some network architecture N , then onerefers to the parameters of
 as architectural parameters of N .5

Note that we do not require that
 is continuous (or monotone).De�nition 1.3 Assume that N is an arbitrary network architecture with n inputsand w programmable parameters, and S � Rn is an arbitrary set. Then one de�nesthe VC-dimension of N over S in the following way:VC-dimension(N ; S) := maxfjS 0j ���S 0 � S has the property that for every functionF : S 0 ! f0; 1g there exists a parameter assignment� 2 Rw such that 8 x 2 S 0(N �(x) = F (x))g:Remark 1.4 \VC-dimension" is an abbreviation for \Vapnik-Chervonenkis di-mension". It has been shown in [BEHW] (see also [BH], [A]) that the VC-dimensionof a neural net N essentially determines the number of examples that are needed totrainN (in Valiant's model for probably approximately correct learning [V]). Sontag[S2] has shown that the VC-dimension of a neural net can be drastically increased byusing activation functions with non-boolean output instead of the heaviside functionsgn. We refer to our later chapter in this volume about learning on neural nets forfurther results about the VC-dimension of neural nets.2 A Bound for the Information - Capacity ofWeights in Neural Nets with Piecewise LinearActivation FunctionsWe consider for arbitrary a 2 N the following set of rationals with up to a bitsbefore and after the comma:Qa := �r 2 Q ���� r = s � a�1Xi=�a bi � 2i for bi 2 f0; 1g; i = �a; : : : ; a� 1 ands 2 f�1; 1g�:Note that for any r 2 Qa : jrj � 2a � 22a �minfjr0j j r0 2 Qa and r0 6= 0g.Theorem 2.1 Consider an arbitrary network architecture N of order 1 over agraph hV;Ei with n input nodes, in which every computation node has fan-out � 1.Assume that each activation function
g in N is piecewise linear with parametersfrom Qa. Let w := jV j+ jEj+ 1 be the number of programmable parameters in N .Then for every � 2 Rw there exists a vector �0 =< s1t ; : : : ; swt >2 Qw with inte-gers s1; : : : ; sw; t of absolute value � (2w+1)! 22a(2w+1) such that 8x 2 Qna�N �(x) =N �0(x)�. In particular N �0 computes the same boolean function as N �.Remark 2.2 The condition of Theorem 2.1 that all computation nodes in Nhave fan-out � 1 is automatically satis�ed for d � 2. For larger d one can simulate6

any network architecture N of depth d with s nodes by a network architecture N 0with � ss�1 � sd�1 � 32sd�1 nodes and depth d that satis�es this condition. Hencethis condition is not too restrictive for network architectures of a constant depth d.It should also be pointed out that there is in the assumption of Theorem 2.1no explicit bound on the number of linear pieces of
g (apart from the requirementthat its thresholds are fromQa). For example these activation functions may consistof 2a linear pieces (with discontinuous jumps in between). Furthermore
g is notrequired to be monotone.Finally it should be mentioned that a corresponding version of Theorem 2.1 alsoholds for rational numbers that do not have a �nite binary representation, i.e. forall rationals from Q0a := fr 2 Q : r is the quotient of integers of bit-length � aginstead of Qa.Remark 2.3 Previously one had no upper bound for the computational power(or for the VC-dimension) of multi-layer neural nets N with arbitrary weights andanalog computational elements (i.e. activation functions with non-boolean output).Theorem 2.1 implies that any N of the considered type can compute with the helpof arbitrary parameter assignments � 2 Rw at most 2O(aw2 logw) di�erent functionsfrom Qna into f0; 1g, hence VC-dimension (N ;Qna) = O(w2(a + logw)).Furthermore Theorem 2.1 implies that one can replace all analog computationsinside N by digital arithmetical operations on not too large integers (the proof givesan upper bound of O(wa+w logw) for their bit-length). It is well-known that each ofthese digital arithmetical operations (multiple addition, multiplication, division) canbe carried