
ARTICLE Communicated by Peter Földiák

A Theoretical Basis for Emergent Pattern Discrimination
in Neural Systems Through Slow Feature Extraction

Stefan Klampfl
klampfl@igi.tugraz.at
Wolfgang Maass
maass@igi.tugraz.at
Institute for Theoretical Computer Science, Graz University of Technology,
A-8010 Graz, Austria

Neurons in the brain are able to detect and discriminate salient
spatiotemporal patterns in the firing activity of presynaptic neurons. It is
open how they can learn to achieve this, especially without the help of a
supervisor. We show that a well-known unsupervised learning algorithm
for linear neurons, slow feature analysis (SFA), is able to acquire the dis-
crimination capability of one of the best algorithms for supervised linear
discrimination learning, the Fisher linear discriminant (FLD), given suit-
able input statistics. We demonstrate the power of this principle by show-
ing that it enables readout neurons from simulated cortical microcircuits
to learn without any supervision to discriminate between spoken digits
and to detect repeated firing patterns that are embedded into a stream
of noise spike trains with the same firing statistics. Both these computer
simulations and our theoretical analysis show that slow feature extrac-
tion enables neurons to extract and collect information that is spread out
over a trajectory of firing states that lasts several hundred ms. In addition,
it enables neurons to learn without supervision to keep track of time (rel-
ative to a stimulus onset, or the initiation of a motor response). Hence,
these results elucidate how the brain could compute with trajectories of
firing states rather than only with fixed point attractors. It also provides
a theoretical basis for understanding recent experimental results on the
emergence of view- and position-invariant classification of visual objects
in inferior temporal cortex.

1 Introduction

The brain is able to extract an astonishing amount of information from its
environment without a supervisor or teacher that tells it how an external
stimulus should be classified. Experimental data show that one method the
brain uses to learn the categorization of external objects without a super-
visor is the temporal slowness learning principle, which exploits the fact
that temporally adjacent sensory stimuli are likely to be caused by the same

Neural Computation 22, 2979–3035 (2010) C© 2010 Massachusetts Institute of Technology

2980 S. Klampfl and W. Maass

external object. More precisely, experimental results from the lab of DiCarlo
(Cox, Meier, Oertelt, & DiCarlo, 2005; Li & DiCarlo, 2008; see DiCarlo &
Cox, 2007, for a review) show that this simple heuristic is sufficient for the
formation of position- and view-invariant representations of visual objects
in higher cortical areas. This was tested in clever experiments by altering the
probability that different objects caused temporally adjacent firing states in
primary visual cortex (the external visual stimuli were swapped during the
transient blindness while a saccade was performed). Human subjects were
reported to merge different visual objects—presented at different retina
locations—into single visual percepts as a result of this manipulation of
the temporal statistics of visual inputs. Also the firing response of neu-
rons in monkey area IT was reported to change accordingly. As a result of
these data, Li and DiCarlo (2008) hypothesized that “unsupervised tempo-
ral slowness learning may reflect the mechanism by which the visual stream
builds and maintains tolerant object representations.” But a rigorous theo-
retical basis for the emergent discrimination capability of this unsupervised
temporal slowness learning principle proposed by Li and DiCarlo (2008)
has been missing. We provide this theoretical foundation, which relates the
statistics of the sequence of external stimuli to the emergent discrimination
capability of this unsupervised learning method, in this article.

There have been a number of approaches to learn invariant represen-
tations in an unsupervised manner from the contingency of temporally
adjacent inputs, that is, by extracting features that vary on a slow timescale
(Földiák, 1991; Mitchison, 1991; Becker & Hinton, 1992; Stone & Bray, 1995).
We focus on one particularly transparent computational mechanism for un-
supervised temporal slowness learning: slow feature analysis (SFA), intro-
duced by Wiskott (1998) and Wiskott and Sejnowski (2002). SFA transforms
a (usually high-dimensional) time series x into an output y and minimizes
the temporal variation of y under the additional constraints of zero mean
and unit variance (to avoid the trivial constant solution). The temporal
variation of the output y is defined as the average of its squared temporal
derivative 〈ẏ2〉t , where 〈·〉t denotes averaging over time. In other words,
SFA finds that function1 g out of a certain predefined function space that
produces the slowest possible output y = g(x). This optimization problem
is hard to solve in the general case (see Wiskott, 2003), but if the available
function space is constrained to linear combinations of a whitened input,
the problem has an elegant solution in the form of an eigenvalue problem
in the covariance matrix of input time derivatives. More precisely, the slow-
est output is produced by the eigenvector of this matrix that corresponds
to the smallest eigenvalue. This results in the standard SFA algorithm as
presented in Wiskott (1998) and Wiskott and Sejnowski (2002, see Figure 1),

1Note that this function is a static input-output mapping y(t) = g(x(t)) that at any time
t transforms the input x(t) into an output value y(t) instantaneously.

Slow Feature Analysis for Pattern Discrimination 2981

Figure 1: Block diagram of SFA. The algorithm is applied to a multidimensional
time series x. It consists of an optional expansion step that computes a number
of fixed static nonlinear combinations z of the components of x. Later in this
article, we show that this step can be performed by a cortical microcircuit of
neurons. If this step is left out, z = x. In the next step, the expanded input z has
to be whitened such that the components of the signal v have zero mean and
unit variance and are decorrelated. The final step selects from this whitened
signal the direction of minimal temporal variation, that is, the least principal
component of the temporal derivative v̇. The projection onto this direction yields
the slowest feature y1. Multiple slow features y = (y1, y2, . . .) are obtained from
orthogonal projection directions, which form the eigenvectors of the covariance
matrix 〈v̇v̇T 〉t , ordered by increasing eigenvalue.

which contains an optional expansion step that computes a number of fixed
nonlinear combinations of the components of x. Such nonlinear expansion
boosts the power of any subsequent linear processing, like a kernel for sup-
port vector machines (Schölkopf & Smola, 2002). This nonlinear expansion
enables SFA to effectively choose from a much larger set of functions g
(containing also nonlinear projections from x), even if the last processing
step in Figure 1 is constrained to be linear.

The restriction to linear functions in the last step of SFA allows that
this processing step could in principle be carried out in a biological neural
system by readout or projection neurons that extract information from a
cortical microcircuit. A linear function is a reasonable approximation to the
expressive capability of a readout neuron. The last step of SFA, the selec-
tion of the least principal component of the input time derivatives, could
in principle be solved by anti-Hebbian learning on the differential input
and output signals (Mitchison, 1991). Furthermore, Sprekeler, Michaelis,
and Wiskott (2007) have shown that this is equivalent to choosing the prin-
cipal component of a low-pass filtered input, which can in principle be
solved by standard Hebbian learning. In addition, they have shown that an
experimentally supported synaptic plasticity rule, spike-timing-dependent
plasticity (STDP), could in principle enable spiking neurons to learn this
processing step without supervision, provided that the presynaptic inputs
are preprocessed in a suitable manner. This result suggests that the gap
between the abstract SFA learning principle for linear neurons that we
examine in this article and neurophysiological data on synaptic plasticity
could eventually be closed. However, this analysis leaves open the question

2982 S. Klampfl and W. Maass

of how the first two processing stages could be carried out by a biological
neural system. We will show that a standard model for a generic corti-
cal microcircuit could carry out the first processing step in the diagram of
Figure 1 for the case where the time series x consists of multiple low-pass
filtered spike trains. The question remains how the second processing step
of Figure 1, the whitening, could be implemented by a neural circuit. Sev-
eral learning methods that achieve whitening through a network of neurons
have been proposed (Goodall, 1960; Atick & Redlich, 1993; see Chapter 8 of
Dayan & Abbott, 2001). There also exist experimental data suggesting that
the response of cortical neurons to natural external stimuli tends to be quite
decorrelated (see, e.g., Vinje & Gallant, 2000).

We establish in section 2 a relationship between the unsupervised SFA
learning method and a commonly used learning method for supervised
classification learning: the Fisher linear discriminant (FLD). More precisely,
we show that SFA approximates the discrimination capability of the FLD
in the sense that both methods yield the same projection direction, which
can be interpreted as a separating hyperplane in the input space. This
approximation holds for a simple condition on the temporal statistics of
the input time series to SFA: the probability that two successive samples
are from different classes has to be low. Through its tendency to produce
a slowly varying output, SFA automatically clusters those inputs together
that often occur in immediate consecution and classifies them as different
samples from the same category.

SFA is a learning method that does not require explicit supervision in the
sense that the input patterns are given together with the target classification
(labels). We show instead that it suffices to provide SFA with a very weak
or implicit supervisor in the sense that successive input patterns tend to
belong to the same class. Li and DiCarlo (2008) have referred to this as
“unsupervised temporal slowness learning,” and for brevity we use the
term unsupervised learning in this article.

SFA may also elucidate a puzzle regarding internal codes and computa-
tional mechanisms of the brain. A number of experimental data have chal-
lenged the classical view of coding and computation in the brain, which was
based on the assumption that external stimuli and internal memory items
are encoded by firing states of neurons, which assign a certain firing rate to
a number of neurons maintained for some time interval. This classical view
of neural coding has the advantage that one can apply a variety of readily
available computational models from computer science and artificial neural
networks in order to model computation in the brain. However, numerous
recent experimental data suggest that many types of natural sensory stim-
uli, as well as internally generated traces for episodic memory, are encoded
by characteristic trajectories (or sequences) of different firing states of neu-
rons that stretch over several hundred ms. This result has been found for
(seemingly) static external stimuli such as odors (Mazor & Laurent, 2005;
Broome, Jayaraman, & Laurent, 2006; see, Rabinovich, Huerta, & Laurent,

Slow Feature Analysis for Pattern Discrimination 2983

2008, for a review) and tastes (Jones, Fontanini, Sadacca, Miller, & Katz,
2007) and for intrinsically time-varying external stimuli such as natural au-
ditory and visual stimuli (see Buonomano & Maass, 2009, for a review). In
addition, numerous experimental data on replay of episodic memory from
hippocampus to cortex point to sequences of different firing states rather
than single firing states of networks of neurons as a common form of traces
of episodic memory in hippocampus and cortex (see e.g., Euston, Tatsuno,
& McNaughton, 2007; Ji & Wilson, 2008). These experimental data give rise
to the question of how the brain can compute with such temporally dis-
persed information in the form of trajectories of firing states. At the latest,
at the top level of information processing in the brain, where percepts are
formed and decisions are made, the ubiquitous distribution of salient in-
formation over a sequence of different firing states (stretching over several
hundred ms) has to be inverted and compressed into a much shorter time
interval. The theoretical analysis provided in this article explains why, and
under what conditions, this is possible with SFA learning.

