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Abstract

We introduce a method for the efficient design of a Boltzmann machine (or
a Hopfield net) that computes an arbitrary given Boolean function f . This
method is based on an efficient simulation of acyclic circuits with threshold
gates by Boltzmann machines. As a consequence we can show that various
concrete Boolean functions f that are relevant for classification problems
can be computed by scalable Boltzmann machines that are guaranteed

to converge to their global maximum configuration with high probability
after constantly many steps.

1 INTRODUCTION

A Boltzmann machine ([AHS], [HS], [AK]) is a neural network model in which the
units update their states according to a stochastic decision rule. It consists of a
set U of units, a set C of unordered pairs of elements of U, and an assignment
of connection strengths S : ¢ — R. A configuration of a Boltzmann machine
is amap k : U — {0,1}. The consensus C(k) of a configuration k is given by
C(k) = Z{u,v}ec S({v,v}) - k(u) - k(v). If the Boltzmann machine is currently in

configuration k and unit u is considered for a state change, then the acceptance

*This paper was written during a visit of the second author at the Department of
Computer Science of the University of Chicago.

New address of the second author: Institute fiir Informationsverarbeitung
Graz, Technische Universitit Graz, Klosterwiesgasse 32, A-8010 Graz,
Austria; E-mail: maass@iicm.tu-graz.ac . at.



probability for this state change is given by -ﬁv— Here AC is the change in

the value of the consensus function C that would result from this state change of
u, and ¢ > 0 is a fixed parameter (the “temperature”).

Assume that n units of a Boltzmann machine B have been declared as input units
and m other units as output units. One says that B computes a function f :

{0,1} — {0,1}™ if for any clamping of the input units of B according to some a €
{0,1}" the only global maxima of the consensus function of the clamped Boltzmann
max:hme are those configurations where the output units are in the states given by

f(a).

Note that even if one leaves the determination of the connection strengths for a
Boltzmann machine up to a learning procedure ([AHS], [HS], [AK]), one has to
know in advance the required number of hidden units, and how they should be
connected (see section 10.4.3 of [AK] for a discussion of ‘this open problem).

Ad hoc constructions of efficient Boltzmann machines tend to be rather difficult
(and hard to verify) because of the cyclic nature of their “computations”.

We introduce in this paper a new method for the construction of efficient Boltzmann
machines for the computation of a given Boolean function f (the same method can
also be used for the construction of Hopfield nets). We propose to construct first an
acyclic Boolean circuit T" with threshold gates that computes f (this turns out to
be substantially easier). We show in section 2 that any Boolean threshold circuit T
can be simulated by a Boltzmann machine B(T') of the same size as T". Furthermore
we show in section 3 that a minor variation of B(T) is likely to converge very fast.
In Section 4 we discuss applications of our method for various concrete Boolean
functions.

2 SIMULATION OF THRESHOLD CIRCUITS BY
BOLTZMANN MACHINES

A threshold circuit T' (see [M], [PS], [R], [HMPST]) is a labeled acyclic directed
graph. We refer to the number of edges that are directed into (out of) a node of T
as the indegree (outdegree) of that node. Its nodes of indegree 0 are labeled by input
variables z;(i € {1,...,n}). Each node g of indegree I > 0 in T is labeled by some
arbitrary Boolean threshold function Fy : {0,1}' — {0, 1}, where Fy(y1,...,y) =1

if and only 1fz a;y; > t (for some arbitrary parameters a1, ...,a1,t € R; w.lo.g.
ay,...,q,t €7 tM]) One views such node g as a threshold gate that computes
Fy. If m nodes of a threshold circuit 7 are in addition labeled as output nodes,
one defines in the usual manner the Boolean function f : {0,1}* — {0,1}™ that is
computed by T'.

We simulate T' by the following Boltzmann machine B(T) = < U,C,S > (note that
T has directed edges, while B(T') has undirected edges). We reserve for each node g
of T a separate unit b(g) of B(T"). We set

U:= {b(g)|g is anode of T} and
C:= {{b(g"),5(9)}g’, g are nodes of T so that either ¢’ = g or
g',g are connected by an edge in T}.



Consider an arbitrary unit b(g) of B(T). We define the connection strengths
S({b(g)}) and S({b(g"),b(g)}) (for edges < g’,g > of T) by induction on the length
of the longest path in T" from g to a node of T' with outdegree 0.

