Computing on Analog Neural Nets with
Arbitrary Real Weights

Wolfgang Maass

Institute for Theoretical Computer Science
Technische Universitaet Graz
Klosterwiesgasse 32/2
A-8010 Graz, Austria
e-mail: maass@igi.tu-graz.ac.at

1 Introduction

We examine in this chapter the computational power of high order analog feedfor-
ward neural nets NV, i.e. of circuits with analog computational elements in which
certain parameters are treated as programmable parameters. We focus on neural
nets A of bounded depth in which each gate g computes a function from R™ into
R of the form <y, ..., 9, > — Y(Q(v1,. .., Ym)). We assume that for each gate
g, 7? is some fixed piecewise polynomial activation function (also called response
function). This function is applied to some polynomial Q?(y,. .., ym) of bounded
degree with arbitrary real coefficients, where y,,...,,, are the real valued inputs
to gate g. One usually refers to the degree of the polynomial Q7 as the “order” of
the gate g. The coefficients (“weights”) of Q9 are the programmable variables of N,
whose values may arise from some learning process.

We are primarily interested in the case where the neural net N computes (re-
spectively learns) a boolean valued function. For that purpose we assume that the
real valued output of the output gate g,,; of N is “rounded off”. More precisely, we
assume that there is an “outer threshold” T,,,; (which belongs to the programmable
parameters of A') such that the output of N is “1” whenever the real valued output
z of g, satisfies z > T,,;, and “0” if z < T,,;. In some results of this chapter we
also assume that the input < zy,...,z, > of N is boolean-valued. It should be
noted, that this does not affect the capacity of N to carry out on its intermediate
levels (i.e. in its “hidden units”) computation over reals, whose real-valued results
are then transmitted to the next layer of gates.

Circuits of this type have rarely been considered in computational complex-
ity theory, and they give rise to the principal question whether these intermediate

analog computational elements will allow the circuit to compute more complex
boolean functions than a circuit with a similar layout but digital computational ele-
ments. Note that circuits with analog computational elements have an extra source
of potentially unlimited parallelism at their disposal, since they can execute opera-
tions on numbers of arbitrary bit-length in one step, and they can transmit numbers
of arbitrary bit-length from one gate to the next.

One already knows quite a bit about the special case of such neural nets A" where
each gate g is a “linear threshold gate”. In this case each polynomial Q?(y1, .. ., Ym)
is of degree < 1 (i.e. a weighted sum), and each activation function 9 in N is the
“heaviside function” (also called “hard limiter”) sgn defined by

1,ify>0
Sgn(y):{ 0,ify<0

(e.g. see [R], [Ni], [Mu], [MP], [PS], [HMPST]|, [GHRJ, [SR], [SBKH], [BH], [A],
[L]). The “analog versus digital” issue does not arise in this case, since the output
of each gate is a single bit. Still, it requires some work to bound the potential
power of arbitrary weights (in the weighted sums) for the computation of boolean
functions on such circuit. Since there are only finitely many boolean circuit inputs,
it is obvious that only rational weights have to be considered. The key result for
the analysis of these circuits was the discovery of Muroga et. al. (see [Mu]) that
it is sufficient to consider for a linear threshold gate with m boolean inputs only
weights o, ..., q,, and a bias ay that are integers of size 20(mlogm) (this upper
bound is optimal according to a recent result of Hastad [Has]). With the help of
this a-priori-bound on the relevant bit-length of weights it is easy to show that the
same arrays (F),)nen of boolean functions F,, : {0,1}" — {0,1} are computable by
arrays (N,)nen of neural nets of depth O(1) and size O(n®")) with linear threshold
gates, no matter whether one uses as weights arbitrary reals, rationals, integers, or
elements of {—1,0, 1}; see [Mu], [CSV], [HMPST], [GHR/|, [MT]. The resulting class
of arrays (F},)nex of boolean functions is called (nonuniform-) TC® ([HMPST], [J]).

In comparison, very little is known about upper bounds for the computational
power and the learning complexity of feedforward neural nets whose gates g em-
ploy more general types of activation functions v9. This holds in spite of the fact
that “real neurons and real physical devices have continuous input-output relations”
(Hopfield [Ho|). In the analysis of information processing in natural neural systems,
one usually views the firing rate of a neuron as its current output. Such firing rates
are known to change between a few and several hundred spikes per second (see ch.
20 in [MR]). Hence the activation function 77 of a gate ¢ that models such a neuron
should have a “graded response”. It should also be noted that the customary learn-
ing algorithms for artificial neural nets (such as backwards propagation [RM]) are
based on gradient descent methods, which require that all gates g employ smooth
activation functions 9.

In addition, it has frequently been pointed out that it is both biologically plau-

2

sible and computationally relevant to consider gates ¢ that pass to 7Y instead

m

of a weighted sum Y. o;y; + ap some polynomial Q9(yi,...,y,) of bounded de-
i=1

gree, where vy, ..., ¥y, are circuit inputs or outputs of the immediate predecessors

of g. Such gates are called sigma-pi units or high order gates in the literature

(see p. 73 and ch. 10 in [RM], also [DR], [H], [PG], [MD]). From the point of
view of approximation theory there has been particular interest in the case where

m
Qy1, - ym) = 3 ai(y; — ¢;)* measures a “distance” of its input < yi,...,ym >
i=1
from some “center” < ¢y, ..., ¢, > (the latter may be determined through a learning
process).