In section 3 we test the theoretically predicted emergent discrimination
capability of SFA by applying it to the output of a simulated network of
spiking neurons, more precisely, a detailed model for a laminar cortical
microcircuit (Häusler & Maass, 2007) based on data from Thomson, West,
Wang, and Bannister (2002) and from the lab of Markram (Gupta, Wang,
& Markram, 2000). We injected spike trains that simulate the response of
the cochlea to different spoken digits as inputs to the simulated cortical
microcircuit and examined whether linear readouts that receive as input a
whitened version of the continuously varying firing response (in the form of
low-pass filtered spike trains) from neurons in this circuit can learn without
supervision to discriminate among different spoken digits. This experi-
ment turned out to be successful, and it also revealed a possible functional
advantage of this processing scheme: linear readout neurons learned not
only without supervision to discriminate among different spoken digits,
but they provided correct predictions of the currently spoken digit while
the digit was still being spoken. This is what we refer to as anytime com-
puting: a special form of an online computation that can be prompted at
any time to provide its current best guess of a proper output by integrating
as much information about previously arrived input pieces as possible. In
another experiment, SFA was able to both detect and identify spike patterns
within a continuous stream of Poisson input. Again this information was
already available during the presentation of a pattern. This feature, which
is predicted by the theoretical analysis of SFA learning, could enable sub-
sequent processing stages in the brain to begin higher-level computational
processing before the trajectory of network states that is characteristic for
a particular sensory stimulus has ended. This feature might remove one
obstacle for establishing a computational model for hierarchical processing
of sensory information in the cortex: if each stage waits with its processing
until the trajectory of firing states in the lower area has ended, and then

2984 S. Klampfl and W. Maass

creates a subsequent trajectory as a result of its own computational pro-
cessing, the resulting total computation time becomes too long. If, however,
readout neurons can transmit “at any time” their current guess regarding
the identity of the circuit input, other areas to which these readout neu-
rons project can start their computational processing right away. During
the subsequent few hundreds of ms, they could in addition collect further
evidence, which they will receive from the same readout neurons, for or
against the initial guess. In this computational paradigm, the stream of
sensory stimuli could generally be processed in real time, with significant
processing delays arising only in the case of ambiguous sensory stimuli.

2 A Theoretical Basis for the Emergent Discrimination
Capability of SFA

In this section, we first give a definition of SFA and FLD. We then present
a criterion on the temporal statistics of training examples, which clarifies
when SFA approximates FLD. Finally, we show how the SFA objective
is influenced by applying it to a sequence of whole trajectories of points
instead of just to a sequence of individual training examples.

2.1 Slow Feature Analysis. SFA extracts the slowest component y from
a multidimensional input time series x by minimizing the temporal varia-
tion �(y) of the output signal y (Wiskott & Sejnowski, 2002),

min �(y) := 〈ẏ2〉t, (2.1)

under the additional constraints of zero mean (〈y〉t = 0) and unit variance
(〈y2〉t = 1). The notation 〈·〉t is used in this article to denote averaging over
time. If multiple slow features are extracted, an additional constraint en-
sures that they are decorrelated (〈yi yj 〉t = 0) and ordered by decreasing
slowness.

If we assume that the time series x has zero mean (〈x〉t = 0) and if we
allow only linear functions y = wT x, the problem simplifies to the following
objective:

min J SF A(w) := wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

. (2.2)

The matrix 〈xxT 〉t is the covariance matrix of the input time series, and
〈ẋẋT 〉t denotes the covariance matrix of time derivatives of the input time
series (or time differences, for discrete time). The weight vector w, which

Slow Feature Analysis for Pattern Discrimination 2985

minimizes the quotient in equation 2.2, is the solution to the generalized
eigenvalue problem,

〈ẋẋT 〉tw = λ〈xxT 〉tw, (2.3)

corresponding to the smallest eigenvalue λ. That is, we consider only the
linear part of SFA here and ignore the nonlinear expansion step in Figure 1
for the moment (i.e., z = x). Note that the whitening step is made implicit
here in the formulation of equation 2.2, as in Berkes and Wiskott (2003).

2.2 Fisher’s Linear Discriminant. The FLD is a different data analysis
method. It is applied to single data points x rather than time series. Fur-
thermore it requires labeled training examples 〈x, c〉, where c ∈ {1, . . . , C}
is the class to which this example belongs (we first focus on the case C = 2).
Hence, it is a method for supervised learning. The goal is to find a weight
vector w so that the class of new (unlabeled) test examples can be predicted
from the value of wT x (predicting that x belongs to class 2 if wT x ≥ θ for
some threshold θ , else that x belongs to class 1).

FLD searches for that projection direction w that maximizes the separa-
tion between classes while at the same time minimizing the variance within
classes, thereby minimizing the class overlap of the projected values:

max J F L D(w) := wT SBw
wT SWw

. (2.4)

For two point sets S1 and S2 with means μ1 and μ2, SB is the between-class
covariance matrix given by the separation of the class means,

SB = (μ1 − μ2)(μ1 − μ2)T , (2.5)

and SW is the within-class covariance matrix given by

SW =
∑
x∈S1

(x − μ1)(x − μ1)T +
∑
x∈S2

(x − μ2)(x − μ2)T . (2.6)

Again, the vector w optimizing equation 2.4 can be viewed as the solution
to a generalized eigenvalue problem,

SBw = λSWw, (2.7)

corresponding to the largest eigenvalue λ. Figure 3A illustrates the idea of
FLD. It finds that direction w, which optimizes the separability between the
projected values of different classes S1 and S2 by additionally taking into ac-
count the within-class variances. Choosing the direction w′ that maximally

2986 S. Klampfl and W. Maass

separates only the class means results in an overlap of the projected values.
The FLD was introduced in Fisher (1936). Good descriptions can be found
in Duda, Hart, and Stork (2000) and Bishop (2006).

2.3 Application to a Classification Problem with Two Classes. SFA
and FLD receive different data types as inputs: unlabeled time series for
SFA, in contrast to labeled single data points 〈x, c〉 for the FLD during train-
ing, and unlabeled single data points x during evaluation of its resulting
generalization capability after training.

Therefore, in order to apply the unsupervised SFA learning algorithm to
the same classification problem as the supervised FLD, we have to convert
the labeled training samples into a time series of unlabeled data points that
can serve as an input to the SFA algorithm. In the following, we create such
a training time series from the classification problem by choosing at each
time step a particular point from S1 ∪ S2. We investigate the relationship
between the weight vector found by Fisher’s linear discriminant on the
original classification problem and the weight vector found by slow feature
analysis applied to the resulting training time series. The idea is that if we
create the time series in such a way that most of its transitions (i.e., pairs of
consecutive points) consist of point pairs from the same class, SFA should
learn to be invariant to points from the same class and to extract the hidden
class label of data points as a slowly varying feature of the time series.

First, we consider a classification problem with two classes, that is, as-
sume we are given two point sets S1, S2 ⊂ R

n,

S1 := {x1
i |i = 1, . . . , N}, (2.8)

S2 := {x2
j | j = 1, . . . , N}, (2.9)

where x1
i and x2

j denote the data points of class 1 and 2, respectively (note
that these points are unlabeled since the superscripts 1 and 2 are not “vis-
ible” for the algorithms; it may also occur that x1

i = x2
j). For simplicity we

assume that both sets are of the same size N. We choose the following
Markov model (see Figure 2) to create a time series xt out of these two point
sets S1 and S2. First, we choose one of the two classes with equal probability.
Then we select a random point from the corresponding set (S1 or S2). This
is then the first point in the input time series, x1. Next, we switch the class
with a certain probability p (or leave it unchanged with probability 1 − p)
and choose a point from the resulting class as the next input point, x2. This is
repeated until the time series has a certain predefined length T . The states in
the underlying Markov model correspond to the class from which the data
point is currently drawn. After each drawing, the class is either switched

Slow Feature Analysis for Pattern Discrimination 2987

Figure 2: Markov model describing the generation of the input time series to
SFA from a two-class FLD problem. The state c corresponds to the class Sc

from which the current point in the time series is drawn. After the selection of
each point, the class of the next point is determined according to the transition
probabilities between the states.

with probability p or left unchanged with probability 1 − p. The stationary
distribution of this Markov model is

π =
(

1
2
,

1
2

)
. (2.10)

Because we have chosen the initial distribution p0 = π , we can say that at
any time, the current point is drawn from class 1 or class 2 with probability
1/2.

In this case we can express the matrices 〈xxT 〉t and 〈ẋẋT 〉t of the SFA
objective 2.2 in terms of the within-class and between-class scatter matrices
of the FLD, equation 2.4, SW and SB (for a derivation, see section A.1):

〈xxT 〉t = 1
2N

SW + 1
4

SB, (2.11)

〈ẋẋT 〉t = 1
N

SW + p · SB . (2.12)

Note that only 〈ẋẋT 〉t depends on p, whereas 〈xxT 〉t does not.
For small p, we can neglect the effect of SB on 〈ẋẋT 〉t in equation 2.12. In

this case the time series consists mainly of transitions within a class, whereas
switching between the two classes is relatively rare. Therefore, the covari-
ance of time derivatives is mostly determined by the within-class scatter of
the two point sets, and both matrices become approximately proportional:
〈ẋẋT 〉t ≈ 1/N · SW. Moreover, if we assume that SW (and therefore 〈ẋẋT 〉t)
has only nonzero eigenvalues, we can rewrite the SFA objective as

min J SF A(w) ⇔ max
1

J SF A(w)

⇔ max
wT 〈xxT 〉tw
wT 〈ẋẋT 〉tw

2988 S. Klampfl and W. Maass

(11),(12)⇔ max
1
2

+ N
4

· wT SBw
wT SWw

⇔ max J F L D(w). (2.13)

In the third line we inserted the expressions for 〈xxT 〉t , equation 2.11, and
the approximation for 〈ẋẋT 〉t , equation 2.12, for small p. That is, in this case
where switching between different classes is rare compared to transitions
within a class, the weight vector that yields the slowest output function is
approximately equal to the weight vector that is optimal in separating the
two classes in the sense of FLD.

Figure 3 demonstrates this relationship on a sample two-class problem
in two dimensions. We interpret the weight vectors found by both methods
as normal vectors of hyperplanes in the input space. Since an additional
bias value is required to determine a unique hyperplane for each weight
vector, we place the hyperplanes in Figure 3B simply onto the mean value2

μ of all training data points (i.e., the hyperplanes are defined as wT x = θ

with θ = wTμ). One sees that the weight vector found by the application of
SFA to the training time series xt generated with p = 0.2 is approximately
equal to the weight vector resulting from FLD on the initial sets of training
points. The deviation comes from the fact that the covariance matrix of time
differences, 〈ẋẋT 〉t , is not solely determined by the within-class scatter (in
equation 2.12) because the time series switches several times between the
classes.

We interpret the slowest feature found by the SFA algorithm as the
hypothesis of a linear classifier (h(x) = sign(wT

SF A(x − μ))). Figure 3C shows
the prediction of this hypothesis for unseen test points from each class,
drawn from the same distribution as the training point sets S1 and S2. It can
be seen that the output of the slowest feature of this test time series (which
corresponds just to the projection of its points onto the weight vector wSF A)
takes on distinct values for different classes. This demonstrates that SFA has
extracted the class of the points as the slowest varying feature by finding a
direction that separates both classes and that this ability generalizes to test
points not used for training.

Figure 3D quantifies the deviation of the weight vector resulting from
the application of SFA to the time series from the one found by FLD on
the original points. We use the angle between both weight vectors as an
error measure. For each value of p, we generate 100 random classification
problems such as the one shown in Figure 3B and calculate the average
angle between the vectors obtained by both methods on these problems (see

2Note that for this particular choice of time series generation, the expected mean of
the training time series is equal to the total mean of the training data points. Since SFA
subtracts the mean of the training time series beforehand, this value is mapped to 0 in the
SFA output.

