
 1

Supplementary Materials for:

Emergence of complex computational structures from chaotic neural

networks through reward-modulated Hebbian learning

Gregor M. Hoerzer
1
, Robert Legenstein

1
, Wolfgang Maass

1, 2

1
 Institute for Theoretical Computer Science

Graz University of Technology

A-8010 Graz, Austria

Tel.: +43 316 873-5822

Fax: +43 316 873-5805

 [gregor,legi,maass]@igi.tugraz.at
2
 Corresponding author: maass@igi.tugraz.at

Contents:

1. Supplementary Methods

2. Supplementary Results

3. Supplementary Figures

 2

1. Supplementary Methods

Recurrent neural network model and readout plasticity

For the recurrent network, we used a set of N=1000 leaky integrator neurons that were sparsely

connected in a recurrent fashion.

Connection probabilities and weight distributions: Neurons in the recurrent network

were connected with a probability p=0.1. In other words, the strength 𝑊𝑖𝑗
rec of each recurrent

connection was set to zero with probability (1-p). The weights of the network connectivity matrix

𝑊rec were drawn from a Gaussian distribution with zero mean and a variance of 1/(pN). The input

weights 𝑊𝑖𝑛 and feedback weights 𝑊fb were drawn from a uniform distribution in the interval

[-1, 1]. The output weights 𝐰𝑖 , which we adapted during learning, were initialized to zero in our

simulations. In principle, they can also be set to nonzero values. However, these values need to be

relatively small in order to avoid that the readout output is too sensitive to noise on the network

state because large values need to cancel each other out in order to obtain a small readout output.

Note also that while the readouts with feedback in our simulations receive input and also project

their output to all neurons within the network, each readout neuron could in principle also be

substituted by multiple neurons with sparse connectivity.

In our simulations, we used the following parameter settings: network size N=1000 units,

internal connectivity p=0.1, time constant 𝜏 = 50ms for the first and 𝜏 = 10ms for the other

simulation tasks, chaoticity level 𝜆 = 1.5 for the first simulation task (without input) and 𝜆 = 1.2

for the other (partly input driven) simulation tasks, simulation time step Δ𝑡 = 1ms.

Noise distributions: The noise 𝜉𝑖
state (𝑡) in the firing rate 𝑟𝑖(𝑡) = tanh(𝑥𝑖(𝑡)) + 𝜉𝑖

state (𝑡)

of neuron i was drawn from a uniform distribution in the interval [−𝜃state , 𝜃state] at each time

step, with θ
state

 =0.05. Since the sigmoidal tanh(⋅) function nonlinearly maps the neuron's state

𝑥𝑖(𝑡) onto the interval [-1, 1], the neuronal output 𝑟𝑖(𝑡) assumed values in the interval [−1 −

𝜃state , 1 + 𝜃state]. The exploration noise 𝜉(𝑡) was drawn independently for each readout and time

step from a uniform distribution in the interval [-0.5, 0.5].

In a subset of simulations, we used temporally correlated exploration noise. In these

simulations, the actual noise at time t was given by

 3

 𝜉 𝑡 = 1 −
Δ𝑡

τnoise
 𝜉 𝑡 − Δ𝑡 +

Δ𝑡

τnoise
 𝑋 𝑡 , (S1)

where t is the simulation time step and noise is the time constant of the temporal correlation. It was

chosen between 1ms (corresponding to no noise correlation since t =1ms) and 5ms. X denotes a

random variable that is drawn independently in every time step from a uniform distribution over

the interval [-0.5, 0.5]. The initial value was also drawn from this distribution.

Decaying learning rate: We used a slowly linearly decaying learning rate of

 η t =
η init

1+
t

T

 (S2)

with initial learning rate 𝜂init and a decay constant T=20s. This linear decay ensures that

adaptations take place throughout the whole learning interval and satisfies the convergence

conditions for stochastic approximation (Robbins and Monro, 1951). The initial learning rate was

𝜂init = 0.0005 for the reward modulated Hebbian learning rule, and the initial learning rate

𝜂init = 0.0001 for the LMS-based FORCE rule (for information on the choice of the learning rate

see Supplementary Results below). Additional simulations were performed with a constant

learning rate (see Supplementary Results).

