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Abstract

We reexamine in this article the conceptual and mathematical framework for un-
derstanding the organization of plasticity in spiking neural networks. We propose
that inherent stochasticity enables synaptic plasticity to carry out probabilistic in-
ference by sampling from a posterior distribution of synaptic parameters. This
view provides a viable alternative to existing models that propose convergence of
synaptic weights to maximum likelihood parameters. It explains how priors on
weight distributions and connection probabilities can be merged optimally with
learned experience. In simulations we show that our model for synaptic plasticity
allows spiking neural networks to compensate continuously for unforeseen distur-
bances. Furthermore it provides a normative mathematical framework to better
understand the permanent variability and rewiring observed in brain networks.

1 Introduction

In the 19th century, Helmholtz proposed that perception could be understood as unconscious infer-
ence [1]. This insight has recently (re)gained considerable attention in models of Bayesian inference
in neural networks [2]. The hallmark of this theory is the assumption that the activity z of neuronal
networks can be viewed as an internal model for hidden variables in the outside world that give rise
to sensory experiences x. This hidden state z is usually assumed to be represented by the activity of
neurons in the network. A network N of stochastically firing neurons is modeled in this framework
by a probability distribution pN (x, z|θ) that describes the probabilistic relationships between a set
of N inputs x = (x1, . . . ,xN ) and corresponding network responses z = (z1, . . . ,zN ), where θ
denotes the vector of network parameters that shape this distribution, e.g., via synaptic weights and
network connectivity. The likelihood pN (x|θ) =

∑
z pN (x, z|θ) of the actually occurring inputs x

under the resulting internal model can then be viewed as a measure for the agreement between this
internal model (which carries out “predictive coding” [3]) and its environment (which generates x).

The goal of network learning is usually described in this probabilistic generative framework as find-
ing parameter values θ∗ that maximize this agreement, or equivalently the likelihood of the inputs x
(maximum likelihood learning): θ∗ = argmaxθ pN (x|θ). Locally optimal estimates of θ∗ can be
determined by gradient ascent on the data likelihood pN (x|θ), which led to many previous models
of network plasticity [4, 5, 6]. While these models learn point estimates of locally optimal param-
eters θ∗, theoretical considerations for artificial neural networks suggest that it is advantageous to
learn full posterior distributions p∗(θ) over parameters. This full Bayesian treatment of learning
allows to integrate structural parameter priors in a Bayes-optimal way and promises better general-
ization of the acquired knowledge to new inputs [7, 8]. The problem how such posterior distributions
could be learned by brain networks has been highlighted in [2] as an important future challenge in
computational neuroscience.
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Figure 1: Illustration of synaptic sampling for two parameters θ = {θ1, θ2} of a neural network
N . A: 3D plot of an example likelihood function. For a fixed set of inputs x it assigns a probability
density (amplitude on z-axis) to each parameter setting θ. The likelihood function is defined by
the underlying neural network N . B: Example for a prior that prefers small values for θ. C:
The posterior that results as product of the prior (B) and the likelihood (A). D: A single trajectory
of synaptic sampling from the posterior (C), starting at the black dot. The parameter vector θ
fluctuates between different solutions, the visited values cluster near local optima (red triangles). E:
Cartoon illustrating the dynamic forces (plasticity rule (2)) that enable the network to sample from
the posterior distribution p∗(θ|x) in (D).

Here we introduce a possible solution to this problem. We present a new theoretical framework
for analyzing and understanding local plasticity mechanisms of networks of neurons as stochastic
processes, that generate specific distributions p∗(θ) of network parameters θ over which these pa-
rameters fluctuate. We call this new theoretical framework synaptic sampling. We use it here to
analyze and model unsupervised learning and rewiring in spiking neural networks. In Section 3
we show that the synaptic sampling hypothesis also provides a unified framework for structural and
synaptic plasticity which both are integrated here into a single learning rule. This model captures
salient features of the permanent rewiring and fluctuation of synaptic efficacies observed in the cor-
tex [9, 10]. In computer simulations, we demonstrate another advantage of the synaptic sampling
framework: It endows neural circuits with an inherent robustness against perturbations [11].