out on a circuit of small constant depth with O(aO(1) �wO(1)) MAJORITY-gates, hence also on a network architecture of depth O(1) and size O(aO(1) � wO(1))with linear threshold gates and weights from f�1; 0; 1g ([CSV], [PS], [HMPST],[GHR], [SR], [SBKH]). Thus one can simulate for inputs from f0; 1gn any depthd network architecture N as in Theorem 2.1 with arbitrary parameter assignments� 2 Rw by a network architecture of depth O(d) and size O(aO(1) �wO(1)) with linearthreshold gates and weights from f�1; 0; 1g. The same holds for inputs from Qna ifthey are given to N in digital form.Proof of Theorem 2.1: In the special case where
g = sgn for all gates in Nthis result is well known ([Mu]). It follows by applying separately to each gate inN the following result.Lemma 2.4 (folklore; see [MT] for a proof) Consider a system Ax � bof some arbitrary �nite number of linear inequalities in l variables. Assume that allentries in A and b are integers of absolute value � K.If this system has any solution in Rl, then it has a solution of the formh s1t ; : : : slt i, where s1; : : : ; sl; t are integers of absolute value � (2l + 1)!K2l+1.Sketch of the proof for Lemma 2.4: Let k be the number of inequalities inAx � b. One writes each variable in x as a di�erence of 2 nonnegative variables, andone adds to each inequality a \slack variable". In this way one gets an equivalent7

system(1) A0x0 = b ; x0 � 0over l0 := 2l + k variables, for some k � l0 matrix A0. The k columns of A0 for thek slack-variables in x0 form an identity matrix. Hence A0 has rank k.The assumption of the Lemma implies that (1) has a solution over R. Henceby Caratheodory's Theorem (Corollary 7.1i in [Sch]) one can conclude that there isalso a solution over R of a system(2) A00x00 = b ; x00 � 0where A00 consists of k linearly independent columns of A0. Since A00 has full rank,(2) has in fact a unique solution that is given by Cramer's rule: x00j = det(A00j)=detA00for j = 1; : : : ; k, where A00j results form A00 by replacing its jth column by b. Sinceall except up to 2l columns of A00 contain exactly one 1 and else only 0's, we canbring each of the matrices A00; A00j by permutations of rows and columns into a formB = C 0D I!where C is a square matrix with 2l + 1 rows. Hence the determinant of B is aninteger of absolute value � (2l + 1)! K2l+1.The di�culty of the proof of Theorem 2.1 lies in the fact that with analog com-putational elements one can no longer treat each gate separately, since intermediatevalues are no longer integers. Furthermore the total computation ofN can in generalnot be described by a system of linear inequalities, where the w variable parametersof N are the variables in the inequalities (and the �xed parameters of N are theconstants). This becomes obvious if one just considers the composition of two verysimple analog gates g1 and g2 on levels 1 and 2 of N , whose activation functions
1;
2 satisfy
1(y) =
2(y) = y. Assume x = nPi=1�ixi + �0 is the input to gate g1,and g2 receives as input mPj=1�0jyj +�00 where y1 =
1(x) = x is the output of gate g1.Then g2 outputs �01 �� nPi=1�ixi + �0�+ mPj=2�0jyj+�00: Obviously this term is not linearin the weights �01; �1; : : : ; �n. Hence if the output of gate g2 is compared with a �xedthreshold at the next gate, the resulting inequality is not linear in the weights ofthe gates in N .If the activation functions of all gates in N were linear (as in the example for g1and g2), then there would be no problem because a composition of linear functionsis linear. However for piecewise linear activation functions it is not su�cient toconsider their composition, since intermediate results have to be compared withboundaries between linear pieces of the next gate.We introduce in this chapter a new method in order to handle this di�culty. We8

