
The Complexity Types of Computable Sets

(extended abstract)

Wolrc¡.¡¡c Mnass* AND THEoDoRE A. Sl¡,unxxx

Abstract. We analyze the fine structure of time complexity classes for RAM's,
in particular the equivalence relation A :c B ("A and B have the same time
complexity") <+ (for all time constructible f , A e DTIMERAM(f) ë B €

DTIMER¡uU)). The :c-equivalence class of A is called its complexity type.

We prove that every set X can be partitioned into two sets A and B such

that X :c A:c B¡ that a complexiiy typeC contains sets,4,B which are

incomparable with respect to polynomial time reductions if and only if C ç P,
and that there is a complexity type C that contains a minimal pair with respect

to polynomial time reductions. Furthermore we analyze the fine structure of
P with respect to linear time reductions: We show that each complexity type

C ç Df IME(n) contains a rich structure of linear time degrees, and that these

degree structures are not all isomorphic (in particular we characteúze those C

that have a maximal linear time degree). Finally we show that every complexity

type contains a sparse set. Our proofs employ finite injury priority arguments,

together with a new technique for constructing sets of a given time complexity
type.

*Department of Mathematics, Statistics, and Computer Science, University of
Illinois at Chicago, Chicago, IL. 60680. Written under partial support by NSF-
Grant CCR 8703889.
**Department of Mathematics, University of Chicago, Chicago, IL. 60637. lVrit-
ten under partial support by Presidential Young Investigator Award DMS-
84577 48 and NSF-Grant DMS-8601856.

0

We consider the following set of time bounds:

T :: {Í : N --+ N I /(")) n and / is time constructible on a RAM}

where / is called time constructible on a RAM if some RAM can compute the

function 1' ¡+ 1/(') it1 OU@D steps. We do not allow arbitrary recursive func-
tions as time bounds in our approach in order to avoid pathological phenomena

(".g. gap theorems [HU], [HH]). In this way vr'e can focus on those aspects of
complexity classes that are relevant for concrete complexity (note that all func-

tions that are actually used as time bounds in the analysis of algorithms are time
constructible). We use the random access machine (RAM) with uniform cost

criterion as machine model (see [CR], [AHU], [MY]) because this is the most

frequently considered model in algorithm design, and because a RAM allows

more sophisticaied diagonalization - constructions then a Turing machine. We

rvrite DTIME(f) for DTIMEn¿,uj) in the following.
For sets A,B e {0,1}- we define

A:c B(A has the same det. time complexity as B")

:<+ V/ e T(A e DTIME(/) <+ B e DTIMEff)).

A complexity type is an equivalence class of this equivalence relation :c.

Tlreorem 1. Every set X can be split into two sets A, B of the same complexity
type as X (i.e. X : AU B, Al B :Ø, X -c A:c B).

In order to proae this result one needs a technique for controlling the com-

plexity type of the constructed sets A, B. This is less difficult if X has an

"optimal" time bound "fx e T for which {f ef lX e DTIME(/)} : {/ e

T I f : f¿(/x)) (in this case !,¡/e say that X is of principal complexity typ").
Horvever Blum's speed-up theorem [B] asserts that there are for example sets

XePsuchthat

{f erlxeDrIME(/)}: {f rrl ti€N(/(,) :"(d;)
}

Note that this effect occurs even if one is only interested in time constructible
time bounds (and sets X of "low" complexity).

In order to prove Theorem 1 also for sets X whose compiexity type is
non-principal, we show that in some sense the situation of Blum's speed up

1

theorem (where we can characterize the functions / with X e DTIMEU)
with the help of a "cofinal" sequence of functions) is already the worst that can

happen (unfortunately this is not quite true, since we cannot always get a cofinal

sequence of functions /¿ where f¿+r(") : O(W) fot u, fixed function g with
g(") - oo for r¿ --+ oo, as required for the proof of the speed-up theorem).