2 Learning a posterior distribution through stochastic synaptic plasticity

In our learning framework we assume that not only a neural networkN as described above, but also a
prior pS(θ) for its parameters θ = (θ1, . . . , θM ) are given. This prior pS can encode both structural
constraints (such as sparse connectivity) and structural rules (e.g., a heavy-tailed distribution of
synaptic weights). Then the goal of network learning becomes:

learn the posterior distribution: p∗(θ|x) = 1
Z pS(θ) · pN (x|θ) , (1)

with normalizing constant Z . A key insight (see Fig. 1 for an illustration) is that stochastic local
plasticity rules for the parameters θi enable a network to achieve the learning goal (1): The distri-
bution of network parameters θ will converge after a while to the posterior distribution (1) – and
produce samples from it – if each network parameter θi obeys the dynamics

dθi =

(
b(θi)

∂

∂θi
log pS(θ) + b(θi)

∂

∂θi
log pN (x|θ) + T b′(θi)

)
dt +

√
2Tb(θi) dWi , (2)

for i = 1, . . . ,M and b′(θi) = ∂
∂θi
b(θi). The stochastic term dWi describes infinitesimal stochastic

increments and decrements of a Wiener processWi, where process increments over time t − s are
normally distributed with zero mean and variance t− s, i.e. Wt

i −Ws
i ∼ NORMAL(0, t− s) [12].

The dynamics (2) extend previous models of Bayesian learning via sampling [13, 14] by including a
temperature T > 0 and a sampling-speed parameter b(θi) > 0 that can depend on the current value
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of θi without changing the stationary distribution. For example, the sampling speed of a synaptic
weight can be slowed down if it reaches very high or very low values.

The temperature parameter T can be used to scale the diffusion term (i.e., the noise). The resulting
stationary distribution of θ is proportional to p∗(θ)

1
T , so that the dynamics of the stochastic process

can be described by the energy landscape 1
T log p∗(θ). For high values of T this energy landscape

is flattened, i.e., the main modes of p∗(θ) become less pronounced. For T = 1 we arrive at the
learning goal (1). For T → 0 the dynamics of θ approaches a deterministic process and converges
to the next local maximum of p∗(θ). Thus the learning process approximates for low values of T
maximum a posteriori (MAP) inference [8]. The result is formalized in the following theorem:
Theorem 1. Let p(x,θ) be a strictly positive, continuous probability distribution over continuous
or discrete states x and continuous parameters θ = (θ1, . . . , θM ), twice continuously differentiable
with respect to θ. Let b(θ) be a strictly positive, twice continuously differentiable function. Then the
set of stochastic differential equations (2) leaves the distribution p∗(θ) invariant:

p∗(θ) ≡ 1

Z ′
p∗(θ |x) 1

T , (3)

with Z ′ =
∫
p∗(θ |x) 1

T dθ. Furthermore, p∗(θ) is the unique stationary distribution of (2).

Proof: First, note that the first two terms in the drift term of Eq. (2) can be written as

b(θi)
∂

∂θi
log pS(θ) + b(θi)

∂

∂θi
log pN (x|θ) = b(θi)

∂

∂θi
log p(θi|x,θ\i),

where θ\i denotes the vector of parameters excluding parameter θi. Hence, the dynamics (2) can be
written in terms of an Itô stochastic differential equations with drift Ai(θ) and diffusion Bi(θ):

dθi =

(
b(θi)

∂

∂θi
log p(θi|x,θ\i) + T b′(θi)︸ ︷︷ ︸

drift: Ai(θ)

)
dt+

√
2T b(θi)︸ ︷︷ ︸

diffusion: Bi(θ)

dWi . (4)

