THE JOURNAL OF SYMBOLIC LoGIC
Volume 53, Number 4, Dec. 1988

ON THE USE OF INACCESSIBLE NUMBERS
AND ORDER INDISCERNIBLES IN LOWER BOUND ARGUMENTS
FOR RANDOM ACCESS MACHINES

WOLFGANG MAASS!

Abstract. We prove optimal lower bounds on the computation time for several well-known
test problems on a quite realistic computational model: the random access machine. These
lower bound arguments may be of special interest for logicians because they rely on finitary
analogues of two important concepts from mathematical logic: inaccessible numbers and
order indiscernibles.

§1. Introduction and definitions. We develop in this paper a new lower bound
technique in order to prove optimal lower bounds on the computation time for
several well-known test problems on a quite realistic computational model: the
random access machine (RAM) with polynomially many registers. These lower
bound arguments may be of special interest for logicians because they rely on
finitary analogues of two concepts from mathematical logic: inaccessible numbers
and order indiscernibles. ‘

In particular we prove. in §2 an optimal lower bound of Q(n log n) for the
problems

ELEMENT DISTINCTNESS := {{x,...,X,) € N" | x; # x; for i # i}
and
DISJOINT SETS:= {(yl,...,y,,,z,zl,...,z,,n) € N"|nis even and
{yl,...,y,,,z} N {zl,...,z,,,z} =}

on random access machines where the number of registers is bounded by an
arbitrary function of n. This yields the first nontrivial (i.e., superlinear) optimal lower
bound on the computation time for a decision problem ona random access machine.
We will also show that this lower bound of Q(nlogn) s relatively stable insofar as it
remains valid if we attach an arbitrary oracle Q < N to the RAM, which may be
queried about arbitrary g-tuples of input numbers (q is an arbitrary constant).

Applications of our lower bound arguments to other problems will be discussed in
Remark 2.5.

Received June 10, 1985; revised June 15, 1987.
1Supported in part by NSF grant DCR-8504247.

© 1988, Association for Symbolic Logic
0022-4812/88/5304-0007/502.20

1098

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1099

The computational model that we consider in this paper, the random access
machine (RAM), has become a standard model for the machine-independent
analysis of the time and space complexity of concrete algorithms—see Cook and
Reckhow [5], Aho, Hopcroft and Ullman [1], Hartmanis and Simon [10], Paul and
Simon [20], and Klein and Meyer auf der Heide [12]. We apply in our lower bound
arguments the usual uniform cost criterion, where one charges one unit for each
execution of an instruction, independent of the size and address of the operands.
The length of a RAM computation is defined as the number of instructions that are
executed.

One assumes that the memory of a RAM consists of a sequence ry,7{,75,... of
registers. Each register is capable of holding an integer (of arbitrary size). We write
(i) for the current content of register r;. All arithmetical operations take place in
the first register r, (the “accumulator”). The n input numbers are located at the
beginning of the computation in the registers ry,...,r, (one number per register).

A program for a RAM is a finite sequence of instructions I,,...,1, from the
following standard instruction set:

¢-LOAD(k): <0 « k
(the constant k is placed into the accumulator r,);
LOAD(k): <0 « <k>
(the content of register r, is placed into the accumulator);
i-LOAD(k): <0} « k)

(the content of r;is placed into the accumulator, where j is the absolute value of (k);
this instruction uses “indirect addressing”);

STORE(k): <k> « 0>
(the content of r, is placed into r,);
i-STORE(k): €k « (0>

(the content of r is placed into r;, where j is the absolute value of the content of r;;
this instruction uses “indirect addressing”);

ADD(k): (0) « <0> + <k>

(the new content of r is the sum of the preceding content of #, and the content of r,);
SUB(K): (0> « <0 — <ky

(subtraction);

COMPAREY()):if <O» > 0 then go to J;

(conditional jump: if (0> < O then one proceeds as usual to the next instruction in
the program, otherwise one jumps to instruction I;);

ACCEPT: the computation halts and accepts the input;
REJECT: the computation halts and rejects the input.

1100 WOLFGANG MAASS

The obvious advantage of the RAM-model is the fact that one can implement
on it the standard algorithms in a rather straightforward manner. Furthermore,
computation time (= number of instructions that are executed) and computation
space (= number of registers that are used) on a RAM correspond quite well to time
and space on a real computer. Both advantages distinguish the RAM from the
Turing machine.