Slow Feature Analysis for Pattern Discrimination 2989

Figure 3: Relationship between unsupervised SFA and supervised FLD for a
two-class problem in 2D. (A) Illustration of the concept of FLD. Shown are
two point sets and histograms of values obtained by projecting points onto
two different directions, w, the direction resulting from FLD, and w′, the direc-
tion of maximal separation of the class means. (B) Sample point sets with 250
points for each class, drawn from two different gaussian distributions. The green
arrow and the green dashed line indicate the weight vector (wF L D) and a corre-
sponding hyperplane, respectively, resulting from the application of FLD to the
two-class problem. The black arrow and the black solid line show the weight
vector (wSF A) and a hyperplane resulting from SFA applied to the time series
generated from these training points as described in the text (T = 5000, p = 0.2).
The black dotted line displays an additional SFA hyperplane resulting from a
time series generated with p = 0.45. All hyperplanes are placed onto the mean
value of all training points. (C) Output of the SFA algorithm (slowest feature)
applied to a test time series consisting of 100 points from class 1 (blue) and 100
points from class 2 (red; colors as in B). These test points were drawn from the
same gaussian distributions as in B but were not used for training. Each value
of the trace corresponds to a projection of a point onto the weight vector
of the slowest feature (wSF A in B). The dashed line at 0 corresponds to points
on the solid SFA hyperplane shown in B. (D) Dependence of the error between
the weight vectors found by FLD and SFA on the switching probability p. This
error is defined as the average angle between the weight vectors obtained on
100 randomly chosen classification problems. Error bars denote the standard
error of the mean. Good approximations can still be achieved with rather high
values of p (up to 0.5).

2990 S. Klampfl and W. Maass

section B.1 for details). Since the sign of the vectors is arbitrary, we always
took the smaller of the two possible angles. Thus, an angle of 0 degrees
means perfect equivalence, and the maximal achievable angle (i.e., error) is
90 degrees. It can be seen that if p is low (i.e., transitions between classes
are rare compared to transitions within a class), the angle between the
vectors is small, and SFA approximates FLD very well. The angle increases
moderately with increasing p; even with higher values of p (up to 0.45),
the approximation is reasonable, and a good classification by the slowest
feature can be achieved. As soon as p reaches a value of about 0.5, the
error grows almost immediately to the maximal value of 90 degrees. It
can be seen from equations 2.11 and 2.12 that for p = 0.5, the covariance
of time derivatives, 〈ẋẋT 〉t , becomes proportional to the covariance of the
input, 〈xxT 〉t , which means that every possible vector w is a solution to
the generalized eigenvalue problem 2.3, resulting in an average angle of
about 45 degrees. With p = 0.5, points are drawn randomly from the union
of the two point sets, independent of the class previously chosen (i.e., the
class information is neglected altogether). For values of p > 0.5, switching
between classes becomes so frequent that SFA can no longer extract the
class information, resulting in vectors orthogonal to the FLD vector.

2.4 Application to Classification Problems with More Than Two
Classes. The results in the previous section can also be extended to the case
of C classes (C > 2), showing the equivalence between the space spanned
by the C − 1 slow features extracted by SFA and the C − 1-dimensional
subspace resulting from the application of a generalized version of Fisher’s
linear discriminant (Duda et al., 2000).

Again, we start from a classification problem with C disjoint point sets
Sc ⊂ R

n, c = 1, . . . , C ,

Sc := {xc
i |i = 1, . . . , Nc}, (2.14)

where xc
i denote the data points of class c. In contrast to the previous sec-

tion, we consider here the more general case that the number of points in
each class is different. Let Nc denote the number of data points in class c,
and let NT = ∑C

c=1 Nc be the total number of points. From these point sets,
we generate a time series xt analogous to the previous section, using a gen-
eralization of the Markov model in Figure 2 with C states S = {1, 2, . . . , C}.
We define the transition probability from state i ∈ S to state j ∈ S as

Pi j =

⎧⎪⎨
⎪⎩

a · Nj

NT
if i �= j,

1 − ∑
k �= j Pik if i = j,

(2.15)

Slow Feature Analysis for Pattern Discrimination 2991

with some appropriate constant a > 0.3 It is easy to show (see section A.2)
that

π =
(

N1

NT
,

N2

NT
, . . . ,

NC

NT

)
(2.16)

is a stationary distribution of this Markov model. This means that the prob-
ability that any point in the time series is chosen from a particular class
is proportional to the size of the corresponding point set compared to the
number of total points.

For this particular way of generating a time series from the input points,
we can calculate the following expressions for the covariance matrices of the
input and time derivatives in terms of the within-class and between-class
covariances (see section A.2):

〈xxT 〉t = 1
NT

SW + 1
NT

SB, (2.17)

〈ẋẋT 〉t = 2
NT

SW + 2a
NT

SB . (2.18)

Note that equations 2.17 and 2.18 are similar to 2.11 and 2.12. Again, 〈ẋẋT 〉t

depends on a , whereas 〈xxT 〉t does not. Note that the commonly used
definition for the between-class scatter matrix SB (see e.g., Duda et al.,
2000) for the multiclass case is slightly different from the two-class case
in equation 2.5. For small a (i.e., when transitions between classes are rare
compared to transitions within a class), we can approximate 〈ẋẋT 〉t ≈ 2/NT ·
SW.

We recall the definition of SFA as a generalized eigenvalue problem (see
equation 2.3) and insert equations 2.17 and 2.18 for negligible a :

〈ẋẋT 〉tW = 〈xxT 〉tW�

(17),(18)⇔ 2
NT

SWW = 1
NT

SWW� + 1
NT

SBW�

⇔ 2SWW�−1 = SWW + SBW

⇔ SBW = SWW
[
2�−1 − E

]
, (2.19)

where W = (w1, . . . , wn) is the matrix of generalized eigenvectors and
� = diag(λ1, . . . , λn) is the diagonal matrix of generalized eigenvalues. We
used the assumption that SW (and therefore 〈xxT 〉t and 〈ẋẋT 〉t) are positive

3For C = 2 and N1 = N2 = NT /2 the class is switched at each time with probability
p = a/2 and left unchanged with probability 1 − p.

2992 S. Klampfl and W. Maass

Figure 4: Relationship between SFA and FLD for a three-class problem in 3D.
(A) Sample point sets with 250 points for each class, drawn from three differ-
ent gaussian distributions. (B) Point sets projected onto the two-dimensional
subspace found by FLD (colors and markers as in A). The FLD maximizes the
between-class scatter while minimizing the within-class scatter. (C) Phase plot
of the two slowest features found by SFA applied to a test time series consisting
of 100 points from each class, which were drawn from the same gaussian dis-
tributions as in A but not used for training. The training sequence for SFA was
generated from the input points in Aas described in the text (T = 5000, a = 0.5).
This corresponds to a projection of these test points onto the subspace spanned
by the two slowest features. The color encodes the class of the respective point
in the test sequence (colors as in A, B). Note the similarity between panels B
and C .

definite, that is, all eigenvalues λi are strictly positive (�−1 exists). The last
line of equation 2.19 is just the formulation of FLD as a generalized eigen-
value problem (see equation 2.7). More precisely, the eigenvectors of the
SFA problem are also eigenvectors of the FLD problem; the C − 1 slowest
features extracted by SFA applied to the time series xt span the subspace
that optimizes separability in terms of FLD. Note that the eigenvalues cor-
respond by

λF L D
i = 2

λSF A
i

− 1, (2.20)

which means the order of eigenvalues is reversed, since all eigenvalues λSF A
i

are positive. The slowest feature (corresponding to the smallest eigenvalue
in the first line of equation 2.19) is the weight vector that achieves maximal
separation (the largest eigenvalue in the last line of equation 2.19).

This similarity of the subspace found by FLD on the initial point sets and
by SFA on the time series is demonstrated in Figure 4. Figure 4B shows the
projection of the data points shown in Figure 4A onto the two-dimensional
subspace resulting from FLD, while Figure 4C plots the trajectory of the
two slowest features found by SFA applied to a test time series generated

Slow Feature Analysis for Pattern Discrimination 2993

from points drawn from the same distributions as the original points in
Figure 4A. Both projections are almost identical, which means that the
subspace that maximizes separability in terms of Fisher is equal to the
subspace spanned by the slowest features of our particular time series.
Note that there is more than one particular pair of directions that spans the
same two-dimensional subspace. Therefore, while both methods extract the
same subspace, the exact projections might look different (e.g., the signs of
individual eigenvectors may be flipped, or the projections could be rotated
against each other if the eigenvalues are close to degenerate).

2.5 Application to Trajectories of Training Examples. In sections 2.3
and 2.4, we showed that SFA approximates the classification capability of
FLD if the probability is low that two successive points in the input time
series to SFA are from different classes. In order to generate a time series
from the classification problems, we chose at each time step the class of
the points with a certain probability according to a Markov model, but
apart from that class information, each point was chosen independent of
the preceding point in the time series. The optimal response to such a
time series is to produce a constant response during periods where only
points from a single class are presented (see also Berkes, 2006). This ap-
proximately piecewise constant function will become smoother as the size
of the function space increases, but it will remain a step function. This clas-
sification capability of SFA relies on the fact that SFA sees each possible
transition between two points from the same class approximately equally
often and therefore produces a similar output for each point from that
class.

What happens if these time series consist of whole trajectories of single
points, such as repeated occurrences of characteristic sequences of firing
states in neural circuits? In this section, we investigate how the SFA objective
changes when the input time series consists of trajectories of points instead
of individual points only.

2.5.1 Repetitions of a Fixed Trajectory. First, we consider a time series
xt consisting of multiple repetitions of a fixed predefined trajectory t̃ :=
(x̃1, x̃2, . . . , x̃T̃) of T̃ n-dimensional points x̃k , which are embedded in noise
input. Initially the trajectory points x̃k are drawn from a certain distribution.
Between any two repetitions of this trajectory noise, input is presented that
consists of a random number of points drawn from the same distribution,
but independently at each time step.

It is easy to show (see section A.3) that for such a time series, the SFA
objective, equation 2.2, reduces to

min J SF A(w) ⇔ max
wT �̃tw

wT 〈xxT 〉tw
, (2.21)

2994 S. Klampfl and W. Maass

where

�̃t := 1
T̃ − 1

T̃∑
k=2

(
x̃k x̃T

k−1 + x̃k−1x̃T
k

)
(2.22)

is the covariance matrix of the trajectory t̃ with t̃ delayed by one time step;
it measures the temporal covariances (hence the index t) of t̃ with time
lag 1. Such time-delayed correlation matrices have also been introduced
in Blaschke, Berkes, and Wiskott (2006) and Blaschke, Zito, and Wiskott
(2007) to show the relationship between SFA and second-order ICA. Note
that in the standard classification problems described previously, the time
series xt had no temporal correlations apart from the class information at
all; consecutive points were uncorrelated given their class labels.

That is, choosing the weight vector w that produces the slowest output
is equivalent to choosing the vector that maximizes the temporal correla-
tions of the output during instances of the trajectory t̃. In other words, w is
the (generalized) eigenvector of �̃t , which corresponds to the largest eigen-
value of this matrix. Since the transitions between two successive points
of the trajectory t̃ occur much more often in the time series xt than tran-
sitions between any other possible pair of points, SFA has to respond as
smoothly as possible during t̃ in order to produce the slowest possible out-
put, whereas the average response to noise samples should ideally be zero.
This means that SFA is able to detect these repetitions of t̃ by responding
during such instances with a distinctive shape.