simulate N � by another neural net N̂ [c]� (which one may view as a \normal form"for N �) that uses the same graph hV;Ei as N , but di�erent activation functionsand di�erent values � for its variable parameters. The activation functions of N̂ [c]depend on jV j new parameters c 2 RjV j, which we call scaling parameters in thefollowing. Although this new neural net has the disadvantage that it requires jV jadditional parameters c, it has the advantage that we can choose in N̂ [c] all weightson edges between computation nodes to be from f�1; 0; 1g. Since these weightsfrom f�1; 0; 1g are already of the desired bit-length, we can treat them as constantsin the system of inequalities that describes computations of N̂ [c]. Thereby we canachieve that all variables that appear in the inqualities that describe computationsof N̂ [c] (the variables for weights of gates on level 1, the variables for the biases ofgates on all levels, the variable for the outer threshold, and the new variables for thescaling parameters c) appear only linearly in those inqualities. Hence we can applyLemma 2.4 to the system of inequalities that describes the computations of N̂ forinputs from Qna , and thereby get a \nice" solution �0; c0 for all variable parametersin N̂ . Finally we observe that we can transform N̂ [c0]�0 back into the original neuralnet N with an assignment of small \numbers" �0 to all variable parameters in N .We will now �ll in some of the missing details. Consider the gate function
 ofan arbitrary gate g in N . Since
 is piecewise linear, there are �xed parameterst1 < � � � < tk; a0; : : : ; ak; b0; : : : ; bk in Qa (which may be di�erent for di�erent gatesg) such that with t0 := �1 and tk+1 := +1 one has
(x) = aix+ bi for x 2 R withti � x < ti+1; i = 0; : : : ; k. For an arbitrary scaling parameter c 2 R+ we associatewith
 the following piecewise linear activation function
c: the thresholds of
c arec � t1; � � � ; c � tk and its output is
c(x) = aix+ c � bi for x 2 R with c � ti � x < c � ti+1;i = 0; : : : ; k (set c � t0 := �1; c � tk+1 := +1). Thus for all reals c > 0 the function
c is related to
 through the equality: 8x 2 R (
c(c � x) = c �
(x)).Assume that � 2 Rw is some arbitrary given assignment to the variable param-eters in N . We transform N � into a \normal form" N̂ [c]� in which all weights onedges between computation nodes are from f�1; 0; 1g, such that 8x 2 Rn�N �(x) =N̂ [c]�(x)�. We proceed inductively from the output level towards the input level.Assume that the output gate gout of N � receives as input mPi=1�iyi + �0, where�1; : : : ; �m; �0 are the weights and the bias of gout (under the assignment �) andy1; : : : ; ym are the (real valued) outputs of the immediate predecessors g1; : : : ; gm ofg. For each i 2 f1; : : : ; mg with �i 6= 0 such that gi is not an input node we replacethe activation function
i of gi by
j�iji , and we multiply the weights and the bias ofgate gi with j�ij. Finally we replace the weight �i of gate gout by 1, if �i > 0, andby �1 if �i < 0.This operation has the e�ect that the multiplication with j�ij is carried out beforethe gate gi (rather than after gi, as done in N �), but that the considered outputgate gout still receives the same input as before. The analogous operation is theninductivily carried out for the predecessors gi of gout (note however that the weights9

of gi are no longer the original ones from N �, since they have been changed in thepreceding step). We exploit here the assumption that each gate has fan-out � 1.Let � consist of the new weights on edges adjacent to input nodes, of theresulting biases of all gates in N̂ , and of the (unchanged) outer threshold Tout.Let c consist of the resulting scaling factors at the gates of N . Then we have8x 2 Rn �N �(x) = N̂ [c]�(x)�.Finally we have to replace all strict inequalities of the form \s1 < s2" that areneeded to describe the computation of N̂ [c]� for some input x 2 Qna by inequalitiesof the form \s1+1 � s2". This concerns inequalities of the form s < c � ti, where