If g is a gate of T with outdegree 0 then we define S({b(g)}) := —2t + 1, where t is
the threshold of g, and we set S({b(¢’),b(¢)}) := 2a(< ¢’,g >) (where a(< g’, 9 >)
is the weight of the directed edge < ¢’, 9 > in T)).

Assume that g is a threshold gate of T' with outdegree > 0. Let g,,..., gz be the
immediate successors of g in T. Set w := Zle [S({b(g),5(g:)})| (we assume that
the connection strengths S({b(g),b(g:)}) have already been defined). We define
S({b(9)}) == —(2w+2) -t + w+ 1, where t is the threshold of gate g. Furthermore
for every edge < g’,¢g > in T we set S({b(¢'),b(9)}) := 2w +2) - a (< g',g9>).

Remark: It is obvious that for problems in T'C° (see section 4) the size of connec-
tion strengths in B(T") can be bounded by a polynomial in n.

Theorem 2.1 For any threshold circuit T the Boltzmann machine B(T) computes
the same Boolean function as T'.

Proof of Theorem 2.1:

Let a € {0,1}" be an arbitrary input for circuit 7. We write g(a) € {0,1} for the
output of gate g of T for circuit input a.

Consider the Boltzmann machine B(T"), with the n units b(g) for input nodes g of
T clamped according to a. We show that the configuration K, of B(T'); where b(g)
1s on if and only if g(a) = 1 is the only global maximum (in fact: the only local
maximum) of the consensus function C for B(T),.

Assume for a contradiction that configuration K of B(T), is a global maximum of
the consensus function C and K # K,. Fix a node g of T of minimal depth in T’
so that K(b(g)) # K4(b(9)) = g(a). By definition of B(T), this node g is not an
input node of T'. Let K’ result form K by changing the state of b(g). We will show
that C(K') > C(K), which is a contradiction to the choice of K.

We have (by the definition of C)

C(K') = C(K) = (1= 2K (b(9))) - (S1 + 55 + S({#(2))), where
Sy= Y {K((g") - SH{dg"), Dl < g, 9 > is an edge in T'}
Sq = Y {K(b(¢"))- S({b(g),b(g")})| < g,¢" > is an edge in T'}.

Let w be the parameter that occurs in the definition of S({b(g)}) (set w := 0if ¢
has outdegree 0). Then |S3| < w. Let py,...,pn be the immediate predecessors
of g in T, and let t be the threshold of gate g. Assume first that g(a) = 1. Then
S1=Qw+2) 3", a(< pi,g >)-pi(a) > (2w +2) - t. This implies that S; + S5 >
(2w+2)-t—w—1, and therefore S; + S, + S({b(g)}) > 0, hence C(K’) - C(K) > 0.

If g(a) = 0 then we have "\ | a(< pi,g >) -pi(a) < t—1, thus S; = 2w+ 2) -
Yoizi (< piyg >)-pi(a) < (2w+2) -t — 2w — 2. This implies that S; + S; <
(2w +2) -t — w— 1, and therefore S; + Sy + S({b(g)}) < 0. We have in this case
K(b(9)) = 1, hence C(K') — C(K) = (=1) - (S1 + S2 + S({b(9)})) > 0. O



3 THE CONVERGENCE SPEED OF THE
CONSTRUCTED BOLTZMANN MACHINES

We show that the constructed Boltzmann machines will converge relatively fast to
a global maximum configuration. This positive result holds both if we view B(T) as
a sequential Boltzmann machine (in which units are considered for a state change
one at a time), and if we view B(T) as a parallel Boltzmann machine (where several
units are simultaneously considered for a state change). In fact, it even holds for
unlimited parallelism, where every unit is considered for a state change at every
step. Although unlimited parallelism appears to be of particular interest in the
context of brain models and for the design of massively parallel machines, there are
hardly any positive results known for this case (see section 8.3 in [AK]).

If g is a gate in T with outdegree > 1 then the current state of unit b(g) of B(T')
becomes relevant at several different time points (whenever one of the immediate
successors of g is considered for a state change). This effect increases the probability
that unit b(g) may cause an “error.” Therefore the error probability of an output
unit of B(T') does not just depend on the number of nodes in T', but on the number
N(T) of nodes in a tree T” that results if we replace in the usual fashion the directed
graph of T by a tree T¥ of the same depth (one calls a directed graph a free if all of
its nodes have outdegree < 1).