Figure 5A shows the response of SFA, which was trained on a sequence
of 100 repetitions of a fixed trajectory t̃, interleaved with random intervals
of noise input from the same distribution. It can be seen that during each
instance of t̃, SFA responds with the same smooth curve. Due to the inter-
mittent noise input, this curve has to be cyclic and have zero mean. Typically
this response is similar to a section of a sine wave, which is theoretically
the slowest possible response for the general SFA optimization problem
2.1 (Wiskott, 2003). The smoothness of this sine wave critically depends on
the number of trajectory repetitions (the proportion of time trajectories are
presented compared to noise), the dimensionality of the state space, and the
complexity of the function space (which is constrained to be linear here).
For display purposes, we have chosen an overfitting regime in Figure 5A,
since the dimensionality of the state space is larger than the length of the
trajectory. In this example, SFA also responds with an increased amplitude
during trajectory presentations. This can be explained by the fact that the
slowest signal with a constrained variance is one that distributes this vari-
ance to times when it varies more slowly (i.e., during trajectory repetitions).

2.5.2 Several Classes of Trajectories. Next, we consider a classification prob-
lem given by two sets of trajectories, T1, T2 ⊂ (Rn)T̃ , that is, the elements of

Slow Feature Analysis for Pattern Discrimination 2995

Figure 5: Relationship between SFA and FLD for time series consisting of trajec-
tories. (A) SFA response to a time series consisting of a single repeating trajectory
of training examples. A trajectory t̃ is generated by randomly selecting T̃ = 10
points from the uniform distribution of binary vectors, {0, 1}n (n = 50). Repe-
titions of this trajectory t̃ (shaded areas) are interleaved with a random num-
ber (drawn uniformly between 10 and 30) of individual single points drawn
from the same distribution. The input time series that was used for training
SFA consisted of 100 such repetitions of t̃; a sample SFA response with three
repetitions is shown. (B) Classification problem with two classes of artificial
trajectories in 2D (blue, T1, and red, T2), each consisting of 20 trajectories of 100
points. The class means are denoted by μ1 and μ2. In both panels, the trajec-
tories were drawn from the same distribution, but in the left panel, the class
labels were chosen in order to yield a large separation between the class means,
whereas in the right panel, this separation is small. The dashed line indicates
a hyperplane corresponding to the weight vector obtained by application of
FLD to the individual points of the trajectories. The solid line is the hyperplane
found by SFA on a random sequence of 1000 trajectories. Both hyperplanes are
placed onto the mean value of the trajectories. Note that the result of SFA is
independent of p (here, p = 0.5).

each set Tc are sequences of T̃ n-dimensional points.4 We assume that all
those points are distinct and that T1 and T2 are of the same size N. Moreover,
we emphasize that we draw the trajectories from distributions with differ-
ent means, μ1 and μ2, as we did in the point discrimination examples. We
generate a time series according to the same Markov model as in Figure 2.
However, we do not choose individual points at each time step; rather we
generate a sequence of trajectories: Initially we choose a class from which
the first trajectory is drawn, T1 or T2, and draw a random trajectory from this
set. After each trajectory, we select a new trajectory of points after the previ-
ous one has ended. The class of this new trajectory is determined according
to the transition probabilities in Figure 2.

For this time series consisting of such a trajectory sequence we can now
express the matrices 〈xxT 〉t and 〈ẋẋT 〉t of the SFA objective, equation 2.2, as

4The generalization to C classes is analogous to section 2.4.

2996 S. Klampfl and W. Maass

(see section A.3):

〈xxT 〉t = 1
2NT̃

SW + 1
4

SB, (2.23)

〈ẋẋT 〉t = 1
NT̃

SW + p
T̃

· SB − T̃ − 1
T̃

· �̃t. (2.24)

The matrices SW and SB describe here the within-class and between-class
scatter of the FLD objective, equation 2.4, applied to point sets S1 and S2,
which are composed of the individual points of the trajectories in T1 and
T2, respectively. Note that the covariance matrix 〈xxT 〉t in equation 2.23
is equal to the case where the time series was composed of individual
points instead of trajectories (see equation 2.11). However, the temporal
correlations induced by the use of trajectories have an effect on the covari-
ance of temporal differences 〈ẋẋT 〉t in equation 2.24 compared to equation
2.12. First, it additionally depends again on the temporal covariance ma-
trix �̃t , which is in this case the average temporal covariance with time
lag 1 of all available trajectories in T1 and T2. Second, the switching prob-
ability p enters with a factor 1/T̃ , which becomes apparent when noting
that whenever a trajectory is selected, T̃ points from the same class are
presented in succession. Thus, the effective switching probability is p/T̃ .
Note that for T̃ = 1 and �̃t = 0, equations 2.11 and 2.12 follow as a special
case.

Equations 2.23 and 2.24 suggest that even for a small value of p, the
objective of SFA cannot be solely reduced to the FLD objective, but rather
there is a trade-off between the tendency to separate trajectories of different
classes (as explained by the relation between SB and SW) and the tendency
to produce smooth responses during individual trajectories (determined by
the temporal covariance matrix �̃t):

min J SF A(w) = wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

≈ wT
[1

NT̃ SW
]

w

wT 〈xxT 〉tw
− T̃ − 1

T̃
· wT �̃tw

wT 〈xxT 〉tw
,

(2.25)

where the approximation is valid if p/T̃ is small.5 That is, the SFA objective
can be written as the difference between two terms. The weight vector w,
which minimizes the first term, is equal to the weight vector found by the
application of FLD to the classification problem of the individual trajectory
points (note that SB enters equation 2.25 through 〈xxT 〉t ; cf. equation 2.13).

5Note that the values of both numerators are in the same range because �̃t is already
a normalized covariance matrix 2.22, whereas SW, equation 2.6, needs to be normalized
by a factor 1/NT̃ .

Slow Feature Analysis for Pattern Discrimination 2997

The weight vector that maximizes the second term is the one that produces
the slowest possible response during individual trajectories. The factor (T̃ −
1)/T̃ is the proportion of transitions between successive points in the time
series that belong to the same trajectory. If the separation between the
trajectory classes is large compared to the temporal correlations (i.e., the first
term in equation 2.25 dominates for the resulting w), the slowest feature
will be similar to the weight vector found by FLD on the corresponding
classification problem. On the other hand, as the temporal correlations of
the trajectories increase (i.e., the trajectories themselves become smoother),
the slowest feature will tend to favor exploiting this temporal structure of
the trajectories over the separation of different classes (in this case, equation
2.25 is dominated by the second term for the resulting w).

In the point discrimination example, SFA derives its classification ca-
pability from seeing each possible transition between two points approxi-
mately equally often. This is no longer the case when a sequence of trajecto-
ries is presented: now there are pairs of points from the same class that have
too few transitions between them because most transitions are not between
randomly chosen points, but within predefined trajectories. Furthermore,
since the effective switching probability of the classes of two consecutive
trajectories is reduced to p/T̃ , the SFA objective, equation 2.25, becomes
essentially independent of the switching probability p, if the trajectories
are sufficiently long. This means that the SFA output no longer depends on
the temporal order of the trajectories; rather, the result is completely deter-
mined by the set of trajectories used for training. That is, by using a time
series consisting of trajectories instead of individual points, one loses the
possibility to control the classification problem to be learned by changing
the temporal statistics of the input. All possible class labelings of a given set
of trajectories lead in the same direction learned by SFA. The class labeling,
which in this case is approximated by SFA according to equation 2.25, is
the one that has the maximal separability in terms of the FLD—the one that
corresponds to a scatter SW, which minimizes the first term in equation 2.25.
This is demonstrated in Figure 5B, which shows two classification problems
with artificial trajectories chosen from the same distribution of points but
with a different assignment of class labels: one with a large and one with
a small separation between the means of the trajectory classes. It can be
seen that while the FLD always finds a separating hyperplane, SFA always
approximates that classification problem with the larger separation. How-
ever, even if the slowest feature is not able to separate the classes, later SFA
components, which find orthogonal directions to the previous ones, might
be useful. For example, in the right panel of Figure 5B, the second-slowest
feature would find a separating hyperplane.

In theory, the optimal response of SFA in this trajectory example would
again be a piecewise constant function. However, if we introduce zero or
noise input between two trajectories, the optimal response would be half
sine waves during presentations of individual trajectories, which are the

2998 S. Klampfl and W. Maass

typical SFA responses shown in Wiskott and Sejnowski (2002) and Wiskott
(2003). If the means of the trajectory classes (e.g., μ1 and μ2 in Figure 5B)
are equal, there would be no effect to discriminate classes in terms of FLD,
because the first term in equation 2.25 vanishes. However, the theoretical
analysis in Wiskott (2003) predicts that even in that case of equal class
means, SFA still provides a certain discrimination capability through the
decorrelation constraint of multiple slow features: a feature that responds
with half sine waves of different amplitudes for different patterns also
varies slowly and can still be decorrelated to other responses. Thus, with an
infinite function space, SFA always produces a feature that responds with
a different amplitude for each individual pattern. That is, in general, SFA
will try to distinguish all trajectories, but if the available function space is
limited, it might respond with the same amplitude to all trajectories that
are similar (i.e., belong to the same class).

2.6 When Does Linear Separation of Trajectories of Network States
Suffice? Linear SFA can at best achieve a linear separation of trajectories
of points. Although linear separation of complex trajectories of points is
difficult in low dimensions, mathematical arguments imply that linear sep-
aration of such trajectories becomes much easier in higher dimensions.
Consider artificial trajectories, which are simply defined as a sequence of
random points drawn uniformly from the d-dimensional hypercube [0, 1]d .
Each point in this space corresponds to the vector of firing activities of the d
presynaptic neurons of a readout at a particular time t. Each linear readout
neuron defines a hyperplane in this state space by the particular setting of
its weights. It assigns values 1 for points on one side of this hyperplane and
values 0 to points on the other side of the hyperplane. Two trajectories are
called linearly separable if they lie on different sides of some hyperplane.
Figure 6A shows an example of such a pair of linearly separable trajecto-
ries in three dimensions. However, such a perfect separation of randomly
drawn trajectories is very unlikely in this low-dimensional space.

Figure 6B shows that the situation changes drastically if one moves to
higher-dimensional spaces. The black curve indicates the probability that
any two randomly drawn trajectories of length 100 (i.e., each trajectory is
defined by connecting 100 random points drawn uniformly from the d-di-
mensional unit cube) are linearly separable in d dimensions, for different
values of d (see section B.2). One sees that as soon as the dimension grows
beyond 100, any two such trajectories become linearly separable with almost
100% probability. This holds for any length l of trajectories: for d = l, the
probability of separation is 0.5 (see also Cover, 1965), and if d > l, the
probability converges very fast to 1. In other words, a linear readout neuron
with d presynaptic inputs can separate almost any pair of trajectories, each
defined by connecting fewer than d randomly drawn points.

The green curve in Figure 6B shows the average of the minimal dis-
tance between such a pair of trajectories, which is defined as the minimal

Slow Feature Analysis for Pattern Discrimination 2999

Figure 6: Probability of linear separability increases with higher dimensionality
of the state space. (A) Two sample trajectories (green and blue curve) defined by
connecting randomly drawn points from a three-dimensional cube. These tra-
jectories can be separated by a hyperplane (gray surface) defined by the synaptic
weights of a linear discriminator. (B) Probability of linear separability of two
randomly drawn trajectories of length 100 (black curve, left scale), and average
minimum Euclidean distance between any two points of these two trajectories
(green curve, right scale) as a function of the dimension d . Trajectories are de-
fined as a sequence of random points drawn uniformly from the d-dimensional
unit cube.