Theorem 3.1 of this chapter provides the first upper bound for the computational
power of high order feedforward neural nets with non-boolean activation functions
and arbitrary real weights. The power of feedforward neural nets with other acti-
vation functions besides sgn has previously been investigated in [RM] (ch.10), [S1],
[S2], [H], [MSS], [DS], [SS]. It was shown in [MSS] for a very general class of ac-
tivation functions 79 that neural nets (NV,,),ex of constant depth and size O(n°M)
with real weights of size O(n°")) and output-separation Q(1/n°1") (between the un-
rounded circuit-outputs for rejected and accepted inputs) can compute only boolean
functions in TC". Tt follows from a result of Sontag [S2] that the assumptions on
the weight-size and separation are essential for this upper bound: he constructed
an arbitrarily smooth monotone function © (which can be made to satisfy the con-
ditions on 79 in the quoted result of [MSS]) and neural nets N, of size 2 (!) with
activation function © such that N, can compute with sufficiently large weights any
boolean function F, : {0,1}" — {0,1} (hence N, has VC-dimension 2").

These results leave open the question about the computational power and learn-
ing complexity of feedforward neural nets with arbitrary weights that employ “natu-
ral” analog activation functions 9. For example there has previously been no upper
bound for the set of boolean functions computable by analog neural nets with the
very simple piecewise linear function 7 defined by

0,ify<0
m(y) =3 y,if0<y<1
1,ify>1

([L] refers to a gate g with 49 = 7 as a “threshold logic element”). On the other
hand there exist results which suggest that such upper bound would be non-trivial.
It has already been shown in [MSS] that constant size neural nets of depth 2 with
activation function 7 and small integer weights can compute more boolean functions
than constant size neural nets of depth 2 with linear threshold gates (and arbitrary
weights). [DS] exhibits an even stronger increase in computational power for the
case of quadratic activation functions.

Hence even simple non-boolean activation functions provide more computational
power to a neural net than the heaviside-function. However it has been open by
how much they can increase the computational power (in the presence of arbitrary

3

weights). E. Sontag has pointed out that known methods do not even suffice to show
for a constant depth neural net A, of size O(n®1)) with n inputs and activation
function 7, that there is any boolean function F,, : {0,1}" — {0,1} that can not be
computed on N, with a suitable weight-assignment. Correspondingly no better up-
per bound than the trivial 2" could be given for the VC-dimension of such N, (with
n boolean inputs). From the technical point of view, this inability was caused by the
lack of an upper bound on the amount of information that can be encoded in such
neural net by the assignment of weights. For the case of neural nets with heaviside
gates this upper bound on the information-capacity of weights is provided by the
quoted result of Muroga et. al. [Mu]. However this problem is substantially more
difficult for neural nets with piecewise linear activation functions. For this model
it is no longer sufficient to analyze a single gate with boolean inputs and outputs.
Even if the inputs and outputs of the neural net are boolean valued, the “signals”
that are transmitted between the hidden units are real valued. Furthermore one
can give no a-priori bound on the precision required for such analog signals between
hidden units, since one has no control over the maximal size of weights in the neural
net. Obviously a large weight will magnify any imprecision. Note also that a com-
putation on a multi-layer neural net of the here considered type involves products of
weights from subsequent levels. Hence, if some of the weights are arbitrarily large,
one needs arbitrarily high precision for the other weights.

The main technical contribution of this chapter are two new methods for reducing
nonlinear problems about weights in multi-layer neural nets to linear problems for
a transformed set of parameters. These two methods are presented in the sections 2
and 3 of this chapter. We introduce in section 2 of this chapter a method that allows
us to prove an upper bound for the information-capacity of weights for neural nets
with piecewise linear activation functions (hence in particular for 7). It is shown
that for the computation of boolean functions on neural nets N, of constant depth
and polynomially in n many gates (where n is the number of input variables) it is
sufficient to use as weights rational numbers with polynomially in n many bits. As
a consequence one can simulate any such analog neural net by a digital neural net
of constant depth and polynomial size with the heaviside activation function (i.e.
linear threshold gates) and binary weights (i.e. weights from {0,1}). This result
also implies that the VC-dimension of N,, can be bounded above by a polynomial
in n.

In section 3 we introduce another proof-technique, that allows us to derive the
same two consequences also for neural nets with piecewise polynomial activation
functions and nonlinear gate-inputs Q9(ys, . .., ¥,) of bounded degree. These results
show that in spite of the previously quoted evidence for the superiority of non-
boolean activation functions in neural nets, there is some limit to their computational
power as long as the activation functions are piecewise polynomial. On the other
hand the polynomial upper bound on the VC-dimension of such neural nets may be
interpreted as good news: It shows that neural nets of this type can in principle be
trained with a sequence of examples that is not too long.

The “linearization” of the requirements on the weights that is carried out in
sections 2 and 3 has also implications for PAC-learning on analog neural nets (see
[M 93¢, or Theorem 4.7 in our later chapter on learning in this volume).

The results of this chapter were first announced in [M 92|, and an extended
abstract of these results appeared in [M 93a]. Another result of [M 93al, the con-
struction of neural nets whose VC-dimension is superlinear in the number of weights,
has subsequently been improved to apply also for depth 3. A full version of that
proof appears in [M 93b].

Definition 1.1 A network architecture (or “neural net”) N of order k is a
labelled acyclic directed graph (V, E). Its nodes of fan-in 0 are labelled by the input
variables x1,...,x,. Each node g of fan-in m > 0 is called a computation node (or
gate), and is labelled by some activation function v9 : R — R and some polynomial
Q% (y1,---,Ym) of degree < k. Furthermore N has a unique node of fan-out 0, which
is called the output node of N and which carries as an additional label a certain real
number Toy (called “the outer threshold of N7).