Filter operations on readout output and performance: For the reward-modulated

Hebbian learning rule, the running average of the noisy readout output was given by

 𝑧 𝑖(𝑡) = 1 −
Δt

τavg
 𝑧 𝑖(𝑡 − Δ𝑡) +

Δt

τavg
 𝑧𝑖(𝑡), (S3)

and the running average of the overall performance was given by

 𝑃 (𝑡) = 1 −
Δt

τavg
 𝑃 (𝑡 − Δ𝑡) +

Δt

τavg
 𝑃(𝑡), (S4)

where Δ𝑡 is the simulation time step. We used avg=5ms in all simulations except for those

simulations where avg was varied.

Definitions of target functions for the simulations

The periodic function which had to be produced in the first simulation task was

 𝑓(𝑡) = 1.3/1.5sin(2𝜋1𝑡) + 1.3/3sin(2𝜋2𝑡) + 1.3/9sin(2𝜋3𝑡) + 1.3/3sin(2𝜋4𝑡). (S5)

 4

 The signal of the pulse input streams of the second and third simulation task were smoothed

100ms pulses which were generated with an average rate of 0.5Hz. More precisely, two variables

𝑢 on ,𝑖(𝑡) and 𝑢 off ,𝑖(𝑡) that indicated the start of a pulse in the on and off stream respectively, were

independently set to 1 with a probability of 0.0005, and to 0 otherwise in each time step Δ𝑡. The

input streams 𝑢on ,𝑖(𝑡) and 𝑢off ,𝑖(𝑡) were then smoothed pulses with an amplitude of 0.4 and a

duration of 100ms (before smoothing). The smoothing filter time constant was 50ms. More

formally, 𝑢on ,𝑖 was given by 𝑢on ,𝑖 =
1

𝜎𝑢
(Θ0 ∘ (𝑢 𝑜𝑛 ,𝑖 ∗ 𝑕)) ∗ 𝑔, where ∗ denotes the convolution

operation (we used a discrete convolution where the functions g and h were discretized with

time-steps Δ𝑡), ∘ denotes function composition, and Θ𝑥(𝑠) is the Heaviside function that is 0 for

s<0, x for s=0, and 1 otherwise. 𝑕(𝑠) = Θ1(𝑠) − Θ1(𝑠 − 100𝑚𝑠) is a 100ms pulse, and

𝑔(𝑠) = exp(−𝑠/𝜏𝐿)Θ1(𝑠) is an exponential smoothing function with time constant 𝜏𝐿 = 50𝑚𝑠.

The constant 𝜎𝑢 scales the pulses to an amplitude of 0.4. 𝑢off ,𝑖 was produced in the same way

from 𝑢 off ,𝑖 .

The target values for the memory units were -0.5 for the ``off'' state and 0.5 for the ``on''

state:

 𝑓 𝑖(𝑡) =

0.5 𝑖𝑓 𝑢 on ,𝑖(𝑡) = 1,

−0.5 𝑖𝑓 𝑢 off ,𝑖(𝑡) = 1,

𝑓 𝑖(𝑡 − Δ𝑡) 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 .

 (S6)

The actual target function 𝑓𝑖 =
1

𝜎𝑓
𝑓 𝑖 ∗ 𝑔 was then a smoothed version of 𝑓 𝑖(𝑡) with the

exponential filter 𝑔 as given above and a time constant 𝜏L of 50ms. Here, 𝜎𝑓 denotes a constant

scaling factor that rescaled the function such that the values of 𝑓𝑖(𝑡) ranged between -0.5 and 0.5

again after the application of the smoothing filter.

The values of the two independent temporally correlated analog inputs 𝑢3(𝑡) and 𝑢4(𝑡) in

the third simulation task were each drawn from a uniform distribution in each time step, filtered

with a time constant of 0.5s and then scaled to have a standard deviation of 0.25. Bias values of 0.3

and 0.15 were added to these inputs, respectively.