Definition. (ú;)¡6¡ Ç N is called a characteristic ?-sequence if ú : i r+ ú¿ is

recursive and

a) Vi € N({úi} € ? and program ú; is a witness for the time-constructibility
of {t¡})

b) Vt,n e N({ú¡-,.tX") S {¿¡X")).

Lemma 1. ("inverse of the speed-up theorem"). For every recursive set A there

exists a characteristic ?-sequence (ú¡),,eN such that (ú;)¿e¡¡ is characteristic for
A (i.e. (V/ e T(Ae DTIMEU) <+ li e N(/(n)): CI({úri(?r))))).

Remark. In a similar fashion, Kolomogorov and Levin [L] had captured the

space complexity of a recursive function by a sequence of space constructible
functions.

Idea of the proof of Theorem 1. Associate with the given set X a charac-

teristic ?-sequence (f¿);ep as in Lemma 1. For every e,n € N and o € {0,1}*
define

TIME(e,r) :: (number of steps in the computation of {e} on input c)

and

MAXTIME(e,n):: max{?IME(e,") llrl : t}.
It is sufficient to partition X into sets A and B in such a way that for every

e € N the following requirements R!,R?,5!,5! are satisfied:

R! :c(A: {"} +Vf e T(Vu(MAXTIME(",n) S /("))
+

=i
e N(/(n) : CI({t¡}(n)))))

S! :+A e DrIM E({¿"}(")).

R? , S! are defined analogously.

Note that it is not possible to satisfy R! bV simply setting A(x) :: t-{e}(r)
for some ø: in order to achieve that A C X \4/e ca¡r. only place z into Aif x e X.

Instead, we adopt the following strategy to satisfy R! (the strategy for R!
is analogous): For input r € {0,1}* compute {e}(ø).

2

Case I. If {e}(r) : 0, then this strategy issues the constraint "ø e A C x e
X",

Case II. If {"i(") : 1, then this strategy issues the constraint "¿ / A" (rvhich

forcesæinto Bif x €X).

In the case of a conflict for some input c between strategies for different

requirements one lets the requirement with the highest priority (i.e. the smallest

index e) succeed (this causes in general an "injury" to the other competing

requirements).

The interaction between the described strategies is further complicated by
the fact that in the case where R! is never satisfied via Case II, or via Case I
for some x e X, we have to be sure that Case I issues a constraint for almost

eaery input ø (provided that the simulation of {"}(") is not prematurely halted
by some requirement S,a with i (e, see below). Consequently the number of'

requirements whose strategies act on the same input ø grorv\¡s with lrl (only those

R!,R? with i < lrl can be ignored where one ca¡r. see by "looking back" for løl
steps that they are already satisfied).

The strategy for requirement Sf (Sf) is as follows: it issues the constraint
that for all inputs r with lrl >

" the sumof all steps that are spent on simulations
for the sake of requirements -Bf, RP,Sf ,S,P with i) e has to be bounded by

O({t.}(lu l)). One can prove that in this way S!(S!) becomes satisfied (because

only finitely many inputs are placed into A or B for the sake of requirements

of higher priority). One also has to prove that the constraint of S! does not

hamper the requirements of lower priority in a serious manner.

This part of the construction is more difficult than its counterpart in Blum's
speed-up-theorem [B], because it need not be the case that {f;..1}: o({¿¿}). A
further complication is caused by the fact that although there are constants

K¿,1(¿¡1such that {¿¿}(") converges in (.Il¿.{t¿i(") steps and {ú¡11}(n) con-

verges in (.I{¿-.,.1 .{ún+t}(n) steps, we may have that K; K..[f¿.'-1 (and therefore
Ii¡ . {t¿}(n) (/{¡+r . {ún+, X")). Therefore the requirements Sr4 *ith j > i are

not able to "take over" the job of. S!, and all computations {ú;}(lrl), i < lrl,
have to be simulated simultaneously for each input r.