The coefficients of all polynomials Q%(y1, - - -, ym) for gates g in N and the outer
threshold T,,; are called the programmable parameters of N'. Assume that N has w
programmable parameters, and that some numbering of these has been fized. Then

each assignment o € R of reals to the programmable parameters in N defines an
analog circuit N2, which computes a function x — N2(z) from R" into {0,1} in
the following way: Assume that some input x € R" has been assigned to the input
nodes of N'. If a gate g in N' has m immediate predecessors in (V, E) which output
Yty Um € R, then g outputs v9(Q(va, ..., Ym)). Finally, if gou is the output gate
of N and gour gives the real valued output z (according to the preceding inductive
definition) we define

o o 1) ZfZ Z Tout
NHa) '_{ 0, if 2 < Tout,

where Ty, is the outer threshold that has been assigned by . t0 Gous-
Any parameters that occur in the definitions of the activation functions v9 of N'
are referred to as architectural parameters of N .

Definition 1.2 A function v : R — R is called piecewise polynomial if there
are thresholds ti,...,t, € R and polynomials Py, ..., Py such that t; < ... < g
and for each i € {0,...,k} 1 t; < x < t;p1 = v(x) = P(z) (we set ty := —o0 and
tk+1 = OO)

If k is chosen minimal for v, we refer to k as the number of polynomial pieces of
v, to Py, ..., Py as the polynomial pieces of v, and to ty, ...ty as the thresholds of
v. Furthermore we refer to ty, ..., t; together with all coefficients in the polynomials
Py, ..., Py as the parameters of v. The maximal degree of Py, ..., Py is called the
degree of v. If the degree of v is < 1 then we call v piecewise linear, and we refer
to Py, ..., Py as the linear pieces of .

If v occurs as activation function v9 of some network architecture N, then one
refers to the parameters of v as architectural parameters of N .

Note that we do not require that « is continuous (or monotone).

Definition 1.3 Assume that N is an arbitrary network architecture with n inputs
and w programmable parameters, and S C R" is an arbitrary set. Then one defines
the VC-dimension of N over S in the following way:

VC-dimension(N, S) = maz{]S’|
F:S"—{0,1} there exists a parameter assignment

a € RY such thatV z € S'(N%(z) = F(x))}.

S" C S has the property that for every function

Remark 1.4 “VC-dimension” is an abbreviation for “Vapnik-Chervonenkis di-
mension”. It has been shown in [BEHW] (see also [BH], [A]) that the VC-dimension
of a neural net N essentially determines the number of examples that are needed to
train A (in Valiant’s model for probably approximately correct learning [V]). Sontag
[S2] has shown that the VC-dimension of a neural net can be drastically increased by
using activation functions with non-boolean output instead of the heaviside function
sgn. We refer to our later chapter in this volume about learning on neural nets for
further results about the VC-dimension of neural nets.

2 A Bound for the Information - Capacity of
Weights in Neural Nets with Piecewise Linear
Activation Functions

We consider for arbitrary @« € N the following set of rationals with up to a bits
before and after the comma:

a—1
Qa;:{reQ r=s-3 b2 forbe{0,1}, i=—a,...,a—1and

1=—a

se{-1, 1}}

Note that for any r € Q, : |r| < 2¢ < 2% - min{|r'| | ' € Q, and ' # 0}.

Theorem 2.1 Consider an arbitrary network architecture N of order 1 over a
graph (V, EY with n input nodes, in which every computation node has fan-out < 1.
Assume that each activation function 9 in N is piecewise linear with parameters
from Q,. Let w:=|V|+ |E|+1 be the number of programmable parameters in N .

Then for every a € RY there exists a vector o =< 51, ..., % >¢€ QY with inte-

gers si, ..., 5y, t of absolute value < (2w +1)! 2202w+ gych that Vo € Q" (Ng(z) =

N (g)) In particular N& computes the same boolean function as N'<.

Remark 2.2 The condition of Theorem 2.1 that all computation nodes in A
have fan-out < 1 is automatically satisfied for d < 2. For larger d one can simulate

6

any network architecture N of depth d with s nodes by a network architecture N’
with < = - 5471 < 34971 nodes and depth d that satisfies this condition. Hence
this condition is not too restrictive for network architectures of a constant depth d.

It should also be pointed out that there is in the assumption of Theorem 2.1
no explicit bound on the number of linear pieces of ¢ (apart from the requirement
that its thresholds are from Q,). For example these activation functions may consist
of 2¢ linear pieces (with discontinuous jumps in between). Furthermore 79 is not
required to be monotone.

Finally it should be mentioned that a corresponding version of Theorem 2.1 also
holds for rational numbers that do not have a finite binary representation, i.e. for
all rationals from Q. := {r € Q : r is the quotient of integers of bit-length < a}
instead of Q,,.

Remark 2.3 Previously one had no upper bound for the computational power
(or for the VC-dimension) of multi-layer neural nets N with arbitrary weights and
analog computational elements (i.e. activation functions with non-boolean output).
Theorem 2.1 implies that any N of the considered type can compute with the help
of arbitrary parameter assignments o € R™ at most 20" 18®) different functions
from Q! into {0, 1}, hence VC-dimension (N, QF) = O(w?(a + logw)).