Euclidean distance between any point of trajectory 1 and any point of tra-
jectory 2. This distance also grows with increasing dimension.6 Thus, at
higher dimensions d , it is not only more likely that any two trajectories of
the length l < d can be separated by a linear readout, but they can also be
separated with an increasing “safety margin” from the hyperplane. This im-
plies that noisy variations of the same trajectories can be correctly classified
by the same linear readout, which hints of a better generalization capability
of linear readout neurons for higher dimensions.

3 Application to Unsupervised Training of Linear Readouts
from a Cortical Microcircuit Model

In section 2, we showed that SFA can be used directly for unsupervised
linear discrimination of different point sets if a time series is generated
from these point sets in a way that the class is a slowly varying feature.
Furthermore, we showed how this property is affected if this time series
consists of a sequence of trajectories instead of individual points. Now we
turn our attention to SFA as a possible mechanism for training readouts
of a biological microcircuit. The sequence of states that such a recurrent

6Note that the length of the main diagonal of a d-dimensional hypercube, that is, the
largest possible distance between any two points from the hypercube, is

√
d.

3000 S. Klampfl and W. Maass

network undergoes in response to a specific stimulus forms a trajectory
in state space. When presented with a sequence of such trajectories, SFA
should again be able to extract information about the stimulus in a similar
way.

We argued in section 2.5 that the application of SFA to such a sequence
of trajectories of network states differs from the application to individual
points of a classification problem. In the latter case, a different input pattern
has been presented at every single time step, whereas in the former case,
a single trajectory forms a sequence of input patterns from the same class.
Due to the temporal correlations of these trajectories, we do not expect that
the slowest feature always perfectly extracts the class of the trajectories, as
it did for the example with individual points in Figure 3. Rather, we predict
that the class information will be distributed over multiple slow features.
If multiple slow features are extracted, the feature yi is the slowest feature
under the additional constraint to be decorrelated to all slower features
y1, . . . , yi−1. This means that the slowest features are ordered by decreasing
slowness, that is, y1 is the slowest feature, y2 is the second slowest feature,
and so on. In the following, features yi with a higher index i are also called
higher-order features.

When computing with state trajectories in order to be able to extract
reliable information about the stimulus, we want readouts of the circuit
to produce an informative output not only at the end of the trajectory, but
while the trajectory is still being presented to the readout. Furthermore, this
output should be as temporally stable as possible throughout the duration
of a trajectory, hence providing an “anytime classification” of the stimulus.
This requirement of temporal stability renders SFA a promising candidate
for training readouts in an unsupervised fashion to discriminate at any
time among trajectories in response to different stimulus classes. In the
following, we discuss several computer simulations of a cortical microcir-
cuit of spiking neurons where we trained a number of linear SFA readouts
on a sequence of network state trajectories, each defined by the low-pass
filtered spike trains of those neurons in the circuit that provide synaptic
input to the readout neuron.7 Such recurrent circuits typically provide a
temporal integration of the input stream and project it nonlinearly into a
high-dimensional space (Maass, Natschläger, & Markram, 2002), thereby
boosting the expressive power of the subsequent linear SFA readouts. In
the setup of Figure 1 the circuit therefore provides the mapping from the
inputs x to the expanded signals z (i.e., the trajectories of network states).
The readouts then compute the slowest features y from these trajectories.
Note, however, that the whitening step is performed implicitly in the SFA
optimization, equation 2.2. As a model for a cortical microcircuit model,

7We interpret the linear combination defined by each slow feature as the weight vector
of a hypothetical linear readout.

Slow Feature Analysis for Pattern Discrimination 3001

we use the laminar circuit from Häusler and Maass (2007) consisting of 560
spiking neurons organized into layers 2/3, 4, and 5, with layer-specific con-
nection probabilities obtained from experimental data (Gupta et al., 2000;
Thomson et al., 2002).

3.1 Detecting Embedded Spike Patterns. In the first experiment, we
investigated the ability of SFA to detect a repeating firing pattern within
the noise input of the same firing statistics. We recorded circuit trajectories in
response to a sequence of 200 repetitions of a fixed spike pattern embedded
into a continuous Poisson input stream. The input to the circuit consisted
of 10 input spike trains. The pattern itself is defined as fixed Poisson spike
trains of length 250 ms and rate 20 Hz, the same rate as the background
Poisson input (in the following also called noise input). We then trained
linear SFA readouts on the 560-dimensional circuit trajectories, defined as
the low-pass filtered spike trains of the spike response of all 560 neurons of
the circuit (we used an exponential filter with τ = 30 ms and a sample time
of 1 ms). The period of Poisson input in between two such patterns was also
randomly chosen; it was drawn uniformly between 100 ms and 500 ms.

Figure 7A shows a sample test stimulus consisting of a sequence of four
pattern instances interleaved by random intervals of noise input, as well as
the circuit response to this test stimulus and the five slowest features, y1 to
y5, in response to the trajectory obtained by low-pass filtering this circuit
response. At first glance, no clear difference can be seen between the raw
SFA responses during periods of pattern presentations and phases of noise
input. The slow features are, of course, nonzero during noise input since the
circuit response is quite similar to the response during patterns. However,
we found that if we take the mean over the responses of multiple different
noise phases, the average SFA output cancels away, whereas a characteristic
response remains during pattern presentations (see Figure 7C). This effect
is predicted by the theoretical arguments in section 2.5 and to some extent
can be seen in phase plots of traces that are obtained by a leaky integration
of the slowest features in response to a test sequence of 50 embedded
patterns (see Figure 7B). The slowest features span a subspace where the
response during pattern presentations can be nicely separated from the
response during noise input. Concerning this separability, SFA yields a
significant improvement over randomly chosen linear functions, as shown
in Figure 7D. That is, by simple threshold operations on the low-pass filtered
versions of the slowest features, one can in principle detect the presence of
patterns within the continuous input stream. Furthermore, this extracted
information is available not only after a pattern has been presented but
during the presentation of the pattern, which supports the idea of anytime
computing.

One interesting property of this setup is that if we apply SFA directly
on the stimulus trajectories, we basically achieve the same result. In fact,
the application to the circuit trajectories is the harder task because of the

3002 S. Klampfl and W. Maass

Figure 7: Unsupervised learning of the detection of spike patterns. (A) From
top to bottom: sample stimulus sequence, response spike trains of the network,
and slowest features. The stimulus consists of 10 channels and is defined by
repetitions of a fixed spike pattern (blue shaded regions) embedded into random
Poisson input of the same rate. The pattern has a length of 250 ms and is made up
by Poisson spike trains of rate 20 Hz. The period between two patterns is drawn
uniformly between 100 ms and 500 ms. The response spike trains of the laminar
circuit of Häusler and Maass (2007) are shown separated into layers 2/3, 4, and
5. The numbers of neurons in the layers are indicated on the left, but only the
response of every twelfth neuron is plotted. Shown are the five slowest features,
y1 to y5, for the network response shown above. The dashed lines indicate
values of 0. (B) Phase plots of low-pass filtered versions (leaky integration,
τ = 100 ms) of individual slow features in response to a test sequence of 50
embedded patterns plotted against each other (blue: traces during the pattern;
gray: during random Poisson input). Note that equal increments in the x- and
y-directions have the same length (i.e., a circle is circular). (C) Average response
of the two slowest features, y1 and y2, during the 250 ms spike pattern (blue)
and a preceding 250 ms noise period (white). Note that the spike pattern is
fixed, but the noise is drawn anew each time. The average was taken over 50
pattern repetitions not used for training, as those in B. The dashed line denotes
the value zero; the shaded area indicates the standard deviation across these
50 repetitions. (D) Phase plots of two features ỹ1 and ỹ2 obtained from three
randomly chosen orthogonal projections (compare with the top panel in B).

Slow Feature Analysis for Pattern Discrimination 3003

variability of the response to repeated presentations of the same pattern
and because of temporal integration: the circuit integrates input over time,
making the response during a pattern dependent on the noise input imme-
diately before the start of the pattern. Figure 7C shows these two effects.
The standard deviation during the noise input is due to different stimulus
spike trains, which are drawn anew each time. On the other hand, the vari-
ability during the pattern presentations results from the inherent noise of
the network (i.e., from different responses to the same stimulus). Figure 7C
shows that the standard deviation during patterns is smaller than during
noise. However, at the start of the pattern, it decreases not immediately but
gradually, due to temporal integration. That means that although the aver-
age SFA response becomes different from zero just after the pattern onset,
the output still depends on the previous noise input. Figure 7C suggests
that this forgetting time of the circuit—the time after which the output of
the laminar circuit no longer depends on the noise—is at least 50 ms.

3.2 Recognizing Isolated Spoken Digits. In the second experiment, we
tested whether SFA is able to discriminate two classes of trajectories as de-
scribed in section 2.5. We performed a speech recognition task using the data
set considered originally in Hopfield and Brody (2000, 2001) and later in the
context of biological circuits in Maass et al. (2002) and Maass, Natschläger,
and Markram (2004) as well as in Verstraeten, Schrauwen, Stroobandt, and
Campenhout (2005) and in Legenstein, Pecevski, and Maass (2008). This
isolated spoken digits data set consists of the audio signals recorded from
five speakers pronouncing the digits 0, 1, and 9 in 10 different utterances
(trials) each. We preprocessed the raw audio files with a model of the cochlea
(Lyon, 1982) and converted the resulting analog cochleagrams into spike
trains that serve as input to our microcircuit model (see section B.3.2 for
details). This biologically realistic preprocessing is computationally more
expensive than the original encoding used in Hopfield and Brody (2000),
but it has been shown that it can drastically improve the performance of a
circuit for a specific speech recognition task (Verstraeten et al., 2005). Fig-
ure 8A shows sample cochleagrams, stimulus spike trains, and response
spike trains for two utterances of digits “one” and “two” by the same
speaker.

First, we tried to discriminate between trajectories in response to inputs
corresponding to utterances of digits 1 and 2, of a single speaker (speaker
2, as shown in Figure 8). We split the 20 available samples (2 digits × 10
utterances) into 14 training and 6 test samples (three utterances of each digit
is kept for testing). To produce an input to SFA, we generated from these
14 training samples a random sequence of 100 input patterns, recorded
for each pattern the response of the circuit, and concatenated the resulting
trajectories in time. Note that the same pattern is presented many times.
Here, we did not switch the classes of two successive trajectories with a
certain probability because, as explained in the previous section, for long

3004 S. Klampfl and W. Maass

Figure 8: SFA applied to unsupervised digit recognition for a single speaker.
(A) From top to bottom: sample cochleagrams, input spike trains, response spike
trains of the network, and traces of different linear readouts. Each cochleagram
has 86 channels with analog values between 0 and 1 (red, near 1; blue, near
0). Stimulus spike trains are shown for two different utterances of the given
digit (black and green; the black spike times correspond to the cochleagram
shown above). The response spike trains of the laminar circuit from Häusler
and Maass (2007) are shown separated into layers 2/3, 4, and 5. The numbers
of neurons in the layers are 168, 112, and 280, respectively, but only subsets of
these neurons are plotted (14, 10, 24). The responses to the two stimulus spike
trains in the panel above are shown superimposed with the corresponding
color. Each readout trace corresponds to a weighted sum (�) of network states
of the black responses in the panel above. The trace of the slowest feature (SF1,
blue line; see y1 in B) is compared to traces of readouts trained by FLD (green
line) and SVM with linear kernel (red line) to discriminate at any time between
the network states of the two classes. All weight vectors are normalized to
length 1. The dashed line denotes the threshold of the respective linear classifier.
(B) Response of the five slowest features y1 to y5 of the previously learned SFA
in response to trajectories of the three test utterances of each class not used for
training (blue, class 1; red, class 2). The slowness index η (see equation 3.1) is
calculated from these output signals. The angle α denotes the deviation of the
projection direction of the respective feature from the direction found by FLD.
The thick curves in the shaded area display the mean SFA responses over all
three test trajectories for each class. (C) Phase plots of individual slow features
plotted against each other (thin lines: individual responses; thick lines: mean
response over all test trajectories). Note that equal increments in the x- and
y-direction have the same length, that is, a circle is circular.