A less satisfactory aspect of RAM’s is the fact that the definition of the instruction
set is not canonical, although the preceding standard instruction set is in fact used
almost everywhere in the literature (often with minor variations that change the time
and space of the computation by at most a constant factor). Thus it is of some
interest to know which changes in the instruction set of a RAM have a significant
impact on the use of computational resources. This research area is still relatively
unexplored because there are so few techniques for proving lower bounds on
RAM’s.

One natural candidate for the inclusion in the instruction set is the following
instruction that allows us to multiply two register contents in one step:

MULT(k): <0> « <0 - <k>

(multiplication of the contents of ro and r,). We will point out in Remark 2.2 that the
inclusion of this instruction has a significant impact on the structure of RAM’s that
decide ELEMENT DISTINCTNESS: it reduces drastically the required number of
conditional jumps in the computation.

In Theorem 2.3 we address another question with regard to other possible
instruction sets. The conditional jump COMPARE in the previously defined
standard instruction set tests whether the current content of the accumulator lies in
the set {x|x > 0}. Although this “test predicate” {x|x > 0} is quite natural, one can
think of many other predicates of one or more variables that might potentially be
useful as test predicates in a perhaps more powerful new type of conditional jump.
We will show in Theorem 2.3 that the lower bound result of Theorem 2.1 is quite
stable insofar as any new type of conditional jump with an arbitrary test predicate
Q <= N (for any constant g) that may be applied to arbitrary g-tuples of input num-
bers reduces the required number of conditional jumps for deciding ELEMENT
DISTINCTNESS by at most a constant factor.

In analogy to corresponding concepts for Turing machines we will refer to such
an arbitrary new test predicate Q as an “oracle”. We will write R¢ for a RAM R that
has in addition two new types of conditional jumps that allow the RAM to query
the oracle Q = N7 about g-tuples {x,,,..., X, of input numbers, which may be
addressed directly or indirectly:

ORACLEQUERY(j;ky,...,k,):if {x4,,..., %, > € Q then jump to instruction I;;
otherwise go to the next instruction;

and

I-ORACLEQUERY(j;iy,...,ip):f {xg,,..., %, > € Q where
tk,— 1)Y= ;) (modn)fors=1,...,q,
then jump to instruction ;;
otherwise go to the next instruction.

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1101

The result of Theorem 2.3 is only a partial stability result insofar as the
conditional jumps of R? may only be applied to g-tuples of input numbers. This
leaves open the question whether the same lower bound holds if the test predicate Q
can be applied to arbitrary g-tuples of register contents. Nevertheless this partial
stability result is of some technical interest because it exhibits a new feature of our
lower bound argument which apparently distinguishes it from all preceding lower
bound techniques for RAM’s (see the references below). Previous lower bound
arguments for RAM’s relied on an analysis of the geometrical structure of the set of
all inputs that follow a fixed computation path. Such geometrical arguments do not
remain valid if one adds an arbitrary oracle Q to the RAM, because the geometrical
structure of Q may be arbitrarily complicated.

With regard to the complexity measures that are considered in this paper we
would like to point out that we measure here the complexity of a computation on an
input {xy,...,x,> in terms of the dimension n (or: number of “input words”) of the
input, not in terms of the number of input bits. This complexity measure is
customarily used for the analysis of computation on RAM’s and computation trees,
where one charges correspondingly only one unit of time for each operation
(independently of the size of the operands).

The main technical tool that we introduce in this paper is the construction
of “hard” instances of the considered computational problems with the help of
numbers x; that are chosen to be “mutually inaccessible” from the point of view of
the considered RAM. This means that the numbers x; are spaced so far apart that the
RAM cannot construct within the considered computation time any number > X
by using only numbers x; with x; < x; . This technique may be viewed as an
extension of a previously known method that focused on inputs {Xys..0yx,y that
were not solutions of a number of linear or algebraic equalities (see Yao [24], Hong
[11], and Paul and Simon [20]). Inputs ¢x;,...,x,> that are constructed with the
help of inaccessible numbers have an important further advantage: we know that
certain minor perturbations of such inputs are also not solutions of the considered
algebraic equalities. This novel stability property will in fact be the key for the
“fooling argument” in our lower bound proofs. In the proof of Theorem 2.1 we will
consider perturbations I of the original inputs I and I' (I and I" are constructed
from “inaccessible” numbers and are processed by the RAM in the same way) and
we will be able to argue that for each COMPARE-instruction that is executed by
the RAM the original inputs /, I and the changed input I lie on the same side of the
hyperplane that is defined by this comparison.