Furthermore Theorem 2.1 implies that one can replace all analog computations
inside N by digital arithmetical operations on not too large integers (the proof gives
an upper bound of O(wa-+w log w) for their bit-length). Tt is well-known that each of
these digital arithmetical operations (multiple addition, multiplication, division) can
be carried out on a circuit of small constant depth with O(a®™.w°®) MAJORITY-
gates, hence also on a network architecture of depth O(1) and size O(a®™) - w°M)
with linear threshold gates and weights from {—1,0,1} ([CSV], [PS], [HMPST],
[GHR], [SR], [SBKH]). Thus one can simulate for inputs from {0,1}" any depth
d network architecture N as in Theorem 2.1 with arbitrary parameter assignments
a € R" by a network architecture of depth O(d) and size O(a®™) -w°™M)) with linear
threshold gates and weights from {—1,0,1}. The same holds for inputs from Q! if
they are given to A in digital form.

Proof of Theorem 2.1: In the special case where v9 = sgn for all gates in N/
this result is well known ([Mu]). It follows by applying separately to each gate in
N the following result.

Lemma 2.4 (folklore; see [MT] for a proof) Consider a system Az < b
of some arbitrary finite number of linear inequalities in | variables. Assume that all
entries in A and b are integers of absolute value < K.

If this system has any solution in R', then it has a solution of the form
(2L,...%), where sy,...,s,t are integers of absolute value < (21 + 1)1 K.

Sketch of the proof for Lemma 2.4: Let £ be the number of inequalities in
Az < b. One writes each variable in z as a difference of 2 nonnegative variables, and
one adds to each inequality a “slack variable”. In this way one gets an equivalent

7

system

(1) Az'=b , 2'>0

over [' := 2] + k variables, for some k£ x [’ matrix A’. The k columns of A’ for the
k slack-variables in 2’ form an identity matrix. Hence A’ has rank k.

The assumption of the Lemma implies that (1) has a solution over R. Hence
by Caratheodory’s Theorem (Corollary 7.1i in [Sch]) one can conclude that there is
also a solution over R of a system

(2) A"g" — b 7 J;‘” Z Q

where A" consists of k linearly independent columns of A’. Since A” has full rank,

(2) has in fact a unique solution that is given by Cramer’s rule: x = det(A’)/det A"

for j =1,...,k, where A} results form A" by replacing its 7™ column by b. Since
all except up to 2/ columns of A” contain exactly one 1 and else only 0’s, we can
bring each of the matrices A”, A by permutations of rows and columns into a form

()

where C' is a square matrix with 2/ + 1 rows. Hence the determinant of B is an
integer of absolute value < (21 + 1)! K2+, |

The difficulty of the proof of Theorem 2.1 lies in the fact that with analog com-
putational elements one can no longer treat each gate separately, since intermediate
values are no longer integers. Furthermore the total computation of N can in general
not be described by a system of linear inequalities, where the w variable parameters
of N are the variables in the inequalities (and the fixed parameters of N are the
constants). This becomes obvious if one just considers the composition of two very
simple analog gates g; and ¢, on levels 1 and 2 of N, whose activation functions

Y, 72 satisfy 1 (y) = 72(y) = y. Assume x = Y a;x; + o is the input to gate g,
=1

2

m
and gy receives as input Y o/jy; + ay where y; = y1(2) = x is the output of gate g;.
7=1

n m
Then g, outputs o - <Z ;i + ao) + > ay;+ap. Obviously this term is not linear
i=1 j=2

in the weights o}, aq, ..., a,. Hence if the output of gate gy is compared with a fixed
threshold at the next gate, the resulting inequality is not linear in the weights of
the gates in \V.

If the activation functions of all gates in N were linear (as in the example for g;
and gy), then there would be no problem because a composition of linear functions
is linear. However for piecewise linear activation functions it is not sufficient to
consider their composition, since intermediate results have to be compared with
boundaries between linear pieces of the next gate.

We introduce in this chapter a new method in order to handle this difficulty. We

8

simulate A2 by another neural net A/ (] (which one may view as a “normal form”

for N'¢) that uses the same graph (V, F) as N, but different activation functions
and different values 8 for its variable parameters. The activation functions of N
depend on |V| new parameters ¢ € R/, which we call scaling parameters in the
following. Although this new neural net has the disadvantage that it requires |V|
additional parameters ¢, it has the advantage that we can choose in /V[g] all weights
on edges between computation nodes to be from {—1,0,1}. Since these weights
from {—1,0, 1} are already of the desired bit-length, we can treat them as constants
in the system of inequalities that describes computations of N [c]. Thereby we can
achieve that all variables that appear in the inqualities that describe computations
of N[¢] (the variables for weights of gates on level 1, the variables for the biases of
gates on all levels, the variable for the outer threshold, and the new variables for the
scaling parameters c) appear only linearly in those inqualities. Hence we can apply
Lemma 2.4 to the system of inequalities that describes the computations of N for
inputs from QJ, and thereby get a “nice” solution (', ¢ for all variable parameters

in . Finally we observe that we can transform /\Af[g']ﬁ’ back into the original neural
net N with an assignment of small “numbers” o’ to all variable parameters in N.

We will now fill in some of the missing details. Consider the gate function 7y of
an arbitrary gate g in A. Since v is piecewise linear, there are fixed parameters

by < -+ <tg, @,.-.,a by,..., b in Q, (which may be different for different gates
¢g) such that with ¢y := —oc and 4,1 := 400 one has y(z) = a;x + b; for € R with
t; <x <tiy1;1=0,...,k For an arbitrary scaling parameter ¢ € R* we associate
with ~ the following piecewise linear activation function v the thresholds of v¢ are
c-t1,---,c-t and its output is v¢(z) = q;x +¢-b; for x € R with ¢-t; <z < ¢-t;41;
i=0,...,k (set ¢-tg:= —00, ¢ tyyq := +00). Thus for all reals ¢ > 0 the function

7€ is related to 7 through the equality: Vo € R (7%(c-x) = ¢ - v(x)).