c � tiis the threshold of some gate g in N̂ [c] and s is its gate input, inequalities of the forms < Tout where s is the output of gout, and inequalities of the form 0 < c for eachscaling parameter c. In order to achieve this stronger separation it is su�cient tomultiply all parameters �, c in N̂ by a su�ciently large constant K. For simplicitywe write again �, c for the resulting parameters. We now specify a system Az � b oflinear inequalities in w variables z that play the role of the w parameters �, c in thecomputations of N̂ [c]� for all inputs x from Qna . The constants of these inequalitiesare the coordinates of all inputs x 2 Qna , the parameters of the activation functions
in N , the constants �1; 1 that occur in N̂ as weights of edges between computationnodes, and the constants 1 that arise from the replacement of strict inequalities\s1 < s2" by \s1 + 1 � s2".For each �xed input x 2 Qna one places into the system Az � b up to two linearinequalities for each gate g in N . These inequalities are de�ned by induction onthe depth of g. If g has depth 1, t1 < � � � < tk are the thresholds of its activationfunctions
 in N , and its input nPi=1�ixi + �0 in N̂ [c]� satis�es c � tj � nPi=1�ixi + �0and nPi=1�ixi + �0 + 1 � c � tj+1, then one adds these two inequalities to the system(more precisely: if j = 0 or j = k then only one inequality is needed since the otherone is automatically true).If g0 is a successor gate of g, it receives from g for some speci�c j 2 f0; : : : ; kgan output of the form aj � (nPi=1�ixi+�0)+ c � bj (where c is the scaling factor of gateg). Note that this term is linear, since aj; bj are �xed parameters of gate g0. In thisway one can express for circuit input x the input I(x) of gate g0 as a linear term inthe weights, biases and scaling factors of its preceding gates (we exploit here that inN̂ the weight on the edge between g0 and each predecessor gate is a �xed parameterfrom f�1; 0; 1g, not a variable). If this input I(x) satis�es in N̂ [c]� the inequalitiesc0 � t0j0 � I(x) and I(x) + 1 � c0 � t0j0+1 (where t01 < : : : < t0k0 are the thresholds of g0in N , and c0 is the scaling factor of g0 in N̂), then one adds these two inequalitiesto the system Az � b (respectively only one if j 0 = 0 or j 0 = k0). Note that allresulting inequalities are linear, in spite of the fact that it contains variables for thebiases of all gates. It should also be pointed out that the de�nition of this system ofinequalities is more involved than it may �rst appear, since the sum of terms I(x)10

depends on the chosen inequalities for all predecessor gates (e.g. on j in the exampleabove). Hence a precise de�nition has to be similar to that of the more detailedproof of Theorem 3.1 (see the Journal version of [M 93a]).It is clear that the resulting system Az � b has a solution inRw, since z := h�; ciis a solution. Hence we can apply Lemma 2.4, which provides a solution z0 of theform h sit ii=1;:::;w with integers s1; : : : ; sw; t of absolute value � (2w + 1)! 22a(2w+1).Let N̂ [c0]�0 be the neural net N̂ with this new assignment h� 0; c0i := z0 of \small"parameters. By de�nition we have 8x 2 Qna(N �(x) = N̂ [c0]�0). We show thatone can transform this neural net N̂ [c0]�0 into a net N �0 with the same activationfunctions as N � but a new assignment �0 of \small" parameters (that can easilybe computed from � 0; c0). This transformation proceeds inductively from the inputlevel towards the output level. Consider some gate g on level 1 in N̂ that uses(for the new parameter assignment c0) the scaling factor c > 0 for its activationfunction
c. Then we replace the weights �1; : : : ; �n and bias �0 of gate g in N̂ [c0]�0by �1c ; : : : ; �nc ; �0c ; and
c by