We refer to Dietzfelbinger and Maass [6], [7] for further applications of
“inaccessible” numbers in lower bound arguments.

The lower bound argument for oracle-RAM’s in Theorem 2.3 uses as an ad-
ditional tool, Ramsey’s theorem from combinatorics (see [22] and [9]), in order to
make the input numbers x; “order indiscernible” with regard to an arbitrary fixed
oracle @ < N*(i.e., this oracle can only discern the order of any q-tuple {x; ..., x;, >
of numbers from the input {x,,...,x,>). A useful property of the construction of
“order indiscernibles” is the fact that it is compatible with the requirement of
making the numbers x; “mutually inaccessible”.

The technique of selecting “order indiscernible” numbers from an infinite set via
Ramsey’s theorem is a standard tool in model theory (see [23]). The relevance of this

1102 WOLFGANG MAASS

technique for lower bound arguments in complexity theory (where one appliesitina
finite setting) had been realized independently by Moran, Snir and Manber [18],
[19] (for decision trees) and the author of this paper [13] (for RAM’s). Various other
applications of Ramsey theory in complexity theory can be found for example in
Yao [25], Pudlak [21], Chandra, Furst and Lipton [4], Meyer auf der Heide and
Wigderson [17], and Alon and Maass [2].

The following other preceding results are related to the results of this paper. Paul
and Simon [20] and Rackoff have proved optimal (nlogn) lower bounds for the
computation of several concrete functions on RAM’s (in particular for sorting).
Their lower bound arguments cannot be applied to decision problems.

Klein and Meyer auf der Heide [12] have extended methods of Dobkin and
Lipton [8] and Paul and Simon [20] to prove an Q(n?)lower bound for the decision
problem KNAPSACK on RAM’s (this lower bound is probably not optimal since
KNAPSACK is N P-complete). Meyer auf der Heide and Reischuk [15], [16] have
used this method to prove an Q(n? log k) lower bound for a more complex problem
L, ;. These lower bound techniques can only yield lower bounds that lie above the
nlogn range because of the large number of “forbidden hyperplanes” that arise in
the simulation of a RAM by a linear decision tree (therefore they cannot be applied
to problems that have an upper bound of O(nlogn)).

There are, in addition, a number of related lower bound results for decision trees
with nodes of constant degree. Such a decision tree is a somewhat weaker model
than a RAM insofar as it does not allow indirect addressing (note that one can
simulate a RAM with bounded memory by a decision tree with nodes of large
degree, but no lower bound arguments are known for such tree). Ben-Or [3]
has shown optimal Q(nlogn) lower bounds for ELEMENT DISTINCTNESS,
DISJOINT SETS and several other problems on a quite general type of decision
tree with nodes of constant degree where several concrete algebraic operations are
permitted. However, Ben-Or’s argument does not remain valid if one allows to
query an arbitrary oracle @ in the decision tree. On the other hand, Moran, Snir
and Manber [18], [19] have shown a lower bound of Q(nlog n) for ELEMENT
DISTINCTNESS on a different type of decision tree where only queries to an
arbitrary oracle Q < N7 are permitted (for ¢ < n'/?> %), however no linear tests (note
that a linear test, as it occurs for example in the computation of a RAM, may involve
more than n/2 many input variables x; and therefore cannot be viewed as a special
case of such an oracle query). As mentioned above, this result uses also Ramsey’s
theorem. To our knowledge no lower bound argument was previously known that
can be applied to a decision tree where both linear tests and queries to an arbitrary
oracle are permitted.

§2. Lower bound arguments. We analyze the length of RAM-computations for
the following two well-known decision problems:

ELEMENT DISTINCTNESS = {{x,...,X,> € N"|x,- # x; for i # i}
and

DISJOINT SETS = {{P1,++ > Ynj2sZ1se--> 2z € N"|nis even and
{ViseeorYua) O {2150 or 22} = D

1104 WOLFGANG MAASS

We now consider the “test set” T < ELEMENT DISTINCTNESS that consists
of all n! permutations of the n numbers in the set IN. We will show that R uses
log(n!) = Q(nlogn) conditional jumps for some input from this “test set” T.