In order to show that a single RAM Ã can carry out simultaneously all of
the described startegies, one exploits in particular that a RAM can dovetail an

unbounded number of simulations in such a way that the number n" of steps

that it has to spend in order to simulate a single step of a simulated program {e}

3

does not grow with the number of simulated programs (the precise construction
of ,R is rather complex).

In order to verify that this construction succeeds, one has to show that
each requirement R!, R? is "injured" at most finitely often. This is not obvi-
ous, because !,¡/e may have for example that Rf;-, (which has higher priority)
issues overriding constraints for infi¡itely many arguments r according to Case

I. However in this case \Me know that only finitely many of these Í are elements

of X (otherwise .Rf-, would have been seen to be satisfied from some point of
the construction on), and all of its other constraints are "compatible" with the
strategies of lower priority (since we make A,B ç X).

Finally we verify that each requiremerLt R!(R?) is satisfied. This is obvious

if Case II occurs in the strategy for R! for some input r where R! is no longer

injured; or if Case I occurs for such input r with x €. X (in both cases \Me can

make I * {"}). However it is also possible that r / X for each such r (and
that {e} : A), in which case ,?f becomes satisfied for a different reason. In
this case we have {r}(r) : 0 : X(*) for each such ø. Therefore we can use {e}
to design a new algorithm for X that is (for every input) at least as fast as the
algorithm {e} for A (it uses {e} for those inputs where {e} is faster than the

"old" algorithm for X of time complexity {ú.}). Therefore one carr prove that
X e DTIMEU) for every f eT that bounds the running time of algorithm

ie) for A. This implies that /(n) : Cl({tj}(n)) for some / € N (by construction
of the characteristic ?-sequence (l¡)¡ç¡). ¡

The question arises, whether all sets in a given complexity type contain
essentially the same information (for example whether they are all "universal"
for that complexity typ"). The following two results show that this is not the
case (it applies to any reasonable definition of polynomial time reduction).

Tlreorem 2. A complexity type C contains sets .4, B that are incomparable
with regard to polynomial time reductions if and only if C ç P.

Theorem 3. There is a complexity type C which contains sets A, B that form
a minimal pair with regard to polynomial time reduction (i.e. A, B ø P, but
D loA and D 1oB implies D e P for every set D g {0,1}-).

The proofs of these theorems require nontrivial finite injury priority argu-

ments. Note that "delayed diagonalization" [LA] does not suffice in a situation
where the constructed sets ,4,,.B have to be of the same complexity type. For the
same reason the customary gap-technique for the construction of minimal pairs

4

[LLR] cannot be applied (we use a constructive version of Cohen forcing for the

proof of Theorem 3).

In contrast to many results in structural complexity theory which only apply

to sets outside of P, the investigation of complexity types also sheds some new

light on the structure of P. Note that those time bounds / that are used in the

analysis of algorithms for problems in P have the property that DTIME(f) 1s

closed under linear time reductions. For the subsequent analysis of the structure
of linear time degrees rve therefore replace the considered set ? of time bounds

by

T7::

(Theorem 7 holds only for 77, all other results in this paper hold both for 7 and

T¡ as class of time bounds.) Obviously every complexity type is closed under

linear time reductions if it is defined with ?¿ instead of ?. Note that linear time
reductions have in fact provided the only successful means to show that certain
concrete sets have exactly the same time complexity (e.g. Dewdney [D] proved

that BIPARTITE MATCHING :ri,, VERTEX CONNECTIVITY ("are there

> k disjoints zu-paths in G, for u,u,lc given")). The following result implies

that this method is not general.

Tlreorem 5. Every complexity type C ç DTIME(n) contains sets of incom-
parable linear time degree, furthermore the linea¡ time degrees in C have no

minimal element and they are dense,

It is tempting to conjecture that for every recursive set A / DfIME(n)
there is a set B of the same complexity type with A fn" B and B fun A,
furthermore that the structure of linear time degrees of sets in a complexity
type is the same for every complexity type C ç DTIME("). The foliowing
result implies that both conjectures are false (see the proof of Theorem 1 for the
definition of a principal complexity type).