. Furthermore if r 2 f�1; 0; 1g was in N̂ the weighton the edge between g and its successor gate g, we assign to this edge the weightc � r. Note that g0 receives in this way from g the same input as in N̂ [c0]�0 (for everycircuit input). Assume now that �01; : : : ; �0m are the weights that the incoming edgesof g0 get assigned in this way, that �00 is the bias of g0 in the assignment z0 = h�0; c0i,that c0 > 0 is the scaling factor of g0 in N̂ [c0]�0. Then we assign the new weights�01c0 ; : : : ; �0mc0 and the new bias �00c0 to g0, and we multiply the weight on the outgoingedge from g0 by c0.By construction we have that 8x 2 Rn (N �0(x) = N̂ [c0]�0(x)), hence8x 2 Qna (N �0(x) = N �(x)).3 Upper Bounds for Neural Nets with PiecewisePolynomial Activation FunctionsTheorem 3.1 Consider an arbitrary array (Nn)n2N of high order network ar-chitectures Nn of depth O(1) with n inputs and O(nO(1)) gates, in which the gatefunction
g of each gate g is piecewise polynomial of degree O(1) with O(nO(1)) poly-nomial pieces, with arbitrary reals as architectural parameters.Then there exists an array (~Nn)n2N of �rst order network architectures ~Nn ofdepth O(1) with n inputs and O(nO(1)) gates such that each gate g in ~Nn uses asits activation function the heaviside function sgn (i.e. g is a linear threshold gate),and such that for each assignment � of arbitrary reals to the programmable param-eters in Nn there is an assignment ~� of O(nO(1)) numbers from f�1; 0; 1g to theprogrammable parameters in ~Nn such that 8x 2 f0; 1gn (N �n (x) = ~N ~�n (x)).Hence for any assignment (�n)n2N of real valued parameters the boolean func-tions that are computed by (N �nn)n2N are in TC 0. In particular VC-dimension11

(Nn; f0; 1gn) = O(nO(1)).Remark 3.2 Theorem 3.1 yields no bound for the computational power of neuralnets with the activation function �(y) = 1=(1+e�y). However it provides bounds forthe case where the activation functions are spline approximations to � of arbitrarilyhigh degree d, provided that d 2 N is �xed.Idea of the proof of Theorem 3.1 This proof is quite long and involved, evenfor the simplest nonlinear case where the activation functions consist of 2 polynomialpieces of degree 2. Note that in contrast to the model in [SS] the magnitude of thegiven weights in Nn may grow arbitrarily fast as a function of n.We �rst note that one can eliminate all nonlinear polynomials Qg as argumentsof activation functions by introducing intermediate gates with linear gate inputsand quadratic activation functions. One exploits here the obvious fact that y � z =12�(y+z)2�y2�z2�. In this way one can transform the given network architecturesinto �rst order network architectures which still satisfy the assumptions of Theorem3.1.Subsequently we transform each given neural net N �nn into a normal form N̂ �nnof constant depth and size O(nO(1)) in which all gates g have fan-out � 1, and allgates g use as activation functions
g piecewise polynomial functions of the followingspecial type:
g consists of up to 3 pieces, of which at most one is not identically 0,and in which the nontrivial piece outputs a constant, or computes a power y 7! yk(where k 2 N satis�es k = O(1)). We can choose �n such that one has \s1+1 � s2"for all strict inequalities \s1 < s2" that arise in N̂ �nn for inputs from f0; 1gn when onecompares some intermediate term s1 with the threshold s2 of some gate, or with theouter threshold (analogously as in the proof of Theorem 2.1). This transformationcan be done in such a way that 8x 2 f0; 1gn(N �nn (x) = N̂ �nn (x)).It would also be possible to push all nontrivial weights to the gates on level 1,in correspondence to the construction in the proof of Theorem 2.1. However in thepresent context this additional operation does not eliminate non-linear conditions onthe weights. Assume for example that g is a gate on level 1 with input �1x1 + �2x2and activation function