Assume that o € R" is some arbitrary given assignment to the variable param-
eters in V. We transform N into a “normal form” A[¢]? in which all weights on

edges between computation nodes are from {—1,0, 1}, such that Vo € R" (NQ(_) =
N [Q]ﬁ(g)) We proceed inductively from the output level towards the input level.

Assume that the output gate g, of N2 receives as input Z ;1; + ag, where

Q1. .., Quy, ap are the weights and the bias of g,y (under the asagnment «) and
Y1,--.,Ym are the (real valued) outputs of the immediate predecessors gy, . .., gy of
g. For each i € {1,...,m} with «; # 0 such that g; is not an input node we replace

il

the activation functlon v; of g; by 7‘ and we multiply the weights and the bias of
gate g; with |;|. Finally we replace the weight «; of gate g, by 1, if a; > 0, and

This operation has the effect that the multiplication with |o;| is carried out before
the gate g; (rather than after g;, as done in A/2), but that the considered output
gate oy still receives the same input as before. The analogous operation is then
inductivily carried out for the predecessors g; of gy, (note however that the weights

of g; are no longer the original ones from A2, since they have been changed in the
preceding step). We exploit here the assumption that each gate has fan-out < 1.

Let [consist of the new weights on edges adjacent to input nodes, of the

resulting biases of all gates in N, and of the (unchanged) outer threshold T,,;.
Let ¢ consist of the resulting scaling factors at the gates of N. Then we have

Vz € R" (Ng(z) = N[Q]ﬁ@))-

Finally we have to replace all strict inequalities of the form “s; < s5” that are
needed to describe the computation of N[g]ﬁ for some input z € Q! by inequalities
of the form “s; +1 < s,”. This concerns inequalities of the form s < ¢-t;, where ¢-t;
is the threshold of some gate ¢ in N[g] and s is its gate input, inequalities of the form
s < Ty where s is the output of ¢,,;, and inequalities of the form 0 < ¢ for each
scaling parameter c¢. In order to achieve this stronger separation it is sufficient to
multiply all parameters (3, ¢ in N by a sufficiently large constant K. For simplicity
we write again (3, ¢ for the resulting parameters. We now specify a system 4z < b of
linear inequalities in w variables z that play the role of the w parameters 3, c in the

computations of A[¢)2 for all inputs z from Q. The constants of these inequalities
are the coordinates of all inputs € Q, the parameters of the activation functions
in N\, the constants —1,1 that occur in N as weights of edges between computation
nodes, and the constants 1 that arise from the replacement of strict inequalities
“s1 < 89”7 by “s1+1< 59"

For each fixed input x € Q, one places into the system Az < b up to two linear
inequalities for each gate g in N. These inequalities are defined by induction on
the depth of ¢g. If ¢ has depth 1, ¢; < --- < t; are the thresholds of its activation

n ~ n
functions v in N, and its input Y a;z; + a in Nc]? satisfies ¢ - t; < ¥ ami +
i=1 i=1

n

and) o;x; + o9+ 1 < c- 144, then one adds these two inequalities to the system
i=1
(more precisely: if j = 0 or j = k then only one inequality is needed since the other

one is automatically true).

If ¢’ is a successor gate of g, it receives from ¢ for some specific j € {0,...,k}
n

an output of the form a; - (X a;z; +ap) +c-b; (where ¢ is the scaling factor of gate
i=1

g). Note that this term is linear, since a;, b; are fixed parameters of gate ¢’. In this
way one can express for circuit input z the input I(z) of gate ¢’ as a linear term in
the weights, biases and scaling factors of its preceding gates (we exploit here that in
N the weight on the edge between ¢’ and each predecessor gate is a fixed parameter
from {—1,0,1}, not a variable). If this input I(z) satisfies in N[c)? the inequalities
¢ -ty <I(z) and I(z) +1 < ¢ -5, (where t] < ... < t}, are the thresholds of ¢’
in NV, and ¢ is the scaling factor of ¢’ in J\7), then one adds these two inequalities
to the system Az < b (respectively only one if j' = 0 or j/ = k'). Note that all
resulting inequalities are linear, in spite of the fact that it contains variables for the
biases of all gates. It should also be pointed out that the definition of this system of
inequalities is more involved than it may first appear, since the sum of terms I(zx)

10

depends on the chosen inequalities for all predecessor gates (e.g. on j in the example
above). Hence a precise definition has to be similar to that of the more detailed
proof of Theorem 3.1 (see the Journal version of [M 93al).