The target function 𝑓2(𝑡) was then defined as

 𝑓2(𝑡) =
𝑢3(𝑡) 𝑖𝑓 𝑓 1(𝑡) > 0,
𝑢4(𝑡) 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 .

 (S7)

 5

Comparison to FORCE Learning

Because we compare the performance of the reward modulated learning rule to the performance of

the supervised FORCE learning rules proposed by (Sussillo and Abbott, 2009), we state them here

in short. In contrast to the learning rule used here, the two variants of the FORCE learning

mechanism use the exact error 𝑒𝑖(𝑡) = 𝑧 𝑖(𝑡) − 𝑓𝑖(𝑡) of the 𝑖-th readout to update its weights 𝐰𝑖 .

In the local least mean squares (LMS) based FORCE rule, readout weights are adapted according to

 Δ𝐰𝑖(𝑡) = −𝜂(𝑡)𝑒𝑖(𝑡)𝐫(𝑡). (S8)

The more powerful recursive least squares (RLS) based FORCE rule is defined as

 Δ𝐰𝑖(𝑡) = −𝑒𝑖(𝑡)𝐶(𝑡)𝐫(𝑡), (S9)

the matrix C(t) being a running estimate of the inverse of the correlation matrix of the network

output r(t) plus a regularization term (cf. Haykin, 2001; Sussillo and Abbott, 2009 for details).

Therefore, the RLS-based FORCE rule uses information about the activation of all synapses to the

readout neuron to modify the learning rate of an individual synapse. This procedure makes the

learning rule more powerful than the simple LMS-based rule, but at the expense of locality and

simplicity of the rule, which involves some rather complicated computations to generate the matrix

C(t).

For consistency with (Sussillo and Abbott, 2009) we did not apply exploration noise during

learning of the FORCE-trained systems. However, control simulations with noise showed that this

noise does not significantly change the system behavior (data not shown).

Performance evaluation

To evaluate the performance of the trained system for different parameter settings in the periodic

trajectory production task, we used the following procedure. Since there are no input signals in this

simulation task (cf. Figure 1A), the readout has no reference during the testing period, and small

errors in the frequencies of the trained signal components therefore lead to a varying shift between

the target and the readout output over time, i.e. the actual oscillation cycle length of the output of

the readout is slightly longer or shorter than the one of the target signal (cf. Figures 1D and 1H). To

see whether the shape of the target signal is nevertheless accurately reproduced by the readout's

 6

output, we cut the readout's output during the testing interval into successive time slices of one

second, which corresponds to the oscillation cycle length of the target function f(t). Then, we

calculated the minimum mean squared error (MSE) between each time slice and circularly shifted

versions of a one-cycle slice of the target signal, instead of just calculating the MSE between the

target function f(t) and the readout's output 𝑧 (𝑡) directly.

In the comparative simulations employing the FORCE learning procedures, we conducted

simulations with and without adding exploration noise during learning. The traces shown in figure

1E correspond to results without added exploration noise during learning. In any case, the error 𝑒𝑖

of the 𝑖-th readout that was used for weight adaptation was based on the readout output without

exploration noise in these simulations.

To evaluate the performance of the memory units in the ``persistent memory'' and the

``switchable routing'' task, we calculated the percentage of time steps during the testing interval in

which the absolute difference between the target function and the output of the readout neuron

exceeded the threshold 0.5 (half the difference between the two target values 0.5 and -0.5 for the

two different states).

 7

2. Supplementary Results

The supplementary results section discusses only those results that have not been discussed in the

main article. Since we arranged the figures in the order in which they are referenced in the main

text and also grouped panels that are referenced in the main text together with non-referenced

panels that show similar types of simulation results into single figures, only a subset of the figure

panels are discussed here.