The strategy of the proof is as follows. We assign to every input [€ T a binary
sequence P(I) which records the outcomes of all conditional jumps (= COMPARE-
instructions) in the computation of R on input /. Itis sufficient to show that P(I) #
P(I') for any two different inputs I, I” from the test set T (since log|T| = log(n!) =
Q(nlogn)).

Assume for a contradiction that there are in T two different inputs I = (xy,..., X,
and I' = {x,...,x,> with P(I) = P(I'). Let = be the permutation of {1,...,n} so
that x) < Xpa2) < " < Xaqw: Choose | minimal so that X}) < Xy Consider
the input I = {%,,...,X,> with

L (e diEal+),
T Ve =+ 1)

(in other words: one replaces Xy + 1) in I by another copy of X,q). Obviously we
have %,y = Xpq+1) and thus I'¢ ELEMENT DISTINCTNESS. We will show
that nevertheless all three inputs I, I’ and T are processed in the same way by R (the
idea is that because R did not “notice” that the n(/)th and the z(/ + 1)th component
have a different relative order in the inputs I and I’, R will also not “notice” that
the n(/)th and the =(l + 1)th component of input T are in fact equal). This implies
the desired contradiction since in particular T is accepted by R in the same way as
I and I'. More precisely, the following claim implies that the instruction ACCEPT
is the last instruction that is executed in all three computations.

Claim. At every step t, R executes for all three inputs I, 1" and T the same instruction,
and if a conditional jump is executed at step it has the same outcome for all three
inputs. Furthermore if a register r, holds for input I at the end of step t the number
So + Sty 5+ x; with s; € Z, |s;] < 2%, then for input 1'(T) the same register r, holds
at the end of step t the number sy + Xi-y 8;* X; (5o + Yo_, 8+ X;) with the same
coefficients g, ..., 58,

We will prove this claim by induction on ¢ (the purpose of the second part of the
claim is to keep this induction going). Before we proceed with the induction we
first note that every register content that occurs in the computation of R on input
I ={xy,..., X, can be written uniquely in the normal form

n
() so+ Y s+x, whereso,...,s,are integers of absolute value < 29®
i=1

(the analogous fact holds for input I' = (x1,... ,x.>). In order to prove this fact we
first note that any number which is computed by R from the input numbers x,,...,X,
with < d arithmetical operations can be written in the form so + Xf-y 8- %;
with s; € Z and |s;| < 2¢ (this is easily verified by induction on ¢). This implies for
d = g(n) that any register content of R in the considered computation on input
{Xyy.. ., X, can be written in the normal form (¥). Assume for a contradiction that
this normal form is not unique and so + %=1 8- X; = 8o + Li=1 5 - x;, where
s, SieZ, Is), |51 <297 for all ie{0,...,n}, and s; # §; for some i€ {0,...,n}.

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1103

Obviously a RAM can decide both of these problems in O(n) steps (write each
input number x into the register with address x, but check first whether it is already
occupied). However these algorithms require a very large number of registers and
the question arises whether these problems can also be solved in linear time on a
RAM with a “reasonable” memory size (e.g. polynomially in n many registers). There
exist on the other hand trivial algorithms (via sorting) that solve both of these
problems in O(nlog n) steps with only O(n) many registers. We show in Theorems 2.1
and 2.4 that this time bound is in fact optimal if one allows polynomially in n many
registers, or any number of registers that is bounded by a function of n. Furthermore
we will show in Theorem 2.3 that this lower bound remains valid even if one allows
the RAM to query in addition an arbitrary oracle Q = N7 about arbitrary g-tuples
of input numbers (g is a constant).

Lower bounds for further problems will be discussed in Remark 2.5. We will
consider throughout this section RAM’s that use in computations on n input
numbers only registers whose address has at most f(n) bits (i.e., only the registers
Yo»--+,T2rm — are used), where f: N — N is an arbitrary function. We assume that
in a situation where one of these registers r, is used for indirect addressing and the
absolute value of its current content (k) is larger than 2/™ — 1, the low order f(n)
bits of [{k)| are interpreted as the intended address.

THEOREM 2.1. Let R be a random access machine (RAM) that recognizes
ELEMENT DISTINCTNESS. Assume that R uses for inputs from N" only register
addresses with at most f(n) bits, where f: N — N is an arbitrary function. Then R needs
Q(nlog n) computation steps. This lower bound is optimal.