It is clear that the resulting system Az < b has a solution in R, since z := (§3, c)
is a solution. Hence we can apply Lemma 2.4, which provides a solution z’' of the

form (%1);—i . with integers si,...,s,,t of absolute value < (2w + 1)! 920(2w+1)

Let N2 be the neural net AV with this new assignment (§,¢) := 2’ of “small”

parameters. By definition we have Yz € Q"(N%(z) = N[¢]¥). We show that
one can transform this neural net N[Q’]él into a net N with the same activation
functions as N2 but a new assignment o' of “small” parameters (that can easily
be computed from Q’,). This transformation proceeds inductively from the input

level towards the output level. Consider some gate g on level 1 in N that uses
(for the new parameter assignment ¢') the scaling factor ¢ > 0 for its activation
function v¢. Then we replace the weights aq, ..., o, and bias ag of gate g in N[Q’]é’
by &, ..., 2 2 and 4 by . Furthermore if r € {—1,0,1} was in A the weight
on the edge between ¢ and its successor gate g, we assign to this edge the weight
¢-r. Note that ¢ receives in this way from ¢ the same input as in N[¢]2 (for every
circuit input). Assume now that o], ..., o are the weights that the incoming edges
of ¢’ get assigned in this way, that af is the bias of ¢ in the assignment 2’ = (§',),
that ¢ > 0 is the scaling factor of ¢’ in N[¢]. Then we assign the new weights
2, ..., %= and the new bias < to ¢/, and we multiply the weight on the outgoing
edge from ¢’ by ¢.

By construction we have that Vz € R™ (N2 (z) = N[¢}? (z)), hence
VieQn (Ve (x) = No(x)). '

3 Upper Bounds for Neural Nets with Piecewise
Polynomial Activation Functions

Theorem 3.1 Consider an arbitrary array (N,)nenx of high order network ar-
chitectures N, of depth O(1) with n inputs and O(n°WV) gates, in which the gate
function v9 of each gate g is piecewise polynomial of degree O(1) with O(n®M) poly-
nomial pieces, with arbitrary reals as architectural parameters.

Then there exists an array (Nn)neN of first order network architectures N, of
depth O(1) with n inputs and O(n°W) gates such that each gate g in N, uses as
its activation function the heaviside function sgn (i.e. g is a linear threshold gate),
and such that for each assignment o of arbitrary reals to the programmable param-
eters in N, there is an assignment & of O(n°MY) numbers from {—1,0,1} to the
programmable parameters in N, such that Yz € {0,1}" (N2(z) = N&(z)).

Hence for any assignment (v,)nenx of real valued parameters the boolean func-
tions that are computed by (Na™)nex are in TC®. In particular VC-dimension

11

(N, {0,1}7) = O(nW).

Remark 3.2 Theorem 3.1 yields no bound for the computational power of neural
nets with the activation function o(y) = 1/(1+e¥). However it provides bounds for

the case where the activation functions are spline approximations to o of arbitrarily
high degree d, provided that d € N is fixed.

Idea of the proof of Theorem 3.1 This proof is quite long and involved, even
for the simplest nonlinear case where the activation functions consist of 2 polynomial
pieces of degree 2. Note that in contrast to the model in [SS| the magnitude of the
given weights in N,, may grow arbitrarily fast as a function of n.

We first note that one can eliminate all nonlinear polynomials Q7 as arguments
of activation functions by introducing intermediate gates with linear gate inputs
and quadratic activation functions. One exploits here the obvious fact that y - 2z =
%((y +2)2—y?— 22). In this way one can transform the given network architectures
into first order network architectures which still satisfy the assumptions of Theorem
3.1.

Subsequently we transform each given neural net A" into a normal form Nnﬁ"
of constant depth and size O(n?")) in which all gates g have fan-out < 1, and all
gates g use as activation functions 79 piecewise polynomial functions of the following
special type: 79 consists of up to 3 pieces, of which at most one is not identically 0,
and in which the nontrivial piece outputs a constant, or computes a power y — y*
(where k € N satisfies k = O(1)). We can choose 3 such that one has “s; +1 < s,”

for all strict inequalities “s; < s,” that arise in ./\A/'né” for inputs from {0, 1}" when one
compares some intermediate term s; with the threshold s, of some gate, or with the
outer threshold (analogously as in the proof of Theorem 2.1). This transformation

can be done in such a way that Vz € {0, 1}"(Nx""(z) = ;2 (z)).

It would also be possible to push all nontrivial weights to the gates on level 1,
in correspondence to the construction in the proof of Theorem 2.1. However in the
present context this additional operation does not eliminate non-linear conditions on
the weights. Assume for example that ¢ is a gate on level 1 with input oz + @sas
and activation function v9(y) = y?. Then this gate g outputs alz? + 2 9w 29 +
a2r3. Hence the variables aj,y will not occur linearly in an inequality which
describes the comparison of the output of ¢ with some threshold of a gate at the

next level.

Although it does not eliminate non-linear conditions on the weights if one pushes
all weights towards level 1, the resulting network provides some notational advantage
because all weights between computation nodes can be treated as constants (with
three possible values). Therefore this approach has been chosen in [M 92] and [M
93a]. However this approach is disadvantageous if one wants to apply the method of
this proof in the context of agnostic PAC-learning on analog neural nets ([M 93c]).

12

In this application one has to be able to control the bit-length of the (rational)
weights. Therefore one cannot afford to push all weights towards level 1, since this
may increase the bit-length of weights in an unbounded manner. For example if one
pushes the weight 2 through a gate g with activation function 9(y) = %2, then this
weight is changed to /2 (since 2v9(y) = v9(v/2 -).