g(y) = y2. Then this gate g outputs �21x21 + 2�1�2x1x2 +�22x22. Hence the variables �1; �2 will not occur linearly in an inequality whichdescribes the comparison of the output of g with some threshold of a gate at thenext level.Although it does not eliminate non-linear conditions on the weights if one pushesall weights towards level 1, the resulting network provides some notational advantagebecause all weights between computation nodes can be treated as constants (withthree possible values). Therefore this approach has been chosen in [M 92] and [M93a]. However this approach is disadvantageous if one wants to apply the method ofthis proof in the context of agnostic PAC-learning on analog neural nets ([M 93c]).12

In this application one has to be able to control the bit-length of the (rational)weights. Therefore one cannot a�ord to push all weights towards level 1, since thismay increase the bit-length of weights in an unbounded manner. For example if onepushes the weight 2 through a gate g with activation function
g(y) = y2, then thisweight is changed to p2 (since 2
g(y) =
g(p2 � y)).Since the non-linearity of the conditions on the weights cannot be eliminated inthe same way as for Theorem 2.1, we have to introduce an alternative method. We �xan arbitrary assignment �n of real numbers to the parameters of N̂n. We introducefor the system of inequalities L(N̂ �nn ; f0; 1gn) (that describes the computations ofN̂ �nn for all inputs x 2 f0; 1gn) new variables v for all nontrivial parameters in N̂ �nn(i.e. for the weights and bias of each gate g, for the outer threshold Tout and forthe thresholds tg1; tg2 of each gate g). In addition we introduce new variables for allproducts of such parameters that arise in the computation of N̂ �nn . We have to keepthe inequalities linear in order to apply Lemma 2.4. Hence we cannot demand inthese inequalities that the value of the variable vvg1 ;vg2 (that represents the productof �g1 and �g2) is the product of the values of the variables vg1 and vg2 (that representthe weights �g1 respectively �g2). We solve this problem by describing in detail inthe linear inequalities L(N̂ �nn ; f0; 1gn) which role the product of �g1 and �g2 playsin the computations of N̂ �nn for inputs from f0; 1gn. It turns out that this can bedone in such a way that it does not matter whether a solution A of L(N̂ �nn ; f0; 1gn)assigns to the variable vvg1 ;vg2 a value A(vvg1 ;vg2) that is equal to the product of thevalues A(vg1) and A(vg2) (that are assigned by A to the variables vg1 and vg2). Inany case A(vvg1 ;vg2) is forced to behave like the product of A(vg1) and A(vg2) in thecomputations of N̂ �nn .We would like to emphasize that the parameters �n do not occur as constantsin the system L(N̂ �nn ; f0; 1gn) of inequalities. They are also replaced by variables.The reason why the real valued parameters �n occur nevertheless in our notationL(N̂ �nn ; f0; 1gn) of inequalities is the following. These inequalities consist of condi-tions which demand that for any input x 2 f0; 1gn the computation on the neuralnet proceeds exactly as for the parameter assignment �n (i.e. the same inequalitieswith thresholds of the piecewise polynomial activation functions are satis�ed and thesame pieces of the activation functions are used at each gate as in the computationwith parameter assignment �n).In more abstract terms, one may view any solution A of L(N̂ �nn ; f0; 1gn) as amodel of a certain \linear fragment" L(N̂ �nn ; f0; 1gn) of the theory of the role of theparameters �n in the computations of N̂ �nn on inputs from f0; 1gn. Such model A(which will be given by Lemma 2.4) is some type of \nonstandard model" of thetheory of computations of N̂ �nn , since it replaces products of weights by \nonstandardproducts". Such nonstandard modelA does not provide a new assignment of (small)13

