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ON THE USE OF INACCESSIBLE NUMBERS

ANDORDERINDISCERNIBLESINLowERBoUNDARGUMENTS
FOR RANDOM ACCESS MACHINES

IWOLFGANG MAASST

Abstr¡ct. wc prove optimal lower bounds on the computation time for several well-known

test problems on u quiå realistic computational model: the random access machine' These

lower bound arguments may be of special intefest for logicians because they rely on finitary

analogues of two importai 
"on."pt, 

from mathematical logic: inaccessible numb€rs and

ordcr indiscernibles.

loP in this PaPer a new lower bound

bounds on the computation time for

realistic computational model: the

mially many registers. These lower

for logicians because theY relY on

frnitary analogues of two concepts from mathematical logic: inaccessible numbers

and order íniliscernibles.
In particular we prove in $2 an optimal lower bound of O(n log n) for the

problems

ELEMENT DISTINCTNESS:: {(tr,...,xo) € N" lx¡ # x,for i * i\

and

DISJOINT SETS:: {(yr,. ",!n¡2,2r,"',zntz) e N" I n is even and

{Y""' '!n¡z\ ^ {2""''z'¡'\: Ø}

on random access machines where the number of registers is bounded by an

arbitrary function of n. nontrivial (i.e', superlinear) optimal lower

bound on the computa problem on a random acc€ss machine'

We will also show that (n log n) is relatively stable insofar"as it

remains valid if we attach an arbitrary oracle 0 ç Nt to the RAM, which may be

queried about arbitrary q-tuples of input numbers (4 is an arbitrary constant)'

Applications of our l,ower bound arguments to other problems will be discussed in

Remark 2.5.
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The computational model that we consider in this paper, the random access

machine (RAM), has become a standard model for the machine-independent
analysis of the time and space complexity of concrete algorithms-see Cook and
Reckhow [5], Aho, Hopcroft and Ullman [1], Hartmanis and Simon [10], Paul and
Simon [20], and Klein and Meyer auf der Heide [12]. We apply in our lower bound
arguments the usual uniform cost criterion, where one charges one unit for each

execution of an instruction, independent of the size and address of the operands.
The length of a RAM computation is defined as the number of instructions that are

executed.
One assumes that the memory of a RAM consists of a sequence ro,rr)r.t,.. . of

registers. Each register is capable of holding an integer (of arbitrary size). We write
(i) for the current content of register r,. All arithmetical operations take place in
the first register ro (the "accumulator"). The n input numbers are located at the
beginning of the computation in the registers 11,...,r, (one number per register).

A program for a RAM is a finite sequence of instructions lr,...,1o from the
following standard instruction set:

c-LOAD(/r): (0) <- k

(the constant k is placed into the accumulator ro);

LoAD(k):(0) <- (k)

(the content of register ro is placed into the accumulator);

i-LoAD(k): (0) +- (k)
(the content of 1is placed into the accumulator, where j is the absolute value of (k);
this instruction uses "indirect addressing");

STORE(k): (k) <- (0)

(the content of ro is placed into ru);

i-SToRE(k):(k) <- (0)

(the content of ro is placed into r;, where j is the absolute value of the content of ru;

this instruction uses "indirect addressing");

ADD(k): (0) - (0) + (k)
(the new content of ro is the sum of the preceding content of ro and the content of ro);

SUB(k):(0)*(0)-(k)
(subtraction);

COMPARE(j): if (0) > 0 then go to 1,

(conditional jump:if (0) < 0 then one proceeds as usual to the next instruction in
the program, otherwise one jumps to instruction {);

ACCEPT: the computation halts and accepts the input;

REJECT: the computation halts and rejects the input.
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The obvious advantage of the RAM-model is the fact that one can implement
on it the standard algorithms in a rather straightforward manner. Furthermore,
computation time (: number of instructions that are executed) and computation
space (: number of registers that are used) on a RAM correspond quite well to time
and space on a real computer. Both advantages distinguish the RAM from the