Since the non-linearity of the conditions on the weights cannot be eliminated in
the same way as for Theorem 2.1, we have to introduce an alternative method. We fix
an arbitrary assignment [of real numbers to the parameters of N,. We introduce

for the system of inequalities L(N; ", {0,1}") (that describes the computations of

N2 for all inputs z € {0,1}") new variables v for all nontrivial parameters in N
(i.e. for the weights and bias of each gate g, for the outer threshold T,,; and for
the thresholds t{,t5 of each gate g). In addition we introduce new variables for all

products of such parameters that arise in the computation of Nnﬁ". We have to keep
the inequalities linear in order to apply Lemma 2.4. Hence we cannot demand in
these inequalities that the value of the variable Vot o (that represents the product
of o and o) is the product of the values of the variables v{ and v§ (that represent
the weights of respectively 0/2) We solve this problem by describing in detail in

the linear inequalities L(N,™,{0,1}") which role the product of of and of plays
in the computations of ./\/'nﬁ" for inputs from {0,1}". Tt turns out that this can be

done in such a way that it does not matter whether a solution A of L(Ny—, {0,1}")
assigns to the variable v,s ,9 a value A(vvg Ug) that is equal to the product of the
values A(v{) and A(vj) (that are 3551gned by A to the variables v{ and v§). In
any case A(vy,9) is forced to behave like the product of A(v{) and A(v3) in the

computations of /Vng".

We would like to emphasize that the parameters gn do not occur as constants

in the system L(/\Afnﬁ", {0,1}") of inequalities. They are also replaced by variables.
The reason why the real valued parameters § occur nevertheless in our notation

L(Ang", {0,1}") of inequalities is the following. These inequalities consist of condi-
tions which demand that for any input z € {0,1}" the computation on the neural
net proceeds exactly as for the parameter assignment Qn (i.e. the same inequalities
with thresholds of the piecewise polynomial activation functions are satisfied and the
same pieces of the activation functions are used at each gate as in the computation
with parameter assignment gn)

In more abstract terms, one may V1ew any solution A of L(Na,{0,1}") a
model of a certain “linear fragment” L(N;~,{0,1}") of the theory of the role of the

parameters § in the computations of N —" on inputs from {0,1}". Such model A
(which will be given by Lemma 2.4) is some type of “nonstandard model” of the

theory of computations of ﬂ , since it replaces products of weights by “nonstandard
products”. Such nonstandard rnodel A does not provide a new assignment of (small)

13

weights to the network architecture A, only to a “nonstandard version” MA of the
neural net Nj2". However the linear fragment L(Anﬁ", {0,1}") can be chosen in such

a way that /\/l“n4 computes the same boolean function as N, Furthermore, if A
consists of a solution with “small” values as given by Lemma 2.4, then M:* can be
simulated by a constant-depth polynomial-size boolean circuit whose gates ¢ are all

MAJORITY-gates (i.e. g(y1,...,ym) = 1if in: y; > m/2, otherwise g(y1,...,Ym) =
i=1

0). This implies that the boolean functions that are computed by (M), cx are
in TC®. However by construction these are the same boolean functions that are
computed by (Na")pen-

Further details of this proof can be found in the forthcoming journal-version of
M 93a]. n

4 Concluding Remarks

It is shown in this chapter that high order feedforward neural nets of constant depth
with piecewise polynomial activation functions and arbitrary real weights can be
simulated for boolean inputs and outputs by neural nets of a somewhat larger size
and depth with heaviside gates and weights from {—1,0,1}. This provides the
first known upper bound for the computational power of the former type of neural
nets. It is also shown that in the case of first order nets with piecewise linear
activation functions one can replace arbitrary real weights by rational numbers with
polynomially many bits, without changing the boolean function that is computed by
the neural net. In order to prove these results we have introduced two new methods
for reducing nonlinear problems about weights in multi-layer neural nets to linear
problems for a transformed set of parameters. These transformed parameters can
be interpreted as weights in a somewhat larger neural net.

As another application of this proof technique one can show a positive result for
PAC-learning (even for agnostic PAC-learning of real-valued functions) on analog
neural nets of bounded size (see [M 93al, and Theorem 4.7 in our subsequent chapter
on learning in this volume).

Acknowledgements

We would like to thank Eduardo D. Sontag for drawing our attention to the problem
of finding upper bounds for neural nets with 7-gates, and for his insightful comments.
We thank Peter Auer, Franz Aurenhammer, Eric Baum, David Haussler, Philip M.
Long, Gyorgy Turan, and Gerhard Waoginger for various helpful discussions on this
research.

14

References

[A]

[B]

[BH]

[BR]

[BEHW]

[CSV]

[DS]

[DR]

[GHR]

[HMPST)

[Has]

[Ho]

Y. S. Abu-Mostafa, “The Vapnik-Chervonenkis dimension: information
versus complexity in learning”, Newral Computation, vol. 1, 1989, 312 -
317

P. L. Bartlett, “Lower bounds on the Vapnik-Chervonenkis dimension of
multi-layer threshold networks”, Proc. of the 5th Annual ACM Conference
on Computational Learning Theory, 1993, ACM-Press, 144 - 150

E. B. Baum, D. Haussler, “What size net gives valid generalization?”,
Neural Computation, vol. 1, 1989, 151 - 160

A. Blum, R. L. Rivest, “Training a 3-node neural network is NP-complete”,
Proc. of the 1988 Workshop on Computational Learning Theory, Morgan
Kaufmann (San Mateo, 1988), 9 - 18

A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, “Learnability
and the Vapnik-Chervonenkis dimension”, J. of the ACM, vol. 36(4), 1989,
929 - 965

A. K. Chandra, L. Stockmeyer, U. Vishkin, “Constant depth reducibility”,
SIAM J. Computing, vol. 13 (2), 1984, 423 - 439

B. DasGupta, G. Schnitger, “The power of approximating: a comparison
of activation functions”, in: Adwvances in Neural Information Processing
Systems, vol. 5, Morgan Kaufmann (1993), 615 - 622