Slow Feature Analysis for Pattern Discrimination 3005

trajectories, the SFA response is independent of this switching probability.
Rather, we trained linear SFA readouts on a completely random trajectory
sequence.

We then trained linear SFA readouts on the 560-dimensional circuit
trajectories, defined as the low-pass filtered spike trains of the spike
response of all 560 neurons of the circuit. All responses were recorded for
the same amount of time such that all trajectories had the same length;
after the circuit activity had stopped, the trajectories descended back to
zero. Once there is zero (or noise) input between trajectories, the result of
SFA becomes independent of the temporal order of the trajectories because
only adjacent time steps play a role. However, according to section 2.5 this
is the case for sufficiently long trajectories. Note that the network responses
for repeated presentations of the same stimulus were different due to the
inherent noise in the network that was used to model the background
synaptic activity in vivo (see section B.3.2).

Figure 8B shows the five slowest features, y1 to y5, ordered by decreasing
slowness in response to the trajectories corresponding to the three remain-
ing test utterances for each class, digit 1 and digit 2. As a measure of slow-
ness, we used the index η of a signal y(t) defined in Wiskott and Sejnowski
(2002):

η(y) := T
2π

√
�(y). (3.1)

This is a slightly different measure from equation 2.1, and denotes the num-
ber of oscillations of a sine wave with the same �-value. We found that the
two slowest features, y1 and y2, responded with shapes similar to half sine
waves during the presence of a trajectory (each 500 ms, a trajectory starts
and lasts for several 100 ms), which is in fact the slowest possible response
under the unit variance constraint. Higher-order features partly consisted
of full sine wave responses, which are the slowest possible responses under
the additional constraint to be decorrelated to previous slow features.

In this example, the slowest feature y1 already extracts the class of the
input patterns almost perfectly: it responds with positive values for tra-
jectories in response to utterances of digit 2 and with negative values for
utterances of digit 1 and generalizes this behavior to unseen test examples.
As a measure for the discriminative capability of a specific SFA response
(i.e., its quality as a possible classifier), we measured the angle between
the projection direction corresponding to this slow feature and the direc-
tion of the FLD. Since each slow feature as well as the weight vector that
specifies the projection direction of the FLD is determined only up to the
sign, we report only the smaller value. These angular values therefore vary
between 0 and 90 degrees. It can be seen in Figure 8B that the slowest
feature y1 is closest to the FLD. Hence, according to equation 2.25, this con-
stitutes an example where the separation between classes dominates, but is

3006 S. Klampfl and W. Maass

already significantly influenced by the temporal correlations of the circuit
trajectories.

We call this property of the extracted features, to respond differently
for different stimulus classes, the What-information (Wiskott & Sejnowski,
2002). The second slowest feature, y2, responds with half sine waves whose
sign is independent of the pattern identity. One can say that, in principle, y2

encodes simply the presence of a circuit response. This is a typical example
of a representation of Where-information (Wiskott & Sejnowski, 2002)—the
“pattern location” regardless of the identity of the pattern. Full sine wave
responses would further encode the position within the trajectory. The other
slow features y3 to y5 do not extract either What- or Where-information
explicitly, but rather a mixed version of both. For repeated runs of the
same experiment with different training utterances, the explicit What- and
Where-information of y1 and y2 are reliably extracted, but the exact shape of
the higher-order features might differ depending on the particular training
utterances.

Figure 8C shows phase plots of these slow features shown in Figure 8B
plotted against each other. In theory, in the phase plot of two features en-
coding What-information, the responses should form straight lines from
the origin in a pattern-specific angle. In the three plots involving feature
y1, it can be seen that these response directions are distinct for different
pattern classes. On the other hand, phase plots of two features encoding
Where-information ideally form loops in the phase space, independent of
the identity of the pattern, where each point on this loop corresponds to a
position in the trajectory. This can be seen only to some extent in the plot
y2 versus y3, but not explicitly because in this example, no two features
encode Where-information alone. Similar responses have been theoretically
predicted in Wiskott (2003) and found in simulations of a hierarchical (non-
linear) SFA network trained with a sequence of one-dimensional trajecto-
ries (Wiskott & Sejnowski, 2002). Furthermore, we found that the response
vector r(t) := (y1(t), . . . , y5(t)), which is composed of the values of all five
slowest features at a particular point in time, clusters at different direc-
tions for different classes. The average angle between two response vectors
from different classes is around 90 degrees throughout the duration of a
trajectory. This effect arises from the decorrelation constraint and is also a
theoretical result of Wiskott (2003).

Note that the information extracted by SFA about the identity of the
stimulus is provided not only at the end of a specific trajectory but is made
available right from the start. After sufficient training, the slowest feature
y1 in Figure 8B responds with positive or negative values indicating the
stimulus class during the whole duration of the network trajectory.8 This

8Since the optimal SFA response is not a piecewise constant curve but a sequence
of half sine waves, an even better discriminator would be the direction of the response
vector r(t), which theoretically stays constant throughout a trajectory (Wiskott, 2003).

Slow Feature Analysis for Pattern Discrimination 3007

supports the idea of anytime computing. Moreover, as a measure for the
performance of SFA, we can train a linear classifier on the extracted features,
that is, at each point in time the response vector r(t), composed of the values
of the five slowest features at that time, and labeled with the class of the
corresponding trajectory, serves as one data point for the classification. The
performance that a particular classifier is able to achieve can be viewed as
a lower bound for the information that the extracted slow features convey
about the trajectory class. Applied to the features of Figure 8B, sampled
every 1 ms, an SVM with linear kernel achieves a classification performance
of 98% (evaluated by 10-fold cross validation). Note again that this is an
anytime classification, since samples during the duration of the trajectories
are taken into account.

The bottom panel of Figure 8A shows readout traces of three different
linear discriminators applied to specific test trajectories—one from each
class. Each point on a trace represents a weighted sum of the network states
at a particular time, just before the threshold operation of the corresponding
linear classifier. That is, a value above (below) zero means that the state at
that time is classified to belong to class 2 (class 1) by this particular lin-
ear discriminator. Here, we interpret the slowest feature extracted, y1 from
Figure 8B, as a linear discriminator with this particular weight vector and
the average over the training time series as the discrimination threshold. We
compare the trace of this SFA classifier to traces of linear readouts trained
as Fisher’s discriminant and support vector machine (SVM; Schölkopf &
Smola, 2002) to discriminate among the network states of trajectories of
different classes.9 Both FLD and SVM are trained on the same input as SFA,
which consists of the network states sampled with �t = 1 ms of 100 trajec-
tories chosen randomly as described above (but without the information
about the temporal sequence of states). The discrimination threshold for
both SFA and FLD was chosen as the average over all training points. It can
be seen that in this case, the slowest feature, which has been learned in an
unsupervised manner, is able to achieve a perfect separation, comparable
to those of the supervised methods of FLD and SVM. That is, if we interpret
the weight vector of this slowest feature as the weight vector of a linear
discriminator, this classifier achieves a performance of almost 100% on de-
ciding which class of input stimuli has caused these unseen network state
trajectories, even in an anytime manner, that is, during the entire duration
of the trajectories.

Figure 9A shows the responses of SFA trained on a sequence of 500 tra-
jectories corresponding to utterances of digits 1 and 2 of all five speakers.
From the 100 available samples (2 digits × 5 speakers × 10 utterances),

9The absolute scale of different readout traces relative to each other is arbitrary since
only the direction of the weight vectors is relevant. In this presentation, all three weight
vectors are normalized to length 1 in order to be comparable to each other.

3008 S. Klampfl and W. Maass

Figure 9: SFA applied to unsupervised speaker-independent digit recognition
and digit-independent speaker recognition. Both panels show the response of
the five slowest features y1 to y5 of the previously learned SFA in response
to trajectories of three test utterances of each class not used for training. Tra-
jectories are padded with zeros such that each trajectory has the same length.
The slowness index η (see equation 3.1) is calculated from these output signals.
The angle α denotes the deviation of the projection direction of the respective
feature from the direction found by FLD. The thick curves in the shaded area
display the average SFA responses over all available test trajectories for each
class. (A) SFA applied to speaker-independent digit recognition. Shown are the
responses for three random test trajectories of digit 1 (blue) and digit 2 (red)
from three different speakers as well as the average SFA response over all 30
available test trajectories. (B) SFA applied to digit-independent speaker recog-
nition. Shown are the responses for three random test trajectories of speaker 1
(blue) and speaker 2 (red) from three different digits, as well as the average SFA
response over all 60 available test trajectories.

we have used 70 for training and kept the remaining 30 for testing. The
response of the learned SFA to trajectories in response to three of these
testing utterances for each of the two classes, as well as the mean SFA re-
sponse over all 30 test utterances of each class, is shown in Figure 9A. It
can be seen that qualitatively, performance decreases compared to the case
where only a single speaker is used (see Figure 8B). No single feature ex-
tracts the class information alone, but significant What-information is still
represented. First, the slowest feature y1 responds more strongly to trajec-
tories corresponding to samples with digit 1. Second, feature y3 responds
with negative values only for trajectories in response to digit 2, whereas
for those of digit 1, it consistently has an initial positive response. Again,
feature y1 has the smallest angular distance to the FLD direction, even if it
is larger than in Figure 8B.

Similarly, we can apply SFA to a sequence of trajectories in response
to utterances of speakers 1 and 2 (but now with all 10 digits) and try to
extract information about the speaker feature, independent of the spoken
digit. Now there are 200 available samples (10 digits × 2 speakers × 10
utterances), where we have used 140 for training and kept the remaining 60

Slow Feature Analysis for Pattern Discrimination 3009

for testing. Figure 9B shows the responses of the learned SFA to 3 trajectories
of these test utterances, as well as the average SFA response over all 60 test
trajectories. Due to the increased number of different samples for each
class (for each speaker, there are now 10 different digits), this task is more
difficult than the speaker-independent digit recognition. No single slow
feature extracts What-information alone; the closest feature to the FLD is
feature y3. To some extent also, y4 extracts discriminative information about
the stimulus.

In these experiments, the separation between the classes, expressed by
the first term in equation 2.25, obviously decreases compared to the single-
speaker case. In such a situation where the distance between the class means
is very small, the tendency to extract the trajectory class itself as a slow fea-
ture becomes negligible. In that case, the theory predicts that SFA tries to
distinguish each individual trajectory due to the decorrelation constraint
and clusters similar trajectories because of the finite (linear) function space.
It can be seen in Figure 8 that higher-order features start to discriminate
among different samples of the same class. This demonstrates that multiple
SFA responses are important and collectively convey discriminative infor-
mation about the class of the trajectory currently being presented, and that
in these examples, one should view SFA as a powerful preprocessing stage
for a subsequent classification rather than a classifier itself.