To be precise, we define by induction on the depth of g for each gate g of T a
tree Tree(g) that replaces the subcircuit of T below g. If g;,..., g are the im-
mediate predecessors of g in T" then Tree(g) is the tree which has g as root and
Tree(g'), ..., Tree(gx) as immediate subtrees (it is understood that if some g; has
another immediate successor g’ # ¢ then different copies of Tree(g;) are employed
in the definition of Tree(g) and Tree(g')).

We write |Tree(g)] for the number of nodes in Tree(g) , and N(T) for
Y {|Tree(g)| |g is an output node of T'}. It is easy to see that if T' is synchronous
(i.e. depth (¢") = depth(g’)+ 1 for all edges < ¢’,¢" > in T') then |Tree(g)| < s¢~*
for any node ¢ in T' of depth d which has s nodes in the subcircuit of T below g.
Therefore N(T') is polynomial in n if T' is of constant depth and polynomial size
(this can be achieved for all problems in T'C?, see Section 4).

We write B®(T) for the variation of the Boltzmann machine B(T') of section 2 where
each connection strength in B(T') is multiplied by é (6 > 0). Equivalently one could
view B%(T') as a machine with the same connection strengths as B(T) but a lower
“temperature” (replace ¢ by ¢/$).

Theorem 3.1 Assume that T' is a threshold circuil of depth d that compules a
Boolean function f : {0,1}* — {0,1}™. Let B*(T)q be the Bollzmann machine that

resulls from clamping the input units of B3(T) according 1o a (a € {0,1}").

Assume that 0 = q9 < q; < ... < gq are arbitrary numbers such that for every
i € {1,...,d} and every gate g of depth i in T the corresponding unil b(g) is
constdered for a state change at some step during interval (gi_1,qi]. There is no
restriciion on how many other units are considered for a state change at any step.

Lett be an arbitrary time step witht > qq. Then the output units of B(T) are at



the end of step t with probability > 1 — N(T) - ﬂ_—;ng in the states given by f(a).

Remarks:

1. For é := n this probability converges to 1 for n — oo if T' is of constant depth
and polynomial size.

2. The condition on the timing of state changes in Theorem 3.1 has been for-
mulated in a very general fashion in order to make it applicable to all of the
common types of Boltzmann machines.For a sequential Boltzmann machine
(see [AK], section 8.2) one can choose ¢; — ¢i—1 sufficiently large (for exam-
ple polynomially in the size of T') so that with high probability every unit of
B(T) is considered for a state change during the interval (gi—1,¢i]- On the
other hand, for a synchronous Boltzmann machine with limited parallelism
([AK], section 8.3) one may apply the result to the case where every unit b(g)
with g of depth i in T is considered for a state change at step i (set ¢ = i).
Theorem 3.1 also remains valid for unlimited parallelism ([AK], section 8.3),
where every unit is considered for a state change at every step (set ¢; := i). In
fact, not even synchronicity is required for Theorem 3.1, and it also applies to
asynchronous parallel Boltzmann machines ([AK], section 8.3.2).

3. For sequential Boltzmann machines in general the available upper bounds for
their convergence speed are very unsatisfactory. In particular no upper bounds
are known which are polynomial in the number of units (see section 3.5 of
[AK]). For Boltzmann machines with unlimited parallelism one can in general
not even prove that they converge to a global maximum of their consensus
function (section 8.3 of [AK]).

Proof of Theorem 3.1: We prove by induction on i that for every gate g of depth
iin T and every step t > ¢; the unit b(g) is at the end of step ¢ with probability
> 1— |Tree(g)| - H%E in state g(a).