Additional tests for noise robustness of the system

To test the robustness of the system, we perturbed the network in different ways during learning

and testing. In order to observe the response of the system to different amounts of noise on the

network state during learning, we performed simulations with state noise levels of 0.0, 0.05

(as in the original simulations), 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1.0 applied during the learning

period. During testing, we always used the original state noise level of 0.05 in order to keep the

results comparable. The learning time was 400s in all simulations. The mean squared error (MSE)

was calculated across the whole testing period of 500s as described in the performance evaluation

section above. Based on the MSE, we calculated median values across 50 trials per state noise

level. The results are shown in Supplementary Figure S2E. Our simulations revealed that the

system is very robust against noise perturbations of the network state during learning, leading to

significant decreases in system performance only for surprisingly high amounts of state noise.

To further test the robustness of the system to unexpected perturbations during the testing interval,

we applied the following perturbations and observed the system response. First, the system was

perturbed for one second by noise in the feedback signal of the same amplitude as the exploration

noise applied during learning. Second, it was perturbed with state noise on the network output 𝐫(𝑡)

that was ten times stronger than the state noise usually used in the simulations. Figures S2F and

S2G show that the trained system is robust against perturbations of the feedback signal (panel F)

that affect the readout only via the network, and perturbations of the network output (panel G),

which directly affect the input to the readout neuron itself. While perturbations of the feedback

signal have no visible effect on the output of the readout since they are filtered by the slow

dynamics of the network, the strong perturbations of the network output do have a visible effect on

the readout output. However, while this type of noise lets the readout fluctuate around the desired

trajectory during the time interval in which the system is perturbed, the desired trajectory is



state

 8

restored shortly after the noise is removed again. Interestingly, the network is able to restore the

desired trajectory even after extremely severe perturbations of the readout output. In a third

perturbation simulation, we clamped the readout output such that it remained constant for 0.5s.

After unclamping of the readout output, the system is able to recover the desired trajectory within a

few oscillation cycles (see panel H of Figure S2).

Choice of the learning rate for the EH rule and LMS FORCE

In order to find an appropriate learning rate, we simulated the system with different learning rates η

between 0.001 and 0.00001 for both the LMS FORCE (Supplementary Figure S4A, left panel) and

the reward modulated Hebbian learning method (right panel). The results indicate that the system

performed best using a learning rate of η=0.0001 for the LMS FORCE rule and η=0.0005 for the

reward modulated Hebbian learning rule. Performance increased for decreasing learning rates up to

the learning rate used for our comparison between our learning rule and the FORCE rules. For even

lower learning rates, the system failed to adapt quickly enough in order to follow the target

trajectory appropriately after the beginning of the learning process, leading to significantly

decreased performance for too small learning rates. We also performed simulations with and

without ‘exploration noise’ applied during learning for the LMS FORCE rule (which is not needed

for this kind of learning). The resulting performances were similar in both cases.

Simulations with constant learning rate and analog modulatory signal

We consistently used decaying learning rates and a binary modulatory signal for the results

reported in the main text. Here we report simulations with constant learning rates and an analog

modulatory signal for the weight updates. The comparison shows that the system performs equally

well in all three conditions. In our simulations with constant learning rate, we did not decay the

initial learning rate over time. For the analog performance-signal case, we used 𝑃 − 𝑃 directly

instead of using the binary signal M(t) in the weight update rule (7) together with a decaying

learning rate. We performed simulations with η=0.0005 and η=0.001 for both conditions.

Supplementary Figure S4B shows the simulation results, indicating that the performance does not

vary significantly across the three conditions (decaying learning rate and binary modulatory signal,

constant learning rate and binary modulatory signal, decaying learning rate and analog modulatory

signal).

 9

Simulations with different target patterns

In order to investigate a possible relation of the necessary learning time and the complexity of the

target pattern, we performed simulations with target patterns with different numbers of

superimposed frequency components (again, 50 simulation trials per learning time and pattern

type). We used the same amplitudes for the frequency components as in the original target pattern,

but left out some components for the simulations with lower numbers of frequency components.