The different classification results in Figures 9A and 9B are obtained
not due to a different temporal order of the trajectories within the training
input (i.e., whether the speaker is varying more slowly than the digit, or
vice versa), but due to the use of a different training set of trajectories. The
result of SFA does not depend on the temporal order of the trajectories
within the training input because of the intermittent zero phases, and it is
therefore completely determined by the training set of trajectories.

The performance of a linear classifier trained on the five slowest fea-
tures in response to all available test trajectories to predict the class
label of the stimulus is 90% for the speaker-independent digit recogni-
tion (see Figure 9A) and slightly lower (88%) for the digit-independent
speaker recognition (see Figure 9B). If linear SFA is applied directly to the
20-dimensional trajectories obtained by low-pass filtering the stimulus
spike trains directly, the same classifier achieves a performance of about
75%. This indicates that the circuit provides a useful nonlinear combina-
tion of input components. Table 1 compares these performance values to
different nonlinear expansions of the stimulus for this experiment. It can be
seen that the laminar circuit yields a better performance than a cubic kernel,
even though the number of dimensions already has the same order of mag-
nitude. Other than the quadratic and cubic expansion, which are static, the
circuit additionally provides a temporal integration of the stimulus, which
might provide a significant performance improvement in this case.

Note again that these are performance values for an unsupervised any-
time speech recognition task. A comparable performance has been achieved

3010 S. Klampfl and W. Maass

Table 1: Performance Values of a Linear Classifier Trained on the Slow Features
in Response to Different Nonlinear Expansions of the Input, for the Speaker
Recognition Experiment in Figure 9B.

Nonlinear Expansion Number of Dimensions Classifier Performance

None (stimulus) 20 (10) 75%
Quadratic 65 81%
Cubic 285 83%
Laminar circuit 560 (100) 88%

Notes: The nonlinearity implicitly provided the laminar circuit is compared to a
quadratic and cubic expansion of the stimulus, as well as to the naked stimulus.
The second column gives the dimensionality of the state space provided by
the respective nonlinear projection. The numbers in parentheses denote the
effective dimensions used to train SFA, after PCA is applied (see section B.3.3).
The quadratic (cubic) kernel contains all monomials up to degree 2 (3) of the 10
effective stimulus dimensions (Wiskott & Sejnowski, 2002). Performance values
are evaluated by 10-fold cross validation.

in Maass et al. (2004) on a different task (digit one against all other digits) on
the encoding by Hopfield and Brody (2000) by training the readout weights
with a linear SVM. The performance values reported in Verstraeten et al.
(2005) are not for anytime speech recognition in the sense that snapshots
across different time points of network trajectories are used for training the
readout, but a majority vote across different classifiers trained at different
time points is used to predict the currently spoken digit. If the decision about
which stimulus class has been presented should not be made “anytime,” but
only at the end of each stimulus or trajectory, almost perfect performance
can be achieved by integrating the slow features during the duration of a
trajectory, that is, by accumulating evidence for or against a given speaker
or digit.

Finally, we note that the qualitative performance of SFA (how “good”
the features look or in which order the features are extracted) depends on
the smoothness of the trajectories that are used for training. The circuit
model of Häusler and Maass (2007) typically shows a bursting behavior,
which is mostly due to the short-term dynamics of synapses. Thus, the
performance of SFA can even be improved by using a circuit model that
generates smoother trajectories of network states. Also, we obtain similar
results if we apply SFA directly on a sequence of the high-dimensional
analog cochleagrams shown in Figure 8A.

4 Discussion

4.1 SFA as a Principle for Neural Computation. We have shown in this
article that slow feature analysis (SFA) can in principle be used for learning
unsupervised (or implicitly supervised) linear discrimination. SFA (Wiskott

Slow Feature Analysis for Pattern Discrimination 3011

& Sejnowski, 2002) belongs to a family of algorithms for learning invari-
ant representations from temporal input sequences, which maximize the
“slowness” of their output signals (Földiák, 1991; Mitchison, 1991; Becker
& Hinton, 1992; Stone & Bray, 1995). This objective is based on the as-
sumption that signals that encode invariant representations, such as the
location or identity of an object in the visual field, vary on a much slower
timescale than raw sensory signals, such as the intensity of the visual in-
put at a single fixed point on the retina, for example. Therefore, the ex-
traction of slow features of the quickly varying input signal is likely to
yield invariant properties of this input signal. The unique aspect about SFA
is its appealing formulation as an eigenvalue problem in the covariance
matrices of the (possibly nonlinearly expanded) multidimensional input
signal.

This formulation has allowed us to establish a relationship between this
unsupervised learning rule and a powerful supervised method for classi-
fication, Fisher’s linear discriminant (FLD), which can be expressed as a
similar eigenvalue problem. In particular, we have demonstrated that by
converting the input to a classification problem (two labeled point sets) into
an unlabeled time series in a special way, SFA is able to closely resemble
the result of FLD on this classification problem. More precisely, if two con-
secutive points in the time series are likely to be chosen from the same class
(i.e., the switching probability p between the classes is low), both methods
yield similar projection directions, which can be interpreted as hypotheses
of linear discriminators (i.e., separating hyperplanes). Due to this tendency
that temporally contiguous points are from the same class, SFA is able to
learn to become invariant to different points within a class, but to respond
differently for points from different classes, that is, to extract the class as a
slowly varying feature.

We have basically considered three cases of application of SFA for pattern
recognition: point discrimination, trajectory discrimination with different
means, and trajectory discrimination with identical means. In point dis-
crimination, the class membership is implicitly encoded in the temporal
sequence of samples that serves as input to SFA. The optimal response is
a piecewise constant function during periods when points from the same
class are presented and, for a linear function, converges to the result of FLD
on the original classification problem. Regarding trajectory discrimination
with different means, we have analyzed how the SFA objective changes if
it is applied to a time series that consists of a sequence of such trajectories
of training examples instead of individual points that are independently
chosen at each time step. More precisely, we have considered a trajectory
classification problem, which consists of sets of point sequences rather than
sets of individual points. We generated a time series from this classification
problem by randomly choosing trajectories from these two sets and by con-
catenating them into a single sequence. We found that for such a sequence
of sufficiently long trajectories, the result of SFA becomes independent of

3012 S. Klampfl and W. Maass

the class switching probability between two successive trajectories, thus of
the temporal order of the trajectories within the time series. Applied to such
a time series, the optimization problem of SFA can be viewed as a compo-
sition of two effects: the tendency to extract the trajectory class as a slow
feature and the tendency to produce a smooth response during individual
trajectories. The first effect can be described by the scatter matrices of the
FLD, whereas the second effect depends on the temporal correlations (with
time lag 1) of the trajectories.

The case of trajectory discrimination with identical means occurs when
the class means are so close together that they are almost identical. In this
case, the effect of the FLD vanishes. If the trajectories are interleaved with
zero (or noise) input, the optimal solution to SFA would be to respond with a
half sine wave to each trajectory. For that case, Wiskott and Sejnowski (2002)
and Wiskott (2003) explain the emergence of discriminative information in
the SFA responses by the decorrelation constraint: a feature that responds
with different amplitudes for different patterns also varies slowly and can
still be decorrelated to other features that exhibit the same response for
each pattern. Thus, with an infinite function space, SFA always produces a
feature that responds with a different amplitude for each individual pattern.
If the available function space is limited (e.g., linear, as in our case), SFA
might cluster similar trajectories, for example, those that belong to the same
class, by responding to them with similar amplitude.

In the context of biologically realistic neural circuits, this ability of an
unsupervised learning mechanism is of particular interest because it could
enable readout neurons, which typically receive inputs from a large num-
ber of presynaptic neurons of the circuit, to extract from the trajectory of
network states information about the stimulus that has caused this par-
ticular sequence of states—without any “teacher” or reward. In previous
simulation studies of neural circuit models, training of readouts of biologi-
cal microcircuits so far has mostly been performed in a supervised manner
(Maass et al., 2002, 2004; Legenstein, Naeger, & Maass, 2005) or in a reward-
based trial-and-error setting (Legenstein et al., 2008).

We have tested the potential biological relevance of this learning princi-
ple in computer simulations of a quite realistic model of a cortical micro-
circuits (Häusler & Maass, 2007). More precisely, we have tested whether
SFA would enable projection or “readout” neurons to learn without super-
vision to detect and discriminate salient input streams to the microcircuit.
These readouts were modeled as linear neurons; we have not used a partic-
ular nonlinear expansion (Wiskott & Sejnowski, 2002), which would have
likely suffered from the curse of dimensionality when applied to these
high-dimensional trajectories, or an explicit kernel (Bray & Martinez, 2003).
Rather, we have taken advantage of the kernel property of the circuit it-
self, which provides intrinsic nonlinear combinations of input components
by its recurrent connections, and thereby boosts the expressive power of a
subsequent linear readout.

Slow Feature Analysis for Pattern Discrimination 3013

In particular, we have shown that SFA is able to detect a repeating spike
pattern within a continuous stream of Poisson input with the same firing
statistics in an unsupervised manner. Furthermore, we demonstrated that
the recognition of isolated spoken digits is possible using a biologically
realistic preprocessing for audio samples. SFA was able to almost perfectly
discriminate between two digits of a single speaker, and to a lesser ex-
tent also to extract information about the spoken digit independent of the
speaker as well as the speaker independent of the spoken digit.

The laminar circuit transforms the input spike trains in three different
ways. First, it provides a nonlinear expansion of the input by projecting it
into a higher-dimensional space through its recurrent connections. We have
shown in one of the speech discrimination tasks that the circuit significantly
improves the performance of a subsequent linear SFA readout compared to
the case where this readout is directly applied to the stimulus spike trains.
Moreover, the circuit performs better than a static quadratic or cubic expan-
sion of the stimulus (see Table 1). The second effect of the circuit is to provide
temporal integration. While this may be beneficial in the spoken digits tasks,
it certainly decreases the performance in the pattern detection task because
it makes the response of the circuit at the beginning of a pattern depend on
the noise input immediately before (see Figure 7C). The third effect is the
inherent noise of the network—its property to respond differently each time
the same stimulus is presented. This noise models the background synaptic
input in vivo (Destexhe, Rudolph, Fellous, & Sejnowski, 2001). SFA should
perform better if this intrinsic noise is low.

We find that the response of the learned SFA readouts to a sequence of
test trajectories contains both What- and Where-information; they encode
the class of the trajectory currently presented (pattern identity) as well as
the current position within a trajectory (location within a pattern). This is in
agreement with the objective of SFA, because both the location and identity
vary on a slower timescale than the raw sequence of network states. The
extracted features tend to be sections of sine waves, which are the slowest
possible responses under the constraints of unit variance and decorrela-
tion. Features encoding Where-information usually detect the presence of
the trajectories (and encode the current position within the trajectory) inde-
pendent of their identity and respond with similar shapes to each trajectory.
Such information is very useful for neural systems, since it allows them to
keep track of time relative to a stimulus onset or the initiation of a motor
response (Buonomano & Mauk, 1994; Buonomano & Maass, 2009). The fact
that such timing information becomes automatically available through un-
supervised SFA could in fact point to a general advantage of coding and
computing with trajectories of firing states rather than with single firing
states (as many classical theories of neural computation propose). Obvi-
ously the ability to keep track of time on the timescale of a few hundred
ms is essential for biological organisms (e.g., for motor control). In contrast,
features encoding What-information discriminate between different types

3014 S. Klampfl and W. Maass

of trajectories and respond differently for different classes of trajectories.
The response vector defined by the slowest features at a particular point
in time takes on specific directions for each trajectory class; we have found
that the average response vectors of different classes are around 90 de-
grees apart. These properties of SFA have been theoretically predicted in a
thorough analysis of this algorithm (Wiskott, 2003). Wiskott and Sejnowski
(2002) also found them in computer simulations, where a hierarchical SFA
network has been trained with a sequence of short one-dimensional trajec-
tories. There, the particular organization of sequential quadratic SFA stages
provides the nonlinear function space, from which the function is chosen
that generates the slowest possible output from the input signal. In our case,
this function space is implicitly given by the nonlinearity of the circuit.