REMARK 2.2. The proof of Theorem 2.1 provides some further information:
there is no tradeoff where R can use more than Q(nlog n) arithmetical operations in
order to get away with o(nlogn) conditional jumps. It turns out that whenever R
executes < g(n) arithmetical operations, where g: N — N is an arbitrary function,
then R executes Q(nlogn) conditional jumps.

Note that this refined lower bound does not hold for RAM’s with multiplication.
Such a RAM can compute the product [T, (x; — x;) with O(n?) arithmetical
operations, and then check with one conditional jump whether it has value 0.

PROOF OF THEOREM 2.1. Let R be a RAM as in the claim. Our goal is to show that R
uses Q(nlogn) computation steps for some input I = {x,,...,x,>. Thus we can
assume that R executes less than nlog n arithmetical operations on any such input
(otherwise we are already done). However in order to prove the slightly stron-
ger claim of Remark 2.2 we assume only that there is some function g: N — N with
g(n) > n so that R executes < g(n) arithmetical operation for any input I =
{X15...5X,». We will show under this weaker assumption that R executes Q(nlogn)
conditional jumps.

For the rest of the proof we fix some natural number n. Obviously R can generate
with < g(n) arithmetical operations, starting from numbers < b, only numbers of
size < 29M . p. Therefore the numbers in the set

IN = {2f(n)+2i'q(")| 1<i< n}

are “mutually inaccessible” with regard to these computations of R on inputs that
consist of numbers from IN.

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1105

Obviously this implies that s; # §; for some i > 1. Choose iy > 1 such that s;, # St
and s; = §, for all i > 1 with x; > x;,. We then have (with max{x;|x; < x; }:= 1 if
x; > x;, forall i # iy):

Xig S 1Siy = Siol * Xio < IS0l + 1501 + Y, (sl + I8i]) - x;

S <x;
Xi iy

< 21+ 2900 max{x; | x; < x;,} < 22" . max{x,|x, < x;,} < x;

to?

a contradiction. Thus the normal form () is unique.

With the help of the unique normal form (*) we can now analyze register contents
of R on input I = {x,,...,x,> as if they were elements of an (n + 1)-dimensional
vector space with basis {1,x,,...,x,} (over a suitable finite field). In particular we
will consider for the two inputs I = (x,,...,x,> and I' = {X%,...,x,» a map
between corresponding register contents for both inputs. This map can be viewed as
a vector space isomorphism from the vector space with basis {1,x;,..., x,} onto the
vector space with basis {1,x7,...,x,}, where 1 — 1 and x; — x/.

We will now prove the preceding claim by induction on ¢. The case ¢ = 1 is trivial.
Assume that ¢ > 1 and that the claim holds for all T < ¢. This implies in particular
that the same instruction was executed at step t — 1 for all three inputs I, I', T, and
that in the case of a conditional jump at step t — 1 the outcome was the same for all
three inputs. Thus the same instruction is executed at step ¢ for I, I’ and I. It remains
to show that in the case where an instruction COMPARE(j) is executed at step t the
outcome is the same for I, I’ and T (this is the only nontrivial point of the whole
inductive proof.) Let s, + Y7 | s,x; be the content of r, at the end of stept — 1 for
input / (in normal form). By the induction hypothesis we know that So+ =18+ X}
(So + X7, 5;+ X) are the corresponding contents of r, at the end of step t — 1 for
input I’ (I). Consider the case where o + Lf=18;+ x; > 0. By assumption we have
P(I) = P(I') and therefore s, + ¥/-,5;-x;>0. We have to show that So +

i=15°X;> 0. Let j be maximal so that s, # 0 (in the considered case this
implies that s,;, > 0).If j > [+ 1 thisimmediately implies that so + YI_, §;+ % > 0.
If j<I+ 1then sy + Xi-y 8- X; = 8o + X- 5+ X;. Thus the only nontrivial case
occurs when j = [+ 1. We have (by the choice of 1) x/,, < ** < X/, and X,
< X further, s, = 0fori > [+ 1 (by the choice of j). Thus all x} > X have the
coefficient 0 in the term s, + Y7, 5; - X;. On the other hand this term has a positive
value (as noted above), which implies that s,,, > 0 (by the “inaccessibility” property
of numbers in IN). Since by assumption s, ;, > 0, and since the definition of input
I'=(X,,...,X,) implies that X, < '+ < X,y = Xrq4 1), these facts together imply
that so + 27_, 8+ X; > 0.