R. Durbin, D. E. Rumelhart, “Product units: a computationally powerful
and biologically plausible extension to backpropagation networks”, Neural
Computation, vol. 1, 1989, 133 - 142

M. Goldmann, J. Hastad, A. Razborov, “Majority gates vs. general

weighted threshold gates”, Proc. of the 7t Structure in Complezity Theory
Conference, 1992, 2 - 13

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy and G. Turan, “Thresh-
old circuits of bounded depth”, Proc. of the 28th Annual IEEE Symp. on
Foundations of Computer Science, 1987, 99 - 110. Full version in J. Comp.
System Sci., vol. 46, 1993, 129 - 154

J. Hastad, “On the size of weights for threshold gates”, preprint (September
1992)

D. Haussler, “Decision theoretic generalizations of the PAC model for neu-

ral nets and other learning applications”, Information and Computation,
vol. 100, 1992, 78 - 150

J. J. Hopfield, “Neurons with graded response have collective computa-
tional properties like those of two-state neurons”, Proc. Nat. Acad. of Sci-
ences USA, 1984, 3088 - 3092

15

[M 92]

[M 93a]

[M 93b]

M 93c]

[MSS]

[MT]

[MR]

[Me]

[MP]

[MD]

[Mu]

D. S. Johnson, “A catalog of complexity classes”, in: Handbook of Theoret-
ical Computer Science vol. A, J. van Leeuwen ed., MIT Press (Cambridge,
1990)

M. Kearns, L. Valiant, “Cryptographic limitations on learning boolean for-
mulae and finite automata”, Proc. of the 21st ACM Symposium on Theory
of Computing, 1989, 433 - 444

R. P. Lippmann, “An introduction to computing with neural nets”, IEEE
ASSP Magazine, 1987, 4 - 22

W. Maass, “Bounds for the computational power and learning complexity
of analog neural nets”, IIG-Report 349 of the Technische Universitat Graz,
(October 1992)

W. Maass, “Bounds for the computational power and learning complexity
of analog neural nets” (extended abstract), Proc. of the 25th ACM Sym-
posium on the Theory of Computing, 1993, 335 - 344

W. Maass, “Neural nets with superlinear VC-dimension”, IIG-Report 366
of the Technische Universitit Graz, (June 1993); to appear in Neural Com-
putation

W. Maass, “Agnostic PAC-learning of functions on analog neural nets”,
IIG-Report 362 of the Technische Universitit Graz, (May 1993); to appear
in Neural Computation

W. Maass, G. Schnitger, E. D. Sontag, “On the computational power of
sigmoid versus boolean threshold circuits”, Proc. of the 32nd Annual IEEE
Symp. on Foundations of Computer Science, 1991, 767 - 776

W. Maass, G. Turan, “How fast can a threshold gate learn?”, in: Compu-
tational Learning Theory and Natural Learning Systems: Constraints and
Prospects, G. Drastal, S. J. Hanson and R. Rivest eds., MIT Press, to
appear

J. L. McClelland, D. E. Rumelhart “Parallel Distributed Processing”, vol.
2, MIT Press (Cambridge, 1986)

N. Megiddo, “Linear Programming in linear time when the dimension is
fixed”, J. of the ACM, vol. 31, 1984, 114 - 127

M. Minsky, S. Papert, “Perceptrons: An Introduction to Computational
Geometry”, Expanded Edition, MIT Press (Cambridge, 1988)

J. Moody, C. J. Darken, “Fast learning in networks of locally-tuned pro-
cessing units”, Neural Computation, vol. 1, 1989, 281 - 294

S. Muroga, “Threshold Logic and its Applications”, Wiley (New York,
1971)

16

[RM]

[Sch]

[SS]

[SBKH]|

SR

[S1]

[S2]

N. J. Nilsson, Learning Machines, McGraw-Hill (New York, 1971)

I. Parberry, G. Schnitger, “Parallel computation with threshold functions”,
Lecture Notes in Computer Science vol. 223, Springer (Berlin, 1986), 272 -
290

T. Poggio, F. Girosi, “Networks for approximation and learning”, Proc. of
the IEEE, vol. 78(9), 1990, 1481 - 1497

F. Rosenblatt, “Principles of Neurodynamics”, Spartan Books (New York,
1988)

D. E. Rumelhart, J. L. McClelland, “Parallel Distributed Processing”, vol.
1, MIT Press (Cambridge, 1986)

A. Schrijver, “Theory of Linear and Integer Programming”, Wiley (New
York, 1986)

H. T. Siegelmann, E. D. Sontag, “Neural networks with real weights: ana-
log computational complexity”, Report SYCON-92-05, Rutgers Center for
Systems and Control (Oct. 1992)

K. Y. Siu, J. Bruck, T. Kailath, T. Hofmeister, “Depth efficient neural net-
works for division and related problems”, to appear in IEEE Transactions
on Inf. Theory

K. Y. Siu, V. Roychowdhury, “On optimal depth threshold circuits for
multiplication and related problems”, Tech. Report ECE - 92-05, University
of California, Irvine (March 1992)

E. D. Sontag, “Remarks on interpolation and recognition using neural
nets”, in: Advances in Neural Information Processing Systems 3, R. P.
Lippmann, J. Moody, D. S. Touretzky, eds., Morgan Kaufmann (San Ma-
teo, 1991), 939 - 945

E. D. Sontag, “Feedforward nets for interpolation and classification”, J.
Comp. Syst. Sci., vol. 45, 1992, 20 - 48

17