Turing machine.
A less satisfactory aspect of RAM's is the fact that the definition of the instruction

set is not canonical, although the preceding standard instruction set is in fact used

almost everywhere in the literature (often with minor variations that change the time
and space of the computation by at most a constant factor). Thus it is of some

interest to know which changes in the instruction set of a RAM have a significant
impact on the use of computational resources. This research area is still relatively
unexplored because there are so few techniques for proving lower bounds on

RAM's.
One natural candidate for the inclusion in the instruction set is the following

instruction that allows us to multiply two register contents in one step:

MULT(k): (0) * (0) .(/.)

(multiplication of the contents of ro and ro). We will point out in Remark 2.2thatthe
inclusion of this instruction has a significant impact on the structure of RAM's that
decide ELEMENT DISTINCTNESS: it reduces drastically the required number of
conditional jumps in the computation.

In Theorem 2.3 we address another question with regard to other possible

instruction sets. The conditional jump COMPARE in the previously defined

standard instruction set tests whether the current content of the accumulator lies in
the set {"lr t 0}. Although this "test predicate" {*1, t 0} is quite natural, one can

think of many other predicates of one or more variables that might potentially be

useful as test predicates in a perhaps more powerful new type of conditional jump.

We will show in Theorem 2.3 that the lower bound result of Theorem 2.1 is quite

stable insofar as any new type of conditional jump with an arbitrary test predicate

0 s N'(for any constant q) that may be applied to arbitrary 4-tuples of input num-

bers reduces the required number of conditional jumps for deciding ELEMENT
DISTINCTNESS by at most a constant factor.

In analogy to corresponding concepts for Turing machines we will refer to such

an arbitrary new test predicate Q as an "oracle". We will write Ro for a RAM R that
has in addition two new types of conditional jumps that allow the RAM to query

the oracle 0 ç No about q-tuples (x¡,,...,xtn) of input numbers, which may be

addressed directly or indirectly:

ORACLEQUERY(j;k1,...,kr):if (x*,,...,x*n) e Q then jump to instruction {;
otherwise go to the next instruction;

and

i-ORACLEQUERYU; ir,. ..,in): if (x¡, ,...,x*n) e Q where
(k" - l) = (i") (mod n) for s : 7,...,e,
then jump to instruction {;
otherwise go to the next instruction.
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The result of Theorem 2.3 is only a partial stability result insofar as the
uples of input numbers. This
d holds if the test predicate Q
n/s. Nevertheless this partial
exhibits a new feature of our

lower bound argument which apparently distinguishes it from all preceding lower
bound techniques for RAM's (see the references below). previoús lower bound
arguments for RAM's relied on an analysis of the geometrical structure of the set of

Such geometrical arguments do not
o the RAM, because the geometrical

help of inaccessible numbers have an important further advantage: we know that
certain minor perturbations of such inputs are also not solutiont óf th" considered

we refer to Dietzfelbinger and Maass [6], t7l for further applications of
"inaccessible" numbers in lower bound arguments.

The lower bound argument for oracle-RAM's in Theorem 2.3 uses as an ad-

The technique of selecting "order indiscernible" numbers from an infinite set via
Ramsey's theorem is a standard tool in model theory (see [23]). The relevance of this
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Klein and Meyer auf der Heide [12] have extended methods of Dobkin and

Lipton i 0l to prove anQ(n2)lower bound for the decision

pròUt"- (this lower bound is probably not optimal since

KNAPS eyer auf der Heide and Reischuk [15]' [16] have

used this method to prove an Q(n2log /t) lower bound for a more complex problem

L,,¡. These lower bound techniques can only yield the

"ióig"range 
because of the large number of "forbi e in

the simulation of a RAM by a linear decision tree (t lied

to problems that have an upper bound of O(nlogn)).
ih... u.", in addition, a number of related lower bound results for decision trees

with nodes of constant degree. Such a decision tree is a somewhat weaker model

than a RAM insofar as it does not allow indirect addressing (note that oîe can

simulate a RAM with bounded memory by a decision tree with nodes of hrge

degree, but no lower bound arguments are known for such tree). Ben-Or [3]
has shown optimal Q(nlogn) lower bounds for ELEMENT DISTINCTNESS,