This describes the stochastic dynamics of each parameter over time. For the stationary distribution
we are interested in the dynamics of the distribution of parameters. Eq. (4) translate into the fol-
lowing Fokker-Planck equation, that determines the temporal dynamics of the distribution pFP(θ, t)
over network parameters θ at time t (see [12]),

d

dt
pFP(θ, t) =

∑
i

− ∂

∂θi

(
Ai(θ) pFP(θ, t)

)
+

∂2

∂θ2i

(
1

2
Bi(θ) pFP(θ, t)

)
. (5)

Plugging in the presumed stationary distribution p∗(θ) on the right hand side of Eq. (5), one obtains
d

dt
pFP(θ, t) =

∑
i

− ∂

∂θi
(Ai(θ) p

∗(θ)) +
∂2

∂θ2i
(Bi(θ) p

∗(θ))

=
∑
i

− ∂

∂θi

(
b(θi) p

∗(θ)
∂

∂θi
log p(θi|x,θ\i)

)
+

∂

∂θi

(
T b(θi) p

∗(θ)
∂

∂θi
log p∗(θ)

)
,

which by inserting for p∗(θ) the assumed stationary distribution (3) becomes
d

dt
pFP(θ, t) =

∑
i

− ∂

∂θi

(
b(θi) p

∗(θ)
∂

∂θi
log p(θi|x,θ\i)

)
+

∂

∂θi

(
b(θi) p

∗(θ)
∂

∂θi

(
log p(θ\i|x) + log p(θi|x,θ\i)

))
=
∑
i

0 = 0 .

This proves that p∗(θ) is a stationary distribution of the parameter sampling dynamics (4). Under
the assumption that b(θi) is strictly positive, this stationary distribution is also unique. If the matrix
of diffusion coefficients is invertible, and the potential conditions are satisfied (see Section 3.7.2 in
[12] for details), the stationary distribution can be obtained (uniquely) by simple integration. Since
the matrix of diffusion coefficientsB is diagonal in our model (B = diag(Bi(θ), . . . , BM (θ))),B
is trivially invertible since all elements, i.e. all Bi(θ), are positive. Convergence and uniqueness of
the stationary distribution follows then for strictly positive b(θi) (see Section 5.3.3 in [12]). �
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2.1 Online synaptic sampling

For sequences ofN inputs x = (x1, . . . ,xN ), the weight update rule (2) depends on all inputs, such
that synapses have to keep track of the whole set of all network inputs for the exact dynamics (batch
learning). In an online scenario, we assume that only the current network input xn is available.

According to the dynamics (2), synaptic plasticity rules have to compute the log likelihood derivative
∂
∂θi

log pN (x|θ). We assume that every τx time units a different input xn is presented to the network
and that the inputs x1, . . . ,xN are visited repeatedly in a fixed regular order. Under the assumption
that the input patterns are statistically independent the likelihood pN (x|θ) becomes

pN (x|θ) = pN (x
1, . . . ,xN |θ) =

N∏
n=1

pN (x
n|θ) , (6)

i.e., each network input xn can be explained as being drawn individually from pN (x
n|θ), in-

dependently from other inputs. The derivative of the log likelihood in (2) is then given by
∂
∂θi

log pN (x|θ) =
∑N
n=1

∂
∂θi

log pN (x
n|θ) . This “batch” dynamics does not map readily onto

a network implementation because the weight update requires at any time knowledge of all inputs
x1, . . . ,xN . We provide here an online approximation for small sampling speeds. To obtain an
online learning rule, we consider the parameter dynamics

dθi =

(
b(θi)

∂

∂θi
log pS(θ) +Nb(θi)

∂

∂θi
log pN (x

n|θ) + Tb′(θi)

)
dt +

√
2Tb(θi) dWi. (7)