The case where s, + Y-, 5;+ x; < 0is handled analogously, and s, + ¥7_, s; - X;
= 0 implies that s, = s; = --- = 5, = 0 (by the uniqueness of the normal form).

In order to prove the second part of the claim for step ¢ we first note that indirect
addressing causes no problem. In the case where the instruction i-LOAD(k)
or i-STORE(k) is executed at step ¢, when s, + Y=, s; - x; is the content (k> of
register r, at the end of step t— 1 for input I, we known by the induction hypothesis
that so + X7_;5;- X; (5o + X7 s;- X;) is the corresponding register content for
input I' (T). Furthermore, all numbers in IN are multiples of 2/™ and by our conven-
tion only the low order f(n) bits of the absolute values of these register contents are

1106 WOLFGANG MAASS

interpreted as address. Thus the indirect address depends only on s,; in particular,
it is the same address for all three inputs.

Finally we consider the case where ADD(k) is executed at step ¢ (the case of
SUB(k) is analogous) and s, + X.I=; s; * X; is the content (in normal form) of register
ro at the end of step ¢ for input I. If si + Y-, si+ x; and sg + Xi- i - x; are the
contents (in normal form) of the registers ro and r, at the end of step t — 1forinput 1,
the uniqueness of the normal form implies that s;=s;+ s for i=0,...,n
Therefore the induction hypothesis implies that s, + 27—y 5; - X; (So + Xi=1 8; * X;) is
the content of register r, at the end of step ¢ for input I’ @) ThlS ﬁmshes the proof of
the claim. Thus the proof of Theorem 2.1 is complete.

Note. In order to show that a RAM with 2/®™ registers needs Q(nlogn) steps
to decide ELEMENT DISTINCTNESS the proof of Theorem 2.1 requires the
consideration of input numbers with O(f(n) + n?logn) bits. Of course the same
lower bound holds for RAM’s that are used to decide ELEMENT DISTINCT-
NESS for smaller input numbers if its algorithm (and its analysis) does not actually
exploit that the input numbers are small.

THEOREM 2.3. The lower bound of Theorem 2.1 remains valid for RAM’s RCwithan
arbitrary oracle Q = N (for an arbitrary constant q € N).

PrROOF. We only describe the changes that have to be made in the proof of
Theorem 2.1. The key point is the fact that one can choose a set IN of n numbers that
are “mutually inaccessible” and order indiscernible (see §1 for the definition).

Fix a RAM R2 with oracle Q = N%as in the theorem. We start with the infinite set

N:i= {n.2/M+2i900|j ¢ N}

of “mutually inaccessible” numbers According to Ramsey’s thecorem ([22]; see
also [9]) one can select from IN a set IN of n numbers that are order indiscernible
with regard to Q, i.e., for any two g-tuples {y,...,y,> and {zy,...,z, of the same
order type with y,,...,¥,,2y,...2, € IN one has

Yiseer Vg €Q (21,20 €0Q.

As before we consider the test set T'of all n! permutations of this new set IN. To
each I € Tone assigns a sequence P(I) € {1,...,q}* (we assume for simplicity that
g > 2) which records for the computation of the RAM R%on input / the outcome of
each conditional jump COMPARE and for each execution of an instruction
ORACLEQUERY ori-ORACLEQUERY the order type of the g-tuple of numbers
from IN about which the oracle is queried. In order to show that at least one of these
sequences P(I) has length Q(nlogn) (the constant factor will depend on q) it is
sufficient to show that the sequences P(I), I € T, are pairwise different.

Assume for a contradiction that there are in T two different inputs I =
{Xyye.as X,y and I’ = {x,..., x> with P(I) = P(I'). A third input I = (X%,,...., %>
¢ ELEMENT DISTINCTNESS is defined as in the proof of Theorem 2.1. One
proves exactly the same claim for the computations oninputs I, I" and T, which yields
the desired contradiction.

