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Abstract

We introduce a method for the efficient design of a Boltzmann machine (or
a Hopfield net) that computes an arbitrary given Boolean function / . TÈis
method is based on an efficient simulation of acyclic circuits with threshold
gates by Boltzmann machines. As a consequence u¡e can show that various
concrete Boolean functions f tha| are relevant for classification problems
can be computed by scalable Boltzmann machines that are gúaranteed
to converge to their global maximum configuration with high probability
after constantly many steps.

1 INTRODUCTION

]) is a neural network model in which the
stochastic decision rule. It consists of a
rs of elements of U, and an assignment

configuration of a Boltzmann machine
is-a.map Ë : l,( - _{0,1}, The consensus c(Ë) of a configuration } is given by
c(ß) = D1,.,,16c .9({u, u}) . å(") - k(r). If th¿ Éoltzmann ñrachine is curiently in
configuration ß and unit z is considered for a state change, then the acceptance
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probability for this state change is given bv ,+æi-zt. Here AC is the change in
the value of the consensus function C that would result from this state change of
z, and c ) 0 is a fixed parameter (the "temperature").

Assume that n units of a Boltzmann machine B have been declared as input units
and rn other units as output units. One says that B computes a function / :

{0, 1}" - {0, 1}- if for any clamping of the input units of B alcording to some q €
{0, 1}" the only global mæcima of the consensus function of the clamped Boltzmann
machine are those configurations where the output units a¡e in the states given by
f (s).

Note that even if one leaves the determination of the connection strengths for a
Boltzmann machine up to a learning procedure ([AHS], [HS], [AK]), one has to
know in advance the required number of hidden units, and how they should be
connected (see section 10.4.3 of [AK] for a discussion of this open problem).

Ad hoc constructions of efficient Boltzmann machines tend to be rather difficult
(and hard to verify) because of the cyclic nature of their "computations".

We introduce in this paper a new method for the construction of efficient Boltzmann
machines for the computation of a given Boolean function / (the same method can
also be used for the construction of Hopfield nets). We propose to construct first an
acyclic Boolean circuit T with threshold gates tÍrat .or.,poto f (this tu¡ns out to
be substantially easier). We show in section 2 that any Boolean threshold circuit T
can be simulated by a Boltzmann machine B(T) of the same size as ?. Furthermore
we show in section 3 that a minor variation of B(") is likely to converge very fast.
In Section 4 we discuss applications of our method for various concrete Boolean
functions.

2 SIMULATION OF THRESHOLD CIRCUITS BY
BOLTZMANN MACHINES

A threshold circuit T (see [M], [PS], [R], [HMPST]) is a labeled acyclic directed
graph. We ¡efer to the number of edges that are directed into (out of) a node of ?
as the indegree (outdegree) ofthat node. Its nodes ofindegree 0 are labeled by input
variables r;(f € {t,...,n}). Each node g of indegree I > 0 in T is labeled by some
arbitrary Boolean threshold function F, : {0,1}' * {0,1}, where Fo(Ar,...,Ut) = !
if andonly if fl- ta¡A¡ ) f (for some arbitraryparameters a1 ,...,dt,f € R; w.l.o.g.
dt,...,dr,t € Z lMl). One views such node g as a threshold gate that computes
Fs. If rn nodes of a threshold circuit T are in addition labeled as output nodes,
one defines in the usual manner the Boolean function .f ' {0,1}" - {0,1}- that is
computed by T.
'We simulate ? by the following Boltzmann machine B(?) - 11,{ ,C, S > (note that
? has directeil edges, while B(T)has undireclededges). We reserve for each node g
of T a separate unit ó(g) of B(T). We set

U := {¿(g)lg is a node of T} and
C:= {{ó(g'), b(g)}lg',9 are nodes of ? so that either g' - g or

g',g are connected by an edge in ?).
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Consider an arbitrary unit ö(g) of BQ). We define the connection strengths
S({¿(g)}) and.9({ó(s'),ö(g)}) (for edges { e',e > of ?) byinduction on the length
of the longest path in ? from g to anode of ? with outdegree 0.