Supplementary Figure S4C shows the results, indicating that a simple sinusoid can be learned very

quickly. For the target patterns with two to four superimposed sinusoidal components, the learning

time was similar to each other. For five superimposed sinusoidal components (1-5Hz, in 1Hz

steps), the system failed to reach the same level of performance as for the less complex target

patterns.

Furthermore, we compared the results of the reward modulated Hebbian learning rule with the

LMS FORCE rule for different target patterns. These patterns had the same number of

superimposed components as the original target pattern (1-4Hz, in 1Hz steps), but with different

amplitudes of the frequency components. This leads to target patterns with different shapes (see

Supplementary Figure S4D). Our results indicate that performance can in general be different

across different target patterns, but is nevertheless similar for both learning rules.

References

Haykin S (2001) Adaptive Filter Theory (4th Edition): Prentice Hall.

Robbins H, Monro S (1951) A Stochastic Approximation Method. The Annals of Mathematical

Statistics 22:400-407.

Sussillo D, Abbott LF (2009) Generating Coherent Patterns of Activity from Chaotic Neural

Networks. Neuron 63:544-557.

 10

3. Supplementary Figures

 11

Supplementary Figure S1: Contributions of recurrent connections, input connections, and

feedback connections to the membrane potential of network neurons. Shown are contributions

for two tasks considered in this article, a peridoc pattern generation task (A, B) and a working

memory task (C,D). A: Histogram of the number of neurons with a given feedback weight (bottom)

and a given total weight from recurrent connections (top). The total weight is the sum over all

incoming weights from recurrent network neurons (this includes the scaling factor ). B:

Histogram of the contributions of feedback connections (bottom) and recurrent connections (top)

to the membrane potential xi(t) of network neurons. Probability of occurrence was computed over

all time-steps and all network neurons in a 5 sec. test period after 500 sec. learning. C, D: Same as

A and B respectively, but for a working memory task. In this task, input is provided to network

neurons. The middle histograms show the number of neurons with a given weight from one of the

input connections (C) and the contributions of input connections to the neuron’s membrane

potential xi(t) (D). The sparse activity of pulse inputs in the working memory task is reflected in a

sparse distribution in this histogram.

 12

 13

Supplementary Figure S2: Relation between chaoticity of the network, network performance, and

robustness of the system against perturbations. A: System performance with exploration noise also

applied during testing. Example trace of the readout output at the beginning of the testing period after 400s

of learning. Although the feedback from the readout to the network is noisy also during testing, the readout

keeps producing the desired trajectory. B: Comparison of the mean squared error (MSE) during a testing

period of 500s without (left) and with (right) added exploration noise applied during testing (average over

50 independent simulations, 400s of learning). The system performance is similar in both cases. C:

Distribution of the MSE across simulation trials within the last second at the end of a 500s testing interval

(log scale) for the reward modulated Hebbian learning rule after 400s of learning (cf. Figure 1G, red trace).

The network keeps producing the target function properly until the end of testing in most of the trials. D:

Performance of the network after 400s of learning for different values of 𝜆. The network needs a certain

level of chaoticity, leading to rich enough dynamics, in order to generate the target function without further

input. The system performs best for 𝜆 values between 1.3 and 1.5. E: Median MSE for different state noise

levels applied during learning. The value 1.0 was omitted here because it was much larger than the other

noise levels (value: 0.1393). We compared neighboring noise levels for significant differences in

performance distribution across trials. Only the distributions of the two largest levels (0.75 and 1.0) were

significantly larger than performance of the the next lower level (as indicated by the bar with the star at for

the level of 0.75). (nonparametric Wilcoxon rank sum test, significance level: 5%). F, G: Noise robustness

of the trained trajectory. Uniformly distributed noise (of the same amplitude as the exploration noise used

during learning) was added to the feedback from the readout 𝑧 (𝑡) (panel F, noise added in the shaded 1s

interval) as well as to the network output 𝐫(𝑡), which represents the input to the readout unit (panel G, noise

added in the shaded 1s interval). Noise on the readout output does not produce any visible deviations of the

readout output. Noise on the network output directly affects the input to the readout and produces deviations

that fluctuate around the desired trajectory. The desired trajectory is quickly restored after the noise is

removed again. H: The readout output was clamped to a constant value for a time interval of 0.5s. After

unclamping the output of the readout, the system is able to restore the desired trajectory within a few

oscillation cycles.