As in the batch learning setting, we assume that each input xn is presented for a time interval of
τx. Although convergence to the correct posterior distribution cannot be guaranteed theoretically
for this online rule, we show that it is a reasonable approximation to the batch-rule. Integrating the
parameter changes (7) over one full presentation of the data x, i.e., starting from t = 0 with some
initial parameter values θ0 up to time t = Nτx, we obtain for slow sampling speeds (Nτxb(θi)� 1)

θNτxi − θ0i ≈ Nτx

(
b(θ0i )

∂

∂θi
log pS(θ

0) + b(θ0i )

N∑
n=1

∂

∂θi
log pN (x

n|θ0) + T b′(θ0i )

)

+
√
2Tb(θ0i ) (W

Nτx
i −W0

i ). (8)

This is also what one obtains when integrating the batch rule (2) for Nτx time units (for slow b(θi)).
Hence, for slow enough b(θi), (7) is a good approximation of optimal weight sampling.

In the presence of hidden variables z, maximum likelihood learning cannot be applied directly, since
the state of the hidden variables is not known from the observed data. The expectation maximization
algorithm [8] can be used to overcome this problem. We adopt this approach here. In the online
setting, when pattern xn is applied to the network, it responds with network state zn according
to pN (zn |xn,θ), where the current network parameters are used in this inference process. The
parameters are updated in parallel according to the dynamics (8) for the given values of xn and zn.

3 Synaptic sampling for network rewiring

In this section we present a simple model to describe permanent network rewiring using the dynam-
ics (2). Experimental studies have provided a wealth of information about the stochastic rewiring in
the brain (see e.g. [9, 10]). They demonstrate that the volume of a substantial fraction of dendritic
spines varies continuously over time, and that all the time new spines and synaptic connections are
formed and existing ones are eliminated. We show that these experimental data on spine motility
can be understood as special cases of synaptic sampling. To arrive at a concrete model we use the
following assumption about dynamic network rewiring:

1. In accordance with experimental studies [10], we require that spine sizes have a multiplica-
tive dynamics, i.e., that the amount of change within some given time window is propor-
tional to the current size of the spine.

2. We assume here for simplicity that there is a single parameter θi for each potential synaptic
connection i.
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The second requirement can be met by encoding the state of the synapse in an abstract form, that
represents synaptic connectivity and synaptic efficacy in a single parameter θi. We define that nega-
tive values of θi represent a current disconnection and positive values represent a functional synaptic
connection (we focus on excitatory connections). The distance of the current value of θi from zero
indicates how likely it is that the synapse will soon reconnect (for negative values) or withdraw
(for positive values). In addition the synaptic parameter θi encodes for positive values the synaptic
efficacy wi, i.e., the resulting EPSP amplitudes, by a simple mapping wi = f(θi).

The first assumption which requires multiplicative synaptic dynamics supports an exponential func-
tion f in our model, in accordance with previous models of spine motility [10]. Thus, we assume in
the following that the efficacy wi of synapse i is given by

wi = exp(θi − θ0) . (9)

Note that for a large enough offset θ0, negative parameter values θi (which model a non-functional
synaptic connection) are automatically mapped onto a tiny region close to zero in the w-space, so
that retracted spines have essentially zero synaptic efficacy. In addition we use a Gaussian prior
pS(θi) = NORMAL(θi |µ, σ), with mean µ and variance σ2 over synaptic parameters. In the sim-
ulations we used µ = 0.5, σ = 1 and θ0 = 3. A prior of this form allows to include a simple
regularization mechanism in the learning scheme, which prefers sparse solutions (i.e. solutions with
small parameters) [8]. Together with the exponential mapping (9) this prior induces a heavy-tailed
prior distribution over synaptic weights wi. The network therefore learns solutions where only the
most relevant synapses are much larger than zero.