DISJOINT SETS and several other problems on a quite general type of decision

tree with nodes of constant degree where several concrete algebraic operations are

permitted. However, Ben-Or's argument does not remain valid if one allows to

qu.ry un arbitrary oracle Q in the decision tree. on the other hand, Moran, snir

ánd Manber [18], [19] have shown a lower bound of O(nlogn)for ELEMENT

DISTINCTNESS on a different type of decision tree where only queries to an

arbitrary oncle Q c N 4 are permitted (for q < nrl2-e),however no linear tests (note

that a linear test, as it occurs for example in the computation of a RAM, may involve

more than nr12 many input variables x¡ and therefore cannot be viewed as a special

case of such an oracle query). As mentioned above, this result uses also Ramsey's

theorem. To our knowledge no lower bound argument was previously known that

can be applied to a decision tree where both linear tests and queries to an arbitrary

oracle are permitted.

$2. Lower bound arguments. We analyze the length of RAM-computations for

the following two well-known decision problems:

ELEMENT DISTINCTNESS : {("r,.. .,xn) € N'lx; I x,fot i * i}

and

DISJOINT SETS : {(y,,. . .,!n12,21,

{Y t''
.,z,tz) e N'I n is even and

,Y,tz\ ^{tr,"',z,tr\ 
: Ø}
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a@l'osn)).
Assumefor a contradiction that there are in Ttwo different inputs l:(¡,r,...,x,)

andI,: (x,r,...,xi) with P(1): P(l',).Let z be the permutation of {1,...,n} so

that xr,r, l xret < "' <
the input i : (7t,.. ., in) with

fiiln(l+t),
if i: r(l + 1)

(in other words: one replaces L,rr+rl in l by an ' obviously we

ìrave în,,, : ir(,+l) and thus i4 et-eVtBNf We will show

that nevèrthet"ts uit three inputs I,I' andi atep e way by R (the

; iÍ.|ålïli:
t of R on inPut

I : (xt,..., xn) can be written uniquely in the normøl form

(*) so + f s, . x,, where se, . . ., str are integers of absolute vvlve < 2s@)

Í=l

ii Xí,

Xr(t)t



LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1IO3

obviously a RAM can decide both of these problems in o(n) steps (write each
input number x into the register with address x, but check first whether it is already
occupied). However these algorithms require a very large number of registers and
the question arises whether these problems can also be solved in linear time on a
RAM with a "reasonable" memory size (e.g. polynomially in n many registers). There
exist on the other hand trivial algorithms (via sorting) that solve both of these
problems in o(nlogn) steps with only o(n) many registers. we show in Theorems 2.1
and2.4 that this time bound is in fact optimal if one allows polynomially in n many
registers, or any number of registers that is bounded by a function of n. Furthermore
we will show in Theorem 2.3 that this lower bound remains valid even if one allows
the RAM to query in addition an arbitrary oracle Q c Nq about arbitrary q-tuples
of input numbers (q is a constant).

Lower bounds for further problems will be discussed in Remark 2.5. we will
consider throughout this section RAM's that use in computations on r input
numbers only registers whose address has at most /(n) bits (i.e., only the registers
rs;. . .tr2r,¡, 1 are used), where f: N -r N is an arbitrary function. We assume that
in a situation where one of these registers ru is used for indirect addressing and the
absolute value of its current content (k) is larger than 2Iø, - l, the low order /(n)
bits of l(k)l are interpreted as the intended address.