Tlreorem 6. A complexity type C has a largest linear time degree if and only
if C is principal (in fact if C is non-principal then it does not even contain a

maximal linear degree).

f e T VG' ")
: O(lØ)) for everv c € N and / agrees

almost everywhere with some function g

that is concave, i.e.Vn , *(o@) a #tr*r)\

ö

In the proof of this result one uses a finite injury priority argument to
construct in the case where C is non-principal for every given set X e C a
set A € C with X <t¡n A. In this construction one has to use the existing

infinitely many i e N with {t¡}lr, : o({t;-t}ls,) (for some infinite set S¡ € N)
as "windows" through which at least one more requirement can be satisfied. n

Very little is known so far about the relationship between the mathemat-
ical structure of a set and its time complexity. The following theorem gives a

somewhat unexpected result of this type (compare with [M"]).

Theorem 7. Every complexity type contains a sparse set.

The proof of this result follows from:

Theorem 8. (padding-inversion-theorem) Consider an a¡bitrary function s €
?. The padding operator

Ae P"(A):: {xffT"(l'l) I r e A}

is well-defined on compiexity types (i.e. A :c B + P"(A) :c P"(B)). Further-
more it is invertible: for every set D q {0,1}* there is a set Á q {0, 1}. with
P"(A):c D.

In order to derive Theorem 7 from Theorem 8 one exploits the fact that for
s(n) :: 2' every set P,(.4) is of the same linear time degree as some tally set.!

Conclusion. Complexity types provide a useful conceptual basis for the inves-

tigation of the structure of complexity classes, in particular also of classes in
low-level complexity theory. They not only give rise to a number of interesting

new problems (some of which are even solvable), but they provide the rìiäns to

sharpen some traditional questions in complexity theory (e.g. compare Theo-

rems 2 and 3 with the customary weaker versions [LA], [LLR]) in such a way that
they pose a more serious challenge to our construction techniques (in particular
to the best of our knowledge this is the first occasion where nontrivial prior-
ity arguments with real "injuries" are needed to answer questions in low-level

complexity theory).

6

IAHU]

tBl

ICR]

tDl

IHH]

[LA]

ILLRI

tLl

IMY]

lM"l

REFERENCES

A.V. Auo, J.E. HopcRoFT, J.D. Ullt'tnx, The Design and Analysis of
Computer Algorithms, Addison-Wesley (Reading, L974).

M. Blutr,t, A machine-independent theory of the complexity of recursive
functions, J. ACM 14(1967), 322-336.

S.A. CooK, R.A. Rncxuow, Time-bounded random access machines, J.

Comp. Syst. Sc. 7(1973), 354-375.

A.K. Dnwtxny, Linear time transformations between combinatorial prob-
lems, Internat. J. Computer Math.11(1982), 91-110.

J. H¡.ntntANIS, J.E. HopcRoFT, An overview of the theory of computa-
tional complexity, J. ACM 18(1971), 444-475.

R. LaoNnR, On the structure of polynomial-time reducibility, J. ACM,
22(1975), 155-171.

L. LenowEBER, R. LlproN, AND E. RognnrsoN, Onthestructureof sebs

in NP and other classes, TCS 15(i981), 181-200.

L.A. LBvIN, On storage capacity for algorithms, Soviet Math. DokL.,
14(1973), r464-t466.
M. MncsrEY, P. Youttc, An Introduction to the General Theory of Al-
gorithms, North-Holland (Amsterdam, 1978).

S. MnnenEY, Sparse complete sets for NP: solution of a conjecture of
Berman and Hartmanis, J. Comp. Syst. Sc. 25(1982), 130-143.

7