The general rule for online synaptic sampling (7) for the exponential mapping wi = exp(θi − θ0)
and the Gaussian prior becomes (for constant small learning rate b� 1 and unit temperature T = 1)

dθi = b

(
1

σ2
(µ− θi) + Nwi

∂

∂wi
log pN (x

n|w)

)
dt +

√
2b dWi . (10)

In Eq. (10) the multiplicative synaptic dynamics becomes explicit. The gradient ∂
∂wi

log pN (x
n|w),

i.e., the activity-dependent contribution to synaptic plasticity, is weighted bywi. Hence, for negative
values of θi (non-functional synaptic connection), the activities of the pre- and post-synaptic neurons
have negligible impact on the dynamics of the synapse. Assuming a large enough θ0, retracted
synapses therefore evolve solely according to the prior pS(θ) and the random fluctuations dWi. For
large values of θi the opposite is the case. The influence of the prior ∂

∂θi
log pS(θ) and the Wiener

process dWi become negligible, and the dynamics is dominated by the activity-dependent likelihood
term.

If the activity-dependent second term in Eq. (10) (that tries to maximize the likelihood) is small
(e.g., because θi is small or parameters are near a mode of the likelihood) then Eq. (10) implements
an Ornstein-Uhlenbeck process. This prediction of our model is consistent with a previous analysis
which showed that an Ornstein-Uhlenbeck process is a viable model for synaptic spine motility [10].

3.1 Spiking network model

Through the use of parameters θ which determine both synaptic connectivity and synaptic weights,
the synaptic sampling framework provides a unified model for structural and synaptic plasticity.
Eq. (10) describes the stochastic dynamics of the synaptic parameters θi. In this section we analyze
the resulting rewiring dynamics and structural plasticity by applying the synaptic sampling frame-
work to networks of spiking neurons. Here, we used winner-take-all (WTA) networks to learn a
simple sensory integration task and show that learning with synaptic sampling in such networks is
inherently robust to perturbations.

For the WTA we adapted the model described in detail in [15]. Briefly, the WTA neurons were
modeled as stochastic spike response neurons with a firing rate that depends exponentially on the
membrane voltage [16, 17]. The membrane potential uk(t) of neuron k at time t is given by

uk(t) =
∑
i

wki xi(t) + βk(t) , (11)

where xi(t) denotes the (unweighted) input from input neuron i, wki denotes the efficacy of the
synapse from input neuron i, and βk(t) denotes a homeostatic adaptation current (see below). The
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input xi(t) models the (additive) excitatory postsynaptic current from neuron i. In our simulations
we used a double-exponential kernel with time constants τm = 20ms and τs = 2ms [18]. The
instantaneous firing rate ρk(t) of network neuron k depends exponentially on the membrane poten-
tial and is subject to divisive lateral inhibition Ilat(t) (described below): ρk(t) = ρnet

Ilat(t)
exp(uk(t)),

where ρnet = 100Hz scales the firing rate of neurons [16]. Spike trains were then drawn from
independent Poisson processes with instantaneous rate ρk(t) for each neuron. Divisive inhibi-
tion [19] between the K neurons in the WTA network was implemented in an idealized form [6],
Ilat(t) =

∑K
l=1 exp(ul(t)). In addition, each output spike caused a slow depressing current, giving

rise to the adaptation current βk(t). This implements a slow homeostatic mechanism that regulates
the output rate of individual neurons (see [20] for details).

The WTA network defined above implicitly defines a generative model [21]. Inputs xn are assumed
to be generated in dependence on the value of a hidden multinomial random variable hn that can
take on K possible values 1, . . . ,K. Each neuron k in the WTA circuit corresponds to one value k
of this hidden variable. One obtains the probability of an input vector for a given hidden cause as
pN (x

n|hn = k,w) =
∏
i POISSON(xni |αewki), with a scaling parameter α > 0. In other words,

the synaptic weight wki encodes (in log-space) the firing rate of input neuron i, given that the hidden
cause is k. The network implements inference in this generative model, i.e., for a given input xn, the
firing rate of network neuron zk is proportional to the posterior probability p(hn = k|xn,w) of the
corresponding hidden cause. Online maximum likelihood learning is realized through the synaptic
update rule (see [21]), which realizes here the second term of Eq. (10)

∂

∂wki
log pN (x

n |w) ≈ Sk(t) (xi(t)− α ewki) , (12)

where Sk(t) denotes the spike train of the kth neuron and xi(t) denotes the weight-normalized value
of the sum of EPSPs from presynaptic neuron i at time t in response to pattern xn.