Assume that g1, ..., gr are the immediate predecessors of gate g in T. By definition
we have |Tree(g)| = 1+E;=1 | Tree(g;)|- Let t' <t be the last step before ¢ at which
b(g) has been considered for a state change. Since T' > ¢; we have t' > ¢i—1. Thus
for each j = 1,...,k we can apply the induction hypothesis to unit b(g;) and step
-1 2 Qdepth(g;)- Hence with probability > 1— (|Tree(g)| —1) - 14-—;67? the state of
the units b(g1), ..., b(gx) at the end of step t' — 1 are g1(a), - .- ,9k(a). Assume now
that the unit b(g;) is at the end of step ¢ — 1 in state g;(a), for j=1,...,k. If g is
at the beginning of step t' not in state g(a), then a state change of unit b(g) would
increase the consensus function by AC > § (independently of the current status
of units b(§) for immediate successors § of g in T'). Thus b(g) accepts in this case
the change to state g(a) with probability 1+e—1Ac/° > 1+el—6/= =1- ﬁlw'; On the
other hand, if b(g) is already at the beginning of step t' in state g(a), then a change
of its state would decrease the consensus by at least 6. Thus b(g) remains with
probability > 1 — H_ﬁ; in state g(a). The preceding considerations imply that
unit b(g) is at the end of step ¢’ (and hence at the end of step t) with probability
> 1— |Tree(g)| - T-F:W? in state g(a). O




4 APPLICATIONS

The complexity class T'C? is defined as the class of all Boolean functions f :
{0,1}* — {0,1}* for which there exists a family (T})nen of threshold circuits
of some constant depth so that for each n the circuit 7,, computes f for inputs of
length n, and so that the number of gates in T}, and the absolute value of he weights
of threshold gates in T}, (all weights are assumed to be integers) are bounded by a
polynomial in n ([HMPST], [PS]).

Corollary 4.1 (to Theorems 2.1, 3.1): Every Boolean function f that belongs
to the complezity class TC® can be computed by scalable (i.e. polynomial size)
Boltzmann machines whose connection strengths are inlegers of polynomial size and
which converge for state changes with unlimited parallelism with high probability in
constantly many steps to a global mazimum of their consensus function.

The following Boolean functions are known to belong to the complexity class T'C°:
AND, OR, PARITY; SORTING, ADDITION, SUBTRACTION, MULTIPLICA-
TION and DIVISION of binary numbers; DISCRETE FOURIER TRANSFORM,

and approximations to arbitrary analytic functions with a convergent rational power
series ([CVS], [R], [HMPST)).

Remarks:

1. One can also use the method from this paper for the efficient construction
of a Boltzmann machine Bpl""’pk that can decide very fast to which of &

stored “patterns” py,...,px € {0,1}" the current input z € {0,1}" to the
Boltzmann machine has the closest “similarity.”

For arbitrary fixed “patterns” pi,---,px € {0,1}" let fp,, . p, : {0,1}* —
{0,1}* be the pattern classification function whose ith output bit is 1 if and
only if the Hamming distance between the input z € {0,1}" and p; is less or
equal to the Hamming distance between z and p;, for all j # 1.

We write HD(z,y) for the Hamming distance ) [, |z; — y;| of strings
z,y,€ {0,1}". One has HD(z,y) = ) ,.—%i + 2_,.=1(1 — i), and there-
fore HD(z,p;) — HD(z,p1) = Y .i., @izi + ¢ for suitable coefficients a; €
{-2,-1,0,1,2} and ¢ € Z (that depend on the fixed patterns p;, pi € {0,1}").
Thus there is a threshold circuit that consists of a single threshold gate which
outputs 1 if HD(z,p;) < HD(z,p;), and 0 otherwise.

The function fp,, . p. can be computed by a threshold circuit T' of depth 2
whose jth output gate is the AND of k — 1 gates as above which check for
le{l,...,k} — {5} whether HD(z,p;) < HD(z,p:i) (note that the under-
lying graph of T is the same for any choice of the patterns pi,...,pk). The
desired Boltzmann machine Bp,,... p, is the Boltzmann machine B(T) for this
threshold circuit T

2. Our results are also of interest in the context of learning algorithms for Boltz-
mann machines. For example, the previous remark provides a single graph
< U,C > of a Boltzmann machine with n input units, k¥ output units, and
k* — k hidden units, that is able to compute with a suitable assignment of



connection strengths (that may arise from a learning algorithm for Boltzmann
machines) any function fp,, . p, (for any choice of py,...,px € {0,1}").
Similarly we get from Theorem 2.1 together with a result from [M] the graph
< U,C > of a Boltzmann machine with n input units, n hidden units, and
one output unit, that can compute with a suitable assignment of connection
strengths any symmetric function f : {0,1}" — {0,1} (f is called symmetric
if f(z;,---,2,) depends only on } !, z;; examples of symmetric functions are
AND, OR, PARITY).
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