The inductive proof of this claim now requires a little bit more work because one
has to take into account the two new conditional jumps ORACLEQUERY and

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1107

i-ORACLEQUERY in the first part of the claim. The indirect addressing in i-
ORACLEQUERY causes no problem because the numbers in IN have been chosen
to be multiples of n. Thus it is enough to show that in the case where an instruction
ORACLEQUERY (j;k,...,k) is executed at step ¢ for the inputs I, I" and I the
outcome is for all three inputs the same, i.e.,

gy e Xp,) €Q <> <x;q,...,x;¢q> €Q < <)~ckl,...,)~c,‘q> € 0.
Since P(I)= P(I'), we know already that the g-tuples {x,,...,x, > and
{Xks>+++» Xk, » have the same order type (which implies that <{x,,...,x. > €
Q <> {Xi,...,Xi,» € Q). Therefore not both of the indices n(l) and =(l + 1)
(notation as in the proof of Theorem 2.1) can occur among the indices k,,...,k,
(sINCE Xnpy < Xp+1y AN X7y > Xy 1) This implies that {X,,,...,%, > has the
same order type as (X, ,...,X,), and therefore (X;,...,X,> € Q < Xy, -, Xy,

€ Q. This finishes the proof of Theorem 2.3.

We would like to point out that in the situation of Moran, Snir and Manber [19]
(where one has no comparisons of arithmetical terms) the lower bound on the depth
of the tree also holds if the arity g of the “oracle” grows with n (provided it does not
grow too fast). However their method cannot be readily adapted to the situation
considered here (because a comparison may depend on Q(n) input numbers).

THEOREM 2.4. The optimal lower bounds of Theorems 2.1 and 2.3 also hold for the
problem DISJOINT SETS.

PROOF. The proofs are the same as for ELEMENT DISTINCTNESS, except that
here we have to make sure that the “test set” T is contained in DISJOINT SETS and
that the “fooling input” I, that is constructed from inputs I, I’ € T as in the proof of
Theorem 2.1, lies outside of DISJOINT SETS.

The set IN = {a,...,a,} of n “mutually inaccessible” (and simultaneously order
indiscernible) numbers is constructed exactly as in the preceding proofs. Assume
that a, < a, < ‘** < a, and that n is even. The test set T consists of those (1/2)!
inputs {a,,a3,as,...,d,— 1, Z1,-..,2y2, Where {zy,...,2,,) is an arbitrary per-
mutation of {a,,d,,...,a,>. For inputs I = <{x,...,x,», I' = {x},...,x,» and I
= {X,,...,X,» as in the proof of Theorem 2.1 one sees immediately that exactly one
of the two indices n(l), n(l + 1) is larger than n/2 (in any input from T consecutive
elements of IN are located by construction in different “halves”). Therefore if one
replaces X, 1) by X, the resulting input Tis not in DISJOINT SETS. The desired
lower bound follows since log(|T'|) = log((n/2)!) = Q(nlogn).

REMARK 2.5. Another problem for which the same lower bounds as in Theo-
rem 2.1 and Theorem 2.3 can be shown is:

EVEN PERMUTATIONS = {{x,,...,x,> € N"| the sign of permutation n
with X,1) < Xpa) < *°* < Xgq IS €ven}.

In this case T consists of all n!/2 even permutations of IN. The “fooling input”
I is defined differently than in the previous cases: I results from I by exchanging
Xeqy and X4 q. It is obvious for e EVEN PERMUTATIONS that I¢
EVEN PERMUTATIONS.
This problem and the preceding two belong to the list of those problems for which
Ben-Or [3] had already previously shown an Q(nlog n) lower bound on algebraic

1108 WOLFGANG MAASS

computation trees. However it is not true that one can automatically apply to every
combinatorial problem from Ben-Or’s list the lower bound arguments of this paper
(SET EQUALITY is an example where one cannot construct a “test set” T as for
the other problems above).

In [14] we have shown that one can apply the methods of this paper to prove
an optimal quadratic lower bound on RAM’s R? with arbitrary oracles Q for
the following pattern matching problem:

PM:= {{(xy,...,X,,d) | x;,...,x, are binary strings where some “pattern”
of length d occurs in at least two of these strings}.

Acknowledgements. The author would like to thank Alan Borodin, Leo Harring-
ton, Richard Karp and Avi Widgerson for helpful conversations.

REFERENCES

[1] A.V. AHo, J. E. HopcrorT and J. D. ULLMAN, The design and analysis of computer algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

[2] N. ALoN and W. MAAss, Ramsey theory and lower bounds for branching programs, Proceedings
of the 27th IEEE Symposium on Foundations of Computer Science (1986), pp. 410-417.

[3] M. BEN-OR, Lower bounds for algebraic computation trees, Proceedings of the 15th ACM
Symposium on Theory of Computing (1983), pp. 80-86.