TH¡on¡u 2.1. Let R be a ranilom access machine (RAM) that recognizes
ELEMENT DISTINCTNESS. ,4ssøme that R uses for inputs fromN' only register
addresses with at most f (n)bits,where f: N --+ N is an arbitrary function. Then R needs
Q(nlogn) computation steps, This lower bound is optimal.

Rru,qRr 2.2. The proof of rheorem 2.1 provides some further information:
there is no tradeoff where R can use more than Q(nlogn) arithmetical operatíons in
order to get away with o(nlogn) conditional jumps. It turns out that whenever R
executes < g(n) arithmetical operations, where g:N --+ N is an arbitrary function,
then R executes Q(nlogn) conditional jumps.

Note that this refined lower bound does not hold for RAM's with multiplication.
Such a RAM can compute the product II,*;(x, - xr) with O(n2) anthmetical
operations, and then check with one conditional jump whether it has value 0.

Pnoor op Tnpon¡u 2.1. Let R be a RAM as in the claim. our goal is to show that R
uses O(nlogn) computation steps for some input 1: (xt,...,x,).Thus we can
assume that R executes less than nlogn arithmetical operations on any such input
(otherwise we are already done). However in order to prove the slightly stron-
ger claim of Remark 2.2 we assume only that there is some runction g: N --+ N with
S(n) > n so that R executes < SØ) arithmetical operation for any input 1 :
(xt, . . . , x,). we will show under this weaker assumption that R executes e(nrogn)
conditional jumps.

For the rest of the proof we fix some natural number n. obviously R can generate
with < g(n) arithmetical operations, starting from numbers ( b, only numbers of
size < 2s@. b. Therefore the numbers in the set

IN :: {l/t't+2í's(n, ll < i < n}

are "mutually inaccessible" with regard to these computations of R on inputs that
consist of numbers from IN.
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Obviously this implies that s, # i for some I > 1. Choose lo > 1 such that s¡o # í¡o
and s, : í, for all i > 1 with x¡ ) x¡o. We then have (with max{x¡lr, < r,o} :: 1 if
x¡ ) x¡o for all i I i6):

x¡o ( ls¡o - í,"1 .x¡o < lsol + llol +,,ä,"(r,l + lí¡l).x,

< 2n.2s@). max{x¿ lr, a ,,"} 122sø). max{x, lx¡ < x¡o} < x¡o,

a contradiction. Thus the normal form (x) is unique.
With the help of the unique normal form (*,) we can now analyze register contents

of R on input 1: (xr, ...,xn) as if they were elements of an (n * r)-dimensional
vector space with basis {1,xr, ...,xn} (over a suitable finite field). In particular we
will consider for the two inputs I: (xr,...,xn) and I,: (x,1,...,x,,) a map
between corresponding register contents for both inputs. This map can be viewed as
a vector space isomorphism from the vector space with basis { l, x1,. . . ,x,} onto the
vector space with basis {1, x'1,...,x'n},wherel ¡-+ 1 and x, r- x!. 

-

we will now prove the preceding claim by induction on r. The case , : 1 is trivial.
Assume that f > I and that the claim holds for allT < r. This implies in particular
that the same instruction was executed at step ¿ - 1 for all three inputs I, I' , i, and.
that in the case of a conditional jump at step r - I the outcome was the same for all
three inputs. Thus the same instruction is executed at step tfor I,I'and L tt remains
to show that in the case where an instruction CoMpARE(j) is executed at step r the
outcome is the same ror I, I'ana i(this is the only nontrivial point of the whole
inductive proof.) Let s6 * Ii=, s,x, be the content of ro at the end of step ¿ - 1 for