If g is a gate of ? with outdegree 0 then we define S({A(g)}) :- -2t { 1, where t is
the threshold of g, and we set S({ö(g/), ö(g)}) :- 2a(1 g' , s )) (where o(< g' , g >)
is the weight of the directed edge ( g',g ) in T).
Assume that g is a threshold gate of T with outdegree ) 0. Let gt,.-.,g¡ be the
immediate successors of g in ?. Set u, := Dt ,ls({ö(g),¿(g¡)})l (we assume that
the connection strengths ,s({ö(g), å(gr)}) have ãlready been defined). we define
s({¿(g)}) :- -(2w +2) .t + w * 1, where f is the threshold of gate g. Furthermore
for every edge ( 9t,g ) in T we set ,S({ö(g'), ò(g)}) :- (2u +2) . o (< g',s >).

Rernark: It is obvious that for problems in ?Co (see section a) the size of connec-
tion strengths in B(?) can be bounded by a polynomial in n.

Theorern 2.L For any th.reshold circuitT the Bollzmann machine B(T) computes
lhe same Boolean funclion as T.

Proof of Theorean 2.tz

Let a € {0, 1}" be an arbitrary input for circuit ?. We write 9(¿) € {0, 1} for the
output of gate g of T for circuit input ø.

Consider the Boltzmann machine B(T)" with the n units å(g) for input nodes g of
? clamped according to ¿. We show thal the configuration l{uof B!)swhere ö(9)
is on if and only if g(o) : 1 is the only global maximum (in fact: th-e only local
mærimum) of the consensus function C for B(f)e.
,A.ssume for a contradiction that configuration I{ of B(1:)o is a global mæcimum of
the consensus function C and I{ + K". Fix ¿ node g of T of minimal depth in ?
so that f<(ö(s)) t' K"(b(s)) - g(s.). ny definition of B(T)gthis node s is not an
input node of T. Let 1('result form 1( by changing the state of ö(9). We will show
that C(I{t) > C(K), which is a contradiction to the choice of I(.
We have (by the definition of C)

c(K') - c(K) - (1 - zx(o(s))). (sr * sz + s({ó(e)})), where
,e1 := E{r(¿(g')) .s({ö(g'), ö(g)})l I e',e ) is an edge in ?}
52 := l{I{(b(s')) . s({ó(g), ö(g,)})l 1 s,s, ) is an edge in ?}.

Let w be the parameter that occurs in the definition of S({å(g)}) (set w :- 0 lf g
has outdegree 0). Then 1.921 < tl. Let p¡,...,ptn be the immediate predecessors
of g in ?, and let ú be the threshold of gate g. Assume first, that g(s) = 1. Then
51 - (2w +2).D,._T-r a(<p;,s >).pi(d)> (2-+2).t. This implies that Sr *Sz )
(2u+2)'t-w-1, and therefore sr*sz+s({ö(9)}) > 0, hence c(Kt)-c(1{) > 0.

If g(s) = 0 then we have D3, o(1 p¿,g >) . p;(a) < t - l,thus 51 - (2- + 2) -

Dlro(< pí,s >).p;(s) < (2.+2).t-2u-2. This implies thar Sr *52 (
(2. +2).t - u - L, and therefore Sr + Sz +,S({ó(9)}) < 0. We have in rhis case
I{(b(s)) = 1, hence c(I{') - c(K) - (-1) .(s, i s, + s({Ö(s)})) > 0. D
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3 THE CONVERGENCE SPEED OF THE
CONSTRUCTED BOLTZMANN MA.CHINES

We show that the constructed Boltzmann machines will converge relatively fast to
a global maximum configuration. This positive ¡esult holds both if we view B(") as
a sequential Boltzmann machine (in which units a¡e considered for a state change
one at a time), and if we view Bg) as a parallel Boltzmann machine (where several
units are simultaneously considered for a state change). In fact, it even holds for
unlimited parallelism, where eaery unit is considered for a state change at every
step. Although unlimited parallelism appeaxs to be of particular interest in the
context of brain models and for the design of massively parallel machines, there are
hardly any positive results known for this case (see section 8.3 in [AK]).

If g is a gate in T with outdegree ) 1 then the current state of unit b(g) of BQ)
becomes relevant at several different time points (whenever one of the immediate
successors of g is considered for a state change). This effect increases the probability
that unit ö(g) may cause an "error." Therefore the error probability of an output
unit of B(T) does not just depend on the number of nodes in T, but on the number

graph of ? by a tree 7v of the same depth (one calls a directed graph a lree if all of
its nodes have outdegree ( 1).

To be precise, we define by induction on the depth of g for each gate g of. T a
tree Tree(g) that replaces the subcircuit of ? below g. If gt,...,9k are the im-
mediate predecessors of g in ? then Tree(g) is the tree which has g as root and
T\ee(gl),...,Tree(g¡) as immediate subtrees (it is unde¡stood that if some 9í lìas
another immediate successor g' * g then different copies of Tree(g;) are employed
in the definition of Tree(g) and T\ee(g')).