[4] A. K. CHANDRA, M. L. FURST and R. J. LIPTON, Multi-party protocols, Proceedings of the 15th
ACM Symposium on Theory of Computing (1983), pp. 94-99.

[5] S. A.Cook and R. A. RECKHOW, Time bounded random access machines, Journal of Computer and
System Sciences, vol. 7 (1973), pp. 354-375.

[6] M. DiETZFELBINGER and W. MaAsS, Two lower bound arguments with “inaccessible’’ numbers,
Proceedings of the structure in complexity theory conference (1986), Lecture Notes in Computer Science,
vol. 223, Springer-Verlag, Berlin, 1986, pp. 163-183.

[7] , Three lower bound arguments with “‘inaccessible”’ numbers, to appear in a special issue of
the Journal of Computer and System Sciences for the 1986 Structure in Complexity Theory conference.

[8] D. DoBkiN and R. LipToN, A lower bound of n?/2 on linear search programs for the knapsack
problem, Journal of Computer and System Sciences, vol. 16 (1975), pp. 417-442.

[9] R. L. GRAHAM, B. L. ROTHSCHILD and J. H. SPENCER, Ramsey theory, Wiley, New York, 1980.

[10] J. HARTMANIS and J. SIMON, On the power of multiplication in random access machines, Conference
Record of the 15th IEEE Symposium on Switching and Automata Theory (1974), pp. 13-23.

[11] J. HoNG, On lower bounds of time complexity of some algorithms, Scientia Sinica, vol. 22 (1979),
pp. 890-900.

[12] P.KvrEN and F. MEYER AUF DER HEIDE, A lower time bound for the knapsack problem on random
access machines, Acta Informatica, vol. 19 (1983), pp. 385-395.

[13] W.Maass, An optimal quadratic lower bound for random access machines and other applications
of Ramsey’s theorem, Preliminary report, University of California, Berkeley, California, 1984.

[14] , On the use of inaccessible numbers and order indiscernibles in lower bound arguments for
random access machines, Research Report in Computer Science, no. 4, University of Illinois at Chicago,
Chicago, Illinois, 1985.

[15] F. Mever AUF DER HEIDE and R. REISCHUK, On the limits to speed up parallel machines by large
hardware and unbounded communication, Proceedings of the 25th IEEE Symposium on Foundations of
Computer Science (1984), pp. 56—84.

[16] F.MEYER AUF DER HEIDE, Lower bounds for solving linear Diophantine equations on random access
machines, Journal of the Association for Computing Machinery, vol. 32 (1985), pp. 929-937.

[17] F. MEYER AUF DER HEIDE and A. WIGDERSON, The complexity of parallel sorting, Proceedings of
the 26th IEEE Symposium on Foundations of Computer Science (1985), pp. 532—-540.

LOWER BOUND ARGUMENTS FOR RANDOM ACCESS MACHINES 1109

[18] S. MoraN, M. SNIR and U. MANBER, Applications of Ramsey's theorem to decision tiee
complexity, Proceedings of the 25th IEEE Symposium on Foundations of Computer Science (1984),
pp. 332-337.

[19] , Applications of Ramsey’s theorem to decision tree complexity, Journal of the Association
Jor Computing Machinery, vol. 32 (1985), pp. 938-949.

[20] W. J. PauL and J. SIMON, Decision trees and random access machines, Logic and algorithmic
(symposium in honor of Ernest Specker, Ziirich, 1980), Monographies de L'Enseignement Mathématique,
vol. 30, Université de Genéve, Geneva, 1982, pp. 331-340.

[21] P.PUDLAK, A lower bound on the complexity of branching programs, Mathematical foundations of
computer science (proceedings, Prague, 1984), Lecture Notes in Computer Science, vol. 176, Springer-
Verlag, Berlin, 1984, pp. 480—489.

[22] F. P. RAMSEY, On a problem of formal logic, Proceedings of the London Mathematical Society,
ser. 2, vol. 30 (1930), pp. 264-286.

[23] G. E. Sacks, Saturated model theory, Benjamin, Reading, Massachusetts, 1972,

[24] A. C. Yo, On the complexity of comparison problems using linear functions, Proceedings of the
16th IEEE Symposium on Foundations of Computer Science (1975), pp. 85-89.

[25] , Should tables be sorted? Journal of the Association for Computing Machinery, vol. 28
(1981), pp. 615-628.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT CHICAGO
CHICAGO, ILLINOIS 60680