The case where so + Il=r s¡. x¡ ( 0 is handled analogously, and so * fi=1 s¡ . x¡: 0 implies that so - sr : "' - s, : 0 (by the uniqueness of the normal form).
In order to prove the second part of the claim for step / we first note that indirect

addressing causes no problem. In the case where the instruction i-LoAD(k)
or i.STORE(k) is executed at step /, when so * IÍ= r s¡ . x, is the content (k) of
register ro at the end of step t- 1 for input I we known by the induction hypothesis
that solll=rs,.xi (so+Ii=rs¿.i¡) is the corresponding register content for
input 1'(r). Furthermore, all numbers in IN are multiples of 2!@ andby our conven-
tion only the low order f(n) bits of the absolute values of these register contents are
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interpreted as address. Thus the indirect address depends only on so; in particular,

it is the same address for all three inputs.
Finally we consider the case where ADD(k) is executed at step r (the case of

SUB(k) is analogous) and so + Il= r s, . x, is the content (in normal form) of register

ro at the end of step r for input 1. If si, + Ii= r sl ' x, and slj + Il- r si" x; are the

contents (in normal form) of the registers ro and rft at the end of step r - I for input 1,

the uniqueness of the normal form implies that s¡: sl + s!' for i:o,...,n'
Therefore the induction hypothesis implies that so * IÍ; r s¡ ' xi (so + Ií: r s¡ ' i¡) is

the content of register ro at the end of step r for input I'(1). This finishes the proof of

the claim. Thus the proof of Theorem 2.1 is complete.

Note. ln order to show that a RAM with2I1ü¡ registers needs o(nlogn) steps

to decide ELEMENT DISTINCTNESS the proof of Theorem 2.1 requires the

consideration of input numbers with O(/(n) + n2logn) bits. Of course the same

lower bound holds for RAM's that are used to decide ELEMENT DISTINCT-
NESS for smaller input numbers if its algorithm (and its analysis) does not actually

exploit that the input numbers are small.
THnoRBrvr 2.3. The lower bound of Theorem 2.1 remains ualid for RAM' s Ra with an

arbitrary oracle Q c Nq (for an arbitrary constant 4 € N).

Pnoor. We only describe the changes that have to be made in the proof of
Theorem 2.1. The key point is the fact that one can choose a set IN of n numbers that

are "mutually inaccessible" and order indiscernible (see $1 for the definition).
Fix a RAM Ro with oracle Q c Na as in the theorem. We start with the infinite set

Ñ:: {,0 '21@)+2i'ø(n't l; e N1

of "mutually inaccessible" numbers. According to Ramsey's theorem (122f; see

also [9]) onå 
"un 

select from Ñ a set IN of n numbers that are order indiscerníble

withregard toQ,i.e'foranytwoq-tuples (yr,...,¿n)and(tr,...,2n)of thesame

order type with yr, ...,!q,21,... zne IN one has

(Y,.,...,!n) e Q+ (21,"'z) e Q'

As before we consider the test set Tof all n! permutations of this new set IN' To

each 1e Tone assigns a sequence P(r) e {1, ...,qn}* (we assume for simplicity that

4 > 2) which records for the computation of the RAM Ro on input l the outcome of

each conditional jump COMPARE and for each execution of an instruction

ORACLEQUERY or i-ORACLEQUERY the order type of the 4-tuple of numbers

from IN about which the oracle is queried. In order to show that at least one of these

sequences P(l) has length Q(nlogn) (the constant factor will depend on 4) it is

sufficient to show that the sequences P(I), I e T, are pairwise different.

Assume for a contradiction that there are in T two different inputs 1 :
(xr,...,xn) and I' : (x't,...,x'n) with P(1) : P(I').A third input 7: (it,...,X,>
É ELEMENT DISTINCTNESS is defined as in the proof of Theorem 2.1. One
proves exactly the same claim for the computations on inputs I,I' andi which yields

the desired contradiction.
The inductive proof of this claim now requires a little bit more work because one

has to take into account the two new conditional jumps ORACLEQUERY and
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i-ORACLEQUERY in the first part of the claim. The indirect addressing in i-
ORACLEQUERY causes no problem because the numbers in IN have been chosen
to be multiples of n. Thus it is enough to show that in the case where an instruction
ORACLEQUERY (j; kr,...,ko) is executed at step r for the inputs I, I' and i the
outcome is for all three inputs the same, i.e.,

(xr,,.. .,xtrn) € Q + (x'¡r,...,x'on) e Q o (10,,...,iu") a Q.