weights to the network architecture N̂n, only to a \nonstandard version"MAn of theneural net N̂ �nn . However the linear fragment L(N̂ �nn ; f0; 1gn) can be chosen in sucha way that MAn computes the same boolean function as N̂ �nn : Furthermore, if Aconsists of a solution with \small" values as given by Lemma 2.4, then MAn can besimulated by a constant-depth polynomial-size boolean circuit whose gates g are allMAJORITY-gates (i.e. g(y1; : : : ; ym) = 1 if mPi=1 yi � m=2, otherwise g(y1; : : : ; ym) =0). This implies that the boolean functions that are computed by (MAn)n2N arein TC 0. However by construction these are the same boolean functions that arecomputed by (N �nn)n2N.Further details of this proof can be found in the forthcoming journal-version of[M 93a].4 Concluding RemarksIt is shown in this chapter that high order feedforward neural nets of constant depthwith piecewise polynomial activation functions and arbitrary real weights can besimulated for boolean inputs and outputs by neural nets of a somewhat larger sizeand depth with heaviside gates and weights from f�1; 0; 1g. This provides the�rst known upper bound for the computational power of the former type of neuralnets. It is also shown that in the case of �rst order nets with piecewise linearactivation functions one can replace arbitrary real weights by rational numbers withpolynomially many bits, without changing the boolean function that is computed bythe neural net. In order to prove these results we have introduced two new methodsfor reducing nonlinear problems about weights in multi-layer neural nets to linearproblems for a transformed set of parameters. These transformed parameters canbe interpreted as weights in a somewhat larger neural net.As another application of this proof technique one can show a positive result forPAC-learning (even for agnostic PAC-learning of real-valued functions) on analogneural nets of bounded size (see [M 93a], and Theorem 4.7 in our subsequent chapteron learning in this volume).AcknowledgementsWe would like to thank Eduardo D. Sontag for drawing our attention to the problemof �nding upper bounds for neural nets with �-gates, and for his insightful comments.We thank Peter Auer, Franz Aurenhammer, Eric Baum, David Haussler, Philip M.Long, Gy�orgy Turan, and Gerhard W�oginger for various helpful discussions on thisresearch.
14

References[A] Y. S. Abu-Mostafa, \The Vapnik-Chervonenkis dimension: informationversus complexity in learning", Neural Computation, vol. 1, 1989, 312 -317[B] P. L. Bartlett, \Lower bounds on the Vapnik-Chervonenkis dimension ofmulti-layer threshold networks", Proc. of the 5th Annual ACM Conferenceon Computational Learning Theory, 1993, ACM-Press, 144 - 150[BH] E. B. Baum, D. Haussler, \What size net gives valid generalization?",Neural Computation, vol. 1, 1989, 151 - 160[BR] A. Blum, R. L. Rivest, \Training a 3-node neural network is NP-complete",Proc. of the 1988 Workshop on Computational Learning Theory, MorganKaufmann (San Mateo, 1988), 9 - 18[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, \Learnabilityand the Vapnik-Chervonenkis dimension", J. of the ACM, vol. 36(4), 1989,929 - 965[CSV] A. K. Chandra, L. Stockmeyer, U. Vishkin, \Constant depth reducibility",SIAM J. Computing, vol. 13 (2), 1984, 423 - 439[DS] B. DasGupta, G. Schnitger, \The power of approximating: a comparisonof activation functions", in: Advances in Neural Information ProcessingSystems, vol. 5, Morgan Kaufmann (1993), 615 - 622[DR] R. Durbin, D. E. Rumelhart, \Product units: a computationally powerfuland biologically plausible extension to backpropagation networks", NeuralComputation, vol. 1, 1989, 133 - 142[GHR] M. Goldmann, J. Hastad, A. Razborov, \Majority gates vs. generalweighted threshold gates", Proc. of the 7th Structure in Complexity TheoryConference, 1992, 2 - 13[HMPST] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy and G. Turan, \Thresh-old circuits of bounded depth", Proc. of the 28th Annual IEEE Symp. onFoundations of Computer Science, 1987, 99 - 110. Full version in J. Comp.System Sci., vol. 46, 1993, 129 - 154[Has] J. Hastad, \On the size of weights for threshold gates", preprint (September1992)[H] D. Haussler, \Decision theoretic generalizations of the PAC model for neu-ral nets and other learning applications", Information and Computation,vol. 100, 1992, 78 - 150[Ho] J. J. Hop�eld, \Neurons with graded response have collective computa-tional properties like those of two-state neurons", Proc. Nat. Acad. of Sci-ences USA, 1984, 3088 - 309215