We write lTlee(g)l for the number of nodes in Tree(g) , and N(") for
f{lT!ee(g)l lg i. an output node of 

"}. 
It is easy to see that if ? is synchronous

(i.e. depth (g")-- depth(g')*1for all edges 1g',g" > in ?) then lTree(g)l < 
"o-tfor any node g in ? of depth d which has s nodes in the subcircuit of T below g.

Therefore N(T) is polynomial in n if ? is of constant depth and polynomial size
(this can be achieved for all problems inTCo, see Section 4).

We write Bo Q) for the variation of the Boltzma¡rn machine B(") of section 2 where
each connection strength in Bg) is multiplied by ó (ó > 0). Equivalently one could
view Bó(") * amachine with the s¿¡rne connection st¡engths a^s B(") but alower
"temperature" (replace cby c/6).

Theorem 3.L Assume that T is a thresholil circuit of deplh d that compules a

Boolean function f , {0, 1}' * {0,1}- . Let B6(T)o be the Bollzmann machine thal
rcsults from clamping the input unils of B6Q) accoriling Io a (a € {0,1}").
Assume lhat 0 = Ço ( Çr ( . -. 1 q¿ are orbitrary numbers such lhat for eaery
i e {1, . .. , d} and erery gate g of depth i in T lhe conesponding unil b(g) is
considered for a slale change al some step during interual (q¡-r,g;]. There is no
reslriclion on how rnt,ny other unils are consiilercil for a slate change at any slep.

Let t be an arbilrary time step with t ) q¿. Then lhe oulpul unils of B(T) are af
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the end of stept with probability > 1- N(") -# in the stales giuen by f (a)

Remarks:

1. For 6 := n this probability converges to 1 for n --+ oo if T is of constant depth
and polynomial size.

2. The condition on the timing of state changes in Theorem 3.1 ha.s been fo¡-
mulated in a very general fashion in order to make it applicable to all of the

common types oi Boltzmann machines.For a sequential Boltzmann machine

(see [AK], section 8.2) one can choose g; - Q¡-t-sufficiently farge (for exam-

it" päty""mially in tÉe size of T) so that with high probability every unit of-BQ) 
is considãred for a state change during the interval-(q;-r,.q;]. O¡r the

otireí hand, for a synchronous Boltzmann machine with limited parallelism
([AK], sectiãn 8.3) one may apply the result to the case where every unit ó(g)

iiitt ï of depth i in T is considered for a state change at step 
_¿ 

(set q¡ :- i)-
Theoiem 3.i also remains valid for unlimited parallelism ([AK], section 8.3),

where evety unit is considered for a state change at every step (set q; :- i). In
fact, not even synchronicity is required for Theorem 3.1, and it also applies to
asynchronous parallel Boltzmann machines ([AK]' section 8.3.2).

3. For sequential Boltzmann machines in general the available upper bounds for
their cãnvergence speed are very unsatisfactory. In particular no upper bounds

are known *hi.h are polynomial in the number of units (see section 3.5 of

tAK]). For Boltzmann machines with unlimited parallelism one can in general

not ãven prove that they converge to a global ma>rimum of their consensus

function (section 8.3 of [AK]).

Proof of Theorern 3.1: We prove by induction on i that for every gate g of depth
i in T and every step ú I q; the unit ö(9) is at the end of step I with probability
> 1 - lTree(s)l T+,, in state e(a).

Assume that 91, ...,gk are the immediate predecessors of gate g inT. By definition

we have lTree(g)l = 1*Dj=, lT.ree(g¡)1. Lettt ( f be the last step before Ú at which

b(g) has been considered ior a state change. Since ? 2 q¡ we have f/ ) q.¡-t. Thus
fôi'each j =I,...,Ic we can apply the inductionhypothesis to unit ó(g¡) and step

t' -!) gdepth(e;¡. Hence with probability> 1-(lT!ee(g)l-1)' *-}t* thestate of

theunitsö(gr),...,ä(gr)attheendof stept/-1areg1(g),-..,gn(g). Assumenow
that the unit 