3.2 Simulation results

Here, we consider a network that allows us to study the self-organization of connections between
hidden neurons. Additional details to this experiment and further analyses of the synaptic sampling
model can be found in [22].

The architecture of the network is illustrated in Fig. 2A. It consists of eight WTA circuits with
arbitrary excitatory synaptic connections between neurons within the same or different ones of these
WTA circuits. Two populations of “auditory” and “visual” input neurons xA and xV project onto
corresponding populations zA and zV of hidden neurons (each consisting of four WTA circuits with
K = 10 neurons, see lower panel of Fig. 2A). The hidden neuron populations receive exclusively
auditory (zA, 770 neurons) or visual inputs (zV , 784 neurons) and in addition, arbitrary lateral
excitatory connections between all hidden neurons are allowed. This network models multi-modal
sensory integration and association in a simplified manner [15].

Biological neural networks are astonishingly robust against perturbations and lesions [11]. To in-
vestigate the inherent compensation capability of synaptic sampling we applied two lesions to the
network within a learning session of 8 hours (of equivalent biological time). The network was
trained by repeatedly drawing random instances of spoken and written digits of the same type (digit
1 or 2 taken from MNIST and 7 utterances of speaker 1 from TI 46) and simultaneously presenting
Poisson spiking representations of these input patterns to the network. Fig. 2A shows example firing
rates for one spoken/written input pair. Input spikes were randomly drawn according to these rates.
Firing rates of visual input neurons were kept fixed throughout the duration of the auditory stimulus.

In the first lesion we removed all neurons (16 out of 40) that became tuned for digit 2 in the preced-
ing learning. The reconstruction performance of the network was measured through the capability
of a linear readout neuron, which received input only from zV . During these test trials only the
auditory stimulus was presented (the remaining 3 utterances of speaker 1 were used as test set) and
visual input neurons were clamped to 1Hz background noise. The lesion significantly impaired the
performance of the network in stimulus reconstruction, but it was able to recover from the lesion
after about one hour of continuing network plasticity (see Fig. 2C).

In the second lesion all synaptic connections between hidden neurons that were present after recov-
ery from the first lesion were removed and not allowed to regrow (2936 synapses in total). After
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Figure 2: Inherent compensation for network perturbations. A: Illustration of the network ar-
chitecture: A recurrent spiking neural network received simultaneously spoken and handwritten
spiking representations of the same digit. B: First three PCA components of the temporal evolution
a subset of the network parameters θ. After each lesion the network parameters migrate to a new
manifold. C: The generative reconstruction performance of the “visual” neurons zV for the test
case when only an auditory stimulus is presented was tracked throughout the whole learning session
(colors of learning phases as in (B)). After each lesion the performance strongly degrades, but reli-
ably recovers. Learning with zero temperature (dashed yellow) or with approximate HMM learning
[15] (dashed purple) performed significantly worse. Insets at the top show the synaptic weights of
neurons in zV at 4 time points projected back into the input space. Network diagrams in the middle
show ongoing network rewiring for synaptic connections between the hidden neurons. Each arrow
indicates a functional connection between two neurons (only 1% randomly drawn subset shown).
The neuron whose parameters are tracked in (C) is highlighted in red. Numbers under the network
diagrams show the total number of functional connections between hidden neurons at the time point.

about two hours of continuing synaptic sampling 294 new synaptic connections between hidden
neurons emerged. These connections made it again possible to infer the auditory stimulus from the
activity of the remaining 24 hidden neurons in the population zV (in the absence of input from the
population xV ). The classification performance was around 75% (see bottom of Fig. 2C).