[J] D. S. Johnson, \A catalog of complexity classes", in: Handbook of Theoret-ical Computer Science vol. A, J. van Leeuwen ed., MIT Press (Cambridge,1990)[KV] M. Kearns, L. Valiant, \Cryptographic limitations on learning boolean for-mulae and �nite automata", Proc. of the 21st ACM Symposium on Theoryof Computing, 1989, 433 - 444[L] R. P. Lippmann, \An introduction to computing with neural nets", IEEEASSP Magazine, 1987, 4 - 22[M 92] W. Maass, \Bounds for the computational power and learning complexityof analog neural nets", IIG-Report 349 of the Technische Universit�at Graz,(October 1992)[M 93a] W. Maass, \Bounds for the computational power and learning complexityof analog neural nets" (extended abstract), Proc. of the 25th ACM Sym-posium on the Theory of Computing, 1993, 335 - 344[M 93b] W. Maass, \Neural nets with superlinear VC-dimension", IIG-Report 366of the Technische Universit�at Graz, (June 1993); to appear in Neural Com-putation[M 93c] W. Maass, \Agnostic PAC-learning of functions on analog neural nets",IIG-Report 362 of the Technische Universit�at Graz, (May 1993); to appearin Neural Computation[MSS] W. Maass, G. Schnitger, E. D. Sontag, \On the computational power ofsigmoid versus boolean threshold circuits", Proc. of the 32nd Annual IEEESymp. on Foundations of Computer Science, 1991, 767 - 776[MT] W. Maass, G. Turan, \How fast can a threshold gate learn?", in: Compu-tational Learning Theory and Natural Learning Systems: Constraints andProspects, G. Drastal, S. J. Hanson and R. Rivest eds., MIT Press, toappear[MR] J. L. McClelland, D. E. Rumelhart \Parallel Distributed Processing", vol.2, MIT Press (Cambridge, 1986)[Me] N. Megiddo, \Linear Programming in linear time when the dimension is�xed", J. of the ACM, vol. 31, 1984, 114 - 127[MP] M. Minsky, S. Papert, \Perceptrons: An Introduction to ComputationalGeometry", Expanded Edition, MIT Press (Cambridge, 1988)[MD] J. Moody, C. J. Darken, \Fast learning in networks of locally-tuned pro-cessing units", Neural Computation, vol. 1, 1989, 281 - 294[Mu] S. Muroga, \Threshold Logic and its Applications", Wiley (New York,1971) 16

[Ni] N. J. Nilsson, Learning Machines, McGraw-Hill (New York, 1971)[PS] I. Parberry, G. Schnitger, \Parallel computation with threshold functions",Lecture Notes in Computer Science vol. 223, Springer (Berlin, 1986), 272 -290[PG] T. Poggio, F. Girosi, \Networks for approximation and learning", Proc. ofthe IEEE, vol. 78(9), 1990, 1481 - 1497[R] F. Rosenblatt, \Principles of Neurodynamics", Spartan Books (New York,1988)[RM] D. E. Rumelhart, J. L. McClelland, \Parallel Distributed Processing", vol.1, MIT Press (Cambridge, 1986)[Sch] A. Schrijver, \Theory of Linear and Integer Programming", Wiley (NewYork, 1986)[SS] H. T. Siegelmann, E. D. Sontag, \Neural networks with real weights: ana-log computational complexity", Report SYCON-92-05, Rutgers Center forSystems and Control (Oct. 1992)[SBKH] K. Y. Siu, J. Bruck, T. Kailath, T. Hofmeister, \Depth e�cient neural net-works for division and related problems", to appear in IEEE Transactionson Inf. Theory[SR] K. Y. Siu, V. Roychowdhury, \On optimal depth threshold circuits formultiplication and related problems", Tech. Report ECE - 92-05, Universityof California, Irvine (March 1992)[S1] E. D. Sontag, \Remarks on interpolation and recognition using neuralnets", in: Advances in Neural Information Processing Systems 3, R. P.Lippmann, J. Moody, D. S. Touretzky, eds., Morgan Kaufmann (San Ma-teo, 1991), 939 - 945[S2] E. D. Sontag, \Feedforward nets for interpolation and classi�cation", J.Comp. Syst. Sci., vol. 45, 1992, 20 - 48

17