'A(gr'¡ 
is'at'the end of step ú' - 1 in state g¡ (s), for i - I,: ' : I k. If I is

at the beginning-óf rt"p f' not in state g(q), then a state changg of unit ö(9) would
increase the consensus function by AC > ó (independently of the current status
of units ó(l) for immediate successors i of g t¡ T). Thus ö(g) accepts,in this case

the changà [o state g(a) with probability # >- 1+"-L'z" - 1 - ì"* On the

other ha¡rd, if ö(g) is already at the beginning of step Ú' in state ø(q), then a change

of its state woulá decrease the consensus by at least ó. Thus ó(g) remains with
probability > 1 - 1# in state g(¿). The preceding considerations imply that

unit ö(g) is at the end of step ú/ (and hence at the end of step ú) with probability
> 1 - iTree(e)l #, in state g(q). o
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4 APPLICATIONS

The complexity class ?C0 is defined as the class of all Boolean functions / :

{0,1}- * {0, 1}* for which there exists a family (4,)"ery of threshold circuits
of some constant depth so that for each n the circuit 7} computes / for inputs of
length n, and so that the number of gates in 7i" and the absolute value of he weights
of threshold gates in ?} (all weights are assumed to be integers) are bounded by a
polynomial in n ([HMPST], [PS]).

Corollary 4.1 (to Theorems 2.L, 3.L)z Euery Booleon funclion f that belongs
to the complexity class TCo can be compuled, by scalable (i.e. polynomial size)
Boltzmann rnachines whose conneclion slrengths are inlegers of polynomial size and
which conaelye for state changes wilh unlimiled parallelism with high probability in
constanlly rnony sleps to a global maximum of their consensus function.

The following Boolean functions are known to belong to the complexity class ?C0:
AND, OR, PARITY; SORITING, ADDITION, SUBTRACTION, MULTIPLICA-
TION and DIVISION of binary numbers; DISCRETE FOURIER TRANSFORM,
and approximations to arbitrary analytic functions with a convergent rational power
series ([CVS], [R], [HMPST]).

Remarks:

1. One can also use the method from this paper for the efficient const¡uction
of a Boltzmann machine Bpt,...,pk that can decide very fast to which of k
sto¡ed "patterns" p1,...,p¡ € {0,1}" the current input c € {0,1}'to the
Boltzmann machine has the-ðlosest "r imilarity."
For arbitrary fixed "patterns" pr,...,p¡ € {0,1}" let fpr,...,p* :{0,1}'--*
{0,l}e be the pattern classification function whose fth output bit is 1if and
only if the Hamming distance between the input c € {0,1}' and p; is less or
equal to the Hamming distance between r and pj , for all j { i.
We write nD@,y-) for the Hamming distance DLrlr; - yrl of strings
s,!,€ {0,1}". One has ,t/D(c,g) = Dr,-o¿i * Dy,=r(1 - c¡), and there-
fgre HD(æ,pj) - HD(x,pr) - DLro;r¡ *c for suitable coefficients a; €
{-2,-L,0,L,2} and c e Z (that depend on the fixed patterns pj, pr € {0, 1}').
Thus there is a threshold circuit that consists of a single threshold gate which
outputs tif HD(r,p¡) < HD(t,p¡), and 0 otherwise.
The function /pr,...,pÈ can be computed by a threshold circuit T of depth 2
whose jth output gãte is the AND of È - 1 gates as above which check for
I e {1,...,&} - U} whether HD(r,pj) < HD(n,p¡) (note that the under-
lying graph of ? is the same for any choice of the patterns pr,...,pr). The
desired Boltzmann machine 8p,.,...,p* is the Boltzmann machine B(T) for this
threshold circuit T.

2. Our results are also of interest in the context of learning algorilhms for Boltz-
mann machines. For example, the previous remark provides a single graph
1 U,C ) of a Boltzmann machine with n input units, È output units, and
k2 - k hidden units, that is able to compute with a suitable assignment of
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connection strengths (that may arise from a learning algorithm for Boltzmann
machines) anyfunction fp,,...,p* (for any choiceof pr,...,på € {0,1}").
Similarly we get from Theorem 2.1 together with a result from [M] the graph
1 U,C ) of a Boltzmann machine with n input units, n hidden units, and
one output unit, that can compute with a suitable assignment of connection
strengths ¿æy synunetric function / : {0,1}" * {0, 1} (/ is called symmetric
if f (r;,- - - , rn) depends only on Dl=, ri; examples of symmetric functions are
AND, OR, PARITY).

Acknouleilgmenl: \{e would like to thank Georg Schnitger for his suggestion to
investigate the convergence speed of the constructed Boltzmann machines.
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