 14

Supplementary Figure S3: Simulations using different time constants for the network dynamics. A:

Given that weight updates are fast (1ms) and the exploration noise is not temporally correlated, the system is

also able to perform well for patterns with frequency components of up to 8Hz if the time constant of the

network dynamics is reduced to =10ms (cf. Figure 2A, upper right and middle right panels). For slower

weight updates and for temporally correlated exploration noise, the system fails to produce the target

function. B: Representative example traces of the readout activity (black) that show the system behavior in

simulation trials with varying performance during the testing period and target output (red). The subpanel

indices (a) to (c) are being indicated by the indices with arrows in panel A.

 15

 16

Supplementary Figure S4: Additional simulations. A: Comparison of different learning rates for the

LMS FORCE (left) and Reward-modulated Hebbian (right) learning rules. We chose a learning rate of

η=0.0001 (left, red trace) for the LMS FORCE rule and η=0.0005 (right, green trace) for the reward

modulated Hebbian rule for our comparison between the learning rules, showing the respective best

performance across different values of η. In general, the reward modulated Hebbian rule needed higher

values of η in order to perform properly. B: Simulations with analog reward and constant learning rate η, for

two different learning rates each. In all cases, the system was able to perform the task properly if the system

was trained for a sufficiently long time. C: Simulations with target patterns with different number of

superimposed frequency components. While the system is able to learn a simple 1Hz oscillation within a

few seconds of learning, it needs to be trained for a longer, but approximately similar time for two to four

superimposed frequency components. For the simulations with five superimposed frequency components,

the system in general showed decreased performance. D: Simulations with other target patterns with both

LMS Force learning and our reward modulated Hebbian learning rule. For both patterns A and B, while

having different performances for the different patterns, both learning rules performed similar for learning

times larger than 75s in all but one cases (nonparametric Wilcoxon rank sum tests, significance level: 5%,

exception: pattern B, 300s learning time, p=0.0172).

 17

Supplementary Figure S5: Correlations between network neuron behavior and weight parameters in

the switchable routing task. A: The correlation coefficient a neurons activity with the target function of

the memory readout ccMem is correlated with the mean weight of this neuron to neurons with high ccMem. B:

The correlation coefficient a neurons activity with the target function of the memory readout ccMem is

anti-correlated with the mean weight of this neuron to neurons with large negative ccMem. C: The weight of a

neuron to the memory readout is significantly correlated with its ccMem for neurons with |ccMem| > 0.6. No

such correlation is seen if all neurons are taken into account. D: ccMem is strongly correlated with the

feedback weight of the memory readout to this neuron. E: The weight that a neuron receives from pulse

input u1 is correlated with the correlation coefficient ccu1 between this neurons activity and u1. F: ccu1 is

slightly correlated with the mean weight of this neuron to neurons with large ccMem. G: The correlation

between the weight of a neuron to the memory readout and its ccu1 is not significant. H: The correlation

coefficient ccrouting of a neurons activity with the target function for the routing readout is correlated with this

neurons weight to the routing readout. I: ccswitched u3 (the correlation coefficient of a neurons activity with the

target function for the routing readout at times when u3 should be routed to the readout) is strongly

correlated with the weight from u3 to this neuron. J: ccswitched u3 is correlated with this neurons weight to the

routing readout.

 18

Supplementary Figure S6: Output of the memory unit in the switchable routing task with feedback

weights linearly decaying to zero after learning. While the system is able to keep the memory states stable

for a surprisingly long time despite the decaying feedback, the amplitude of the output is amplified rather

than reduced, indicating a regulatory role of the feedback from the memory readout.