Since P(1) : P(1'), we know already that the q-tuples (xt ,,...,x*n) and
(xi,,...,x'on) have the same order type (which implies that (x¡,,...,x,,n)€
g+(x'¡,,...,x'u")e Q). Therefore not both of the indices r(l) and x(l+1)

(notation as in the proof of Theorem 2.1)can occur among the indices kr,...,kn
(since x,,,, { x¡(r+1) and x',1¡¡} x'n(t*rl). This implies that (iu,,...,ion) has the
same order type as (x0,,...,x*n), and therefore (i¡,,,...,iun) e Qo (x¡,,...,x*n)
e Q. This finishes the proof of Theorem 2.3.

We would like to point out that in the situation of Moran, Snir and Manber [19]
(where one has no comparisons of arithmetical terms) the lower bound on the depth
of the tree also holds if the arity q of the "oracle" grows with n (provided it does not
grow too fast). However their method cannot be readily adapted to the situation
considered here (because a comparison may depend on O(n) input numbers).

THeonsÀ,r 2.4. The optimal lower bounds of Theorems 2.1 and 2.3 also hold for the

problem DISJOINT SETS.
Pnoo¡. The proofs are the same as for ELEMENT DISTINCTNESS, except that

here we have to make sure that the "test set" T is contained in DISJOINT SETS and
that the "fooling input" i thut ir constructed from inputs I, I' e T as in the proof of
Theorem 2.1,lies outside of DISJOINT SETS.

The set IN : {ør, ...,a,} of n "mutually inaccessible" (and simultaneously order
indiscernible) numbers is constructed exactly as in the preceding proofs. Assume

that a, < a2 < "' 1 e, and that n is even. The test set T consists of those (n/2)!

inputs (a1,e3,a5;..,tar-y. z1,...,znlz), where (zr,...,zntz) is an arbitrary perj
mutation of (ar,a4,...,ø,). For inputs I : (xr,...,x,), I': (x't,...,xi) and 1

: (i t, . . . ,i,> as in the proof of Theorem 2. 1 one sees immediately that exactly one

of the two indices n(l), n(l + 1) is larger than nl2 (in any input from Tconsecutive
elements of IN are located by constructio¡ in different "halves"). Therefore if one

replaces x¡(r+ 1) by x,r,l the resulting input / is not in DISJOINT SETS. The desired

lower bound follows since log(lTl): log((nl2)l) : A(nloen}
R¡vnnr 2.5. Another problem for which the same lower bounds as in Theo-

rem2.l and Theorem 2.3 can be shown is:

EVEN PERMUTATIONS:: {(xr, ...,x,) e N' I the sign of permutation z

with x,,r, 1 xte) < "' <

In this case T consists of al nl12 even permutations of IN. The "fooling input"
7 is defined differently than in the previous cases: i results from 1 by exchanging
xr(f) and Xr(r+r). It is obvious for Ie EVEN PERMUTATIONS that I(
EVEN PERMUTATIONS.

This problem and the preceding two belong to the list of those problems for which
Ben-Or [3] had already previously sho]vn an Q(n log n) lower bound on algebraic
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computation trees. However it is not true that one can automatically apply to every
combinatorial problem from Ben-Or's list the lower bound arguments of this paper
(SET EQUALITY is an example where one cannot construct a "test set" T as for
the other problems above).

In [1a] we have shown that one can apply the methods of this paper to prove
an optimal quadratic lower bound on RAM's Ra with arbitrary oracles Q for
the following pattern matching problem:

PM:: {("r,.. .,xn,d> lrr,.. . ,xn ale binary strings where some "pattern"

of length d occurs in at least two of these strings).

Acknowledgements. The author would like to thank Alan Borodin, Leo Harring-
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