In Fig. 2B we track the temporal evolution of a subset θ′ of network parameters (35 parameters
θi associated with the potential synaptic connections of the neuron marked in red in the middle
of Fig. 2C from or to other hidden neurons, excluding those that were removed at lesion 2 and
not allowed to regrow). The first three PCA components of this 35-dimensional parameter vector
are shown. The vector θ′ fluctuates first within one region of the parameter space while probing
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different solutions to the learning problem, e.g., high probability regions of the posterior distribution
(blue trace). Each lesions induced a fast switch to a different region (red,green), accompanied by
a recovery of the visual stimulus reconstruction performance (see Fig. 2C). The network therefore
compensates for perturbations by exploring new parameter spaces.

Without the noise and the prior the same performance could not be reached for this experiment.
Fig. 2C shows the result for the approximate HMM learning [15], which is a deterministic learning
approach (without a prior). Using this approach the network was able to learn representations of the
handwritten and spoken digits. However, these representation and the associations between them
were not as distinctive as for synaptic sampling and the classification performance was significantly
worse (only first learning phase shown). We also evaluated this experiment with a deterministic
version of synaptic sampling (T = 0). Here, the stochasticity inherent to the WTA circuit was
sufficient to overcome the first lesion. However, the performance was worse in the last learning phase
(after removing all active lateral synapses). In this situation, the random exploration of the parameter
space that is inherent to synaptic sampling significantly enhanced the speed of the recovery.

4 Discussion

We have shown that stochasticity may provide an important function for network plasticity. It en-
ables networks to sample parameters from the posterior distribution that represents attractive combi-
nations of structural constraints and rules (such as sparse connectivity and heavy-tailed distributions
of synaptic weights) and a good fit to empirical evidence (e.g., sensory inputs). The resulting rules
for synaptic plasticity contain a prior distributions over parameters. Potential functional benefits of
priors (on emergent selectivity of neurons) have recently been demonstrated in [23] for a restricted
Boltzmann machine.

The mathematical framework that we have presented provides a normative model for evaluating
empirically found stochastic dynamics of network parameters, and for relating specific properties of
this “noise” to functional aspects of network learning. Some systematic dependencies of changes
in synaptic weights (for the same pairing of pre- and postsynaptic activity) on their current values
had already been reported in [24, 25, 26]. These can be modeled as the impact of priors in our
framework.

Models of learning via sampling from a posterior distribution have been previously studied in ma-
chine learning [13, 14] and the underlying theoretical principles are well known in physics (see e.g.
Section 5.3 of [27]). The theoretical framework provided in this paper extends these previous mod-
els for learning by introducing the temperature parameter T and by allowing to control the sampling
speed in dependence of the current parameter setting through b(θi). Furthermore, our model com-
bines for the first time automatic rewiring in neural networks with Bayesian inference via sampling.
The functional consequences of these mechanism are further explored in [22].

The postulate that networks should learn posterior distributions of parameters, rather than maximum
likelihood values, had been proposed for artificial neural networks [7, 8], since such organization
of learning promises better generalization capability to new examples. The open problem of how
such posterior distributions could be learned by networks of neurons in the brain, in a way that is
consistent with experimental data, has been highlighted in [2] as a key challenge for computational
neuroscience. We have presented here a model, whose primary innovation is to view experimentally
found trial-to-trial variability and ongoing fluctuations of parameters no longer as a nuisance, but as
a functionally important component of the organization of network learning. This model may lead to
a better understanding of such noise and seeming imperfections in the brain. It might also provide an
important step towards developing algorithms for upcoming new technologies implementing analog
spiking hardware, which employ noise and variability as a computational resource [28, 29].
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