In contrast to the results for classification problems on point sets, due
to the temporal structure of trajectories a single SFA readout of a cortical
microcircuit might not extract the class of network trajectories explicitly,
but usually a mixture of both What- and Where-information. This is what
we had expected from our theoretical analysis, which suggested a trade-
off between the tendency to separate different classes and the tendency to
respond as smoothly as possible during individual trajectories. Moreover,
as the distance between the class means decreases, the separation tendency
becomes negligible, and SFA tries to distinguish all individual trajectories.
However, the slowest features span a subspace where the trajectories are
nicely separated, thereby rendering SFA a powerful preprocessing stage by
improving the computational performance of a subsequent classification.
Furthermore, the results show that SFA readouts are able to distinguish
between different stimulus classes in an anytime manner; they provide
the correct classification before the trajectory has ended. This makes the
information about the stimulus available to later processing or decision-
making stages not only after a trajectory has settled into an attractor but
even while the stimulus is still being presented.

In these circuit simulations, SFA responds with amplitudes of different
sign to patterns of different classes and even generalizes this behavior to
unseen test examples. We argue that the function space that is implicitly
provided by the cortical microcircuit, together with the linear SFA readouts,
might have the property that different trajectories yield the same responses
if they are similar enough. More precisely, it might correspond to an im-
perfect kernel that maps similar input patterns (patterns that are likely to
be from the same class) into similar trajectories, and sufficiently distinct in-
put patterns to trajectories that are significantly separated. Previous studies
(e.g., Legenstein & Maass, 2007) suggest that if such circuits operate in a
regime called edge of chaos, they might have this desired property.

Furthermore, our theory predicts and our experiments show that the abil-
ity of SFA to discriminate among different classes of trajectories is strongly
influenced by the temporal correlations of the trajectories, as explained by
the temporal covariance matrix with time lag 1. It would be interesting to

Slow Feature Analysis for Pattern Discrimination 3015

investigate the effect of different magnitudes of these correlations, for ex-
ample, by comparing the effect of different sampling frequencies (we use a
quite short sampling time in our examples).

4.2 Relation to Preceding Work. Slow feature analysis has already been
applied for unsupervised pattern recognition in Berkes (2005b, 2006), where
SFA has been used to discriminate among handwritten digits. There, the
SFA objective is reformulated to optimize slowness for time series consisting
of just two patterns, averaged over all possible pairs of patterns. The idea is
to search for functions that respond similarly to patterns of the same class
and therefore ignore the transformation between the individual patterns.
The optimization 2.1 in Berkes (2006) is performed over the set of time
derivatives of all possible pairs of samples of a class,

min �(yj) = a ·
C∑

c=1

Nc∑
k,l=1
k<l

(
g j (xc

k) − g j (xc
l)

)2
, (4.1)

under the constraints of zero mean, unit variance, and decorrelation, where
C is the number of classes, Nc is the number of samples of class c, xc

k is the kth
sample of class c, and a is a normalization constant dividing by the number
of all possible pairs. Obviously, the functions g j that minimize equation 4.1
are ones that are constant for all patterns belonging to the same class, in
which case the objective function is zero. As a consequence, patterns from
the same class will cluster in the feature space formed by the output signals
of the (C − 1) slowest functions g j , where classification can be performed
using simple techniques (Berkes, 2005b, 2006).

One problem with this approach is that it is often computationally in-
tractable to consider all pairs of patterns, since the number of pairs grows
very fast with the number of patterns. Furthermore, it might be implausible
to have access to such an artificial time series, for example, from the per-
spective of a readout of a cortical microcircuit, which receives input on the
fly. We take a different approach and apply the standard SFA algorithm to
a time series consisting of randomly selected patterns of the classification
problem, where we switch the class of the current pattern at each time step
with a certain probability. We have found that if this switching probability
p is low, SFA extracts features that separate the classes and finds approx-
imately the same subspace as Fisher’s linear discriminant. In particular,
we have demonstrated the dependence of the deviation on p: as p goes
to zero, the weight vector of SFA converges to the weight vector of FLD.
Note that with this approach, perfect equivalence between SFA and FLD
cannot be reached because the time series would have to consist of only
transitions within a class but at the same time contain patterns from all
classes, which is not possible. In this hypothetical case, the SFA problem

3016 S. Klampfl and W. Maass

would become equivalent to the reformulated objective in Berkes (2005b,
2006). Berkes (2005a) applied a nonlinear version of Fisher’s discriminant
to the same handwritten digits data set as in Berkes (2005b, 2006), using a
fixed polynomial expansion of the input as a kernel, and achieved a similar
result but no relationship between the two methods was shown.

Franzius, Wilbert, and Wiskott (2008) showed that a hierarchical network
of quadratic SFA modules can extract the identity of objects from an image
sequence presenting these objects at continuously changing positions, sizes,
and viewing angles. They create the input sequence in a similar way as we
do: after each time step, the object identity is switched with a low probabil-
ity. The resulting features extracted by SFA contain information about the
identity of the object currently shown, as well as the current position, size,
and rotation angles of the object. However, this information is usually not
made explicit in the sense that a single slow feature codes for exactly one
configuration variable (such as object identity or position); rather, each such
variable is distributed over multiple slow features. The original variables,
however, can be recovered from the slowest features using linear regression
or simple classifiers with high accuracy. The tendency for this linear mixing
of information increases as the input sequence gets more and more com-
plex (i.e., contains more transformations of the same object). We also find
this effect in our experiments. In the experiment where we discriminated
among spoken digits of a single speaker (see Figure 8), the slowest feature
extracted the class information explicitly, whereas in the experiment where
more speakers were used (see Figure 9A), this information was distributed
over multiple features. In principle, one can view the nonlinear expansion
of the image sequence that belongs to a single object presentation (i.e., be-
tween two object switching events) as a particular trajectory in response
to this object. Different trajectories for the same object vary in the specific
sequence of poses of that object during a particular presentation phase. In
this sense, SFA is trained on a sequence of trajectories, each resulting from
a specific presentation of a particular object. According to Franzius et al.
(2008), the classifier performance for extracting the object identity is max-
imized if all other variables are made very fast. This is in agreement with
our theory because faster configuration variables produce weaker temporal
correlations of these image trajectories. This means that SFA more closely
approximates the result of FLD on these images.

This work in Franzius et al. (2008) offers one explanation how the visual
system learns invariant object recognition from the temporal statistics of the
input stimuli: images that occur in immediate succession tend to belong to
the same object. In fact, a considerable amount of work has been done that
investigates temporal slowness as a computational principle in the visual
system. Berkes and Wiskott (2003) applied quadratic SFA (i.e., linear SFA
in the expanded input of all polynomials of degree 2 of the original input
dimensions) to natural image sequences, and the learned quadratic forms
have been interpreted as receptive fields (Berkes & Wiskott, 2006). These

Slow Feature Analysis for Pattern Discrimination 3017

resulting receptive fields resemble many properties of complex cells, such
as their Gabor-like shape, shift invariance, or direction selectivity. Further-
more, when presented with a visual input sequence that is generated by
the movement of a simulated rat in a virtual environment, SFA has been
shown to reproduce the spatial firing patterns of place cells, head direc-
tion cells, spatial view cells, and grid cells (Franzius, Sprekeler, & Wiskott,
2007). Depending on the movement statistics of this simulated rat, different
types of invariances are learned (e.g., the head direction independent of
the current position in the environment). To obtain the final response char-
acteristics of these cell types, however, an additional sparse coding stage
has been incorporated (Franzius, Vollgraf, & Wiskott, 2007), which extracts
the representations of single cells from the more distributed representa-
tions resulting from SFA. When a slightly different slowness objective is
used, similar invariance properties of the visual system have been found
in Einhäuser, Kayser, König, and Körding (2002) and Wyss, König, and
Verschure (2006).

In this work, we have trained the readouts of our cortical microcircuit
with the standard batch algorithm of SFA. This has the advantage that there
are no parameters that have to be tuned for a specific problem. Since SFA
is based on an eigenvalue problem, it finds the solution in a single iteration
and has no convergence problems (e.g., to be trapped in local minima). In
biological systems, however, processing has to be performed on the fly, and
therefore learning rules that optimize temporal stability in an online manner
are of particular interest. Several computational models exist that are based
on this slowness principle and show how invariances in the visual system
can be learned through a variety of Hebbian-like learning rules (Földiák,
1991; Wallis & Rolls, 1997; Wyss et al., 2006; Masquelier & Thorpe, 2007). In
this article, we do not propose a biologically realistic learning rule; rather,
we investigate the properties of one well-known algorithm, slow feature
analysis, out of this family of optimization methods based on the slowness
principle and analyze its unsupervised discrimination capabilities. A recent
article demonstrates that this learning rule can in principle be implemented
by a spiking neuron with a form of STDP (Sprekeler, Michaelis, and Wiskott,
2007). Although this result is purely analytical and has yet to be verified
in computer simulations, it supports the hypothesis that the objective of
slowness is an important ingredient in the unsupervised learning mech-
anisms of biological systems. In fact, STDP has been successfully applied
to robust online unsupervised detection of repeating spatiotemporal spike
patterns hidden within spike trains of the same firing statistics (Masque-
lier, Guyonneau, & Thorpe, 2009). Moreover, it has been shown that spiking
neurons equipped with a special form of STDP that receives a global reward
signal (Izhikevich, 2007) can learn to discriminate among different trajecto-
ries of firing states using reinforcement learning (Legenstein et al., 2008).

SFA is not only inspired by the slowness principle for learning invari-
ances, but might also be motivated by information-theoretic principles,

3018 S. Klampfl and W. Maass

such as the information bottleneck (IB) method (Tishby, Pereira, & Bialek,
1999) or independent component analysis (ICA; Hyvärinen, Karhunen, &
Oja, 2001). Creutzig and Sprekeler (2008) showed a relationship between
SFA and the IB method for predictive coding, which optimizes the objective
of compressing information of the past into the current state of a system,
such that as much information as possible about the future is preserved.
In other words, it minimizes I (past; state) − β I (state; future) with some
trade-off parameter β. It turns out that for the case of one-time-step pre-
diction and of a linear system with gaussian noise, this problem becomes
equivalent to linear SFA. On the other hand, ICA tries to uncover statisti-
cally independent signals from an observed linear mixture of these signals.
Blaschke et al. (2006, 2007) show that for a particular measure of indepen-
dence, which involves the temporal correlations with a time delay of one
time step, ICA becomes formally equivalent to linear SFA. Finally, Turner
and Sahani (2007) provide a probabilistic interpretation for SFA, where it
is assumed that the observed time series x is generated by a linear mixture
of latent variables (the slow features yi). The mixing matrix W is recovered
by maximizing the likelihood function. This attractive formulation has the
advantages that constraints and extensions can be included in the model in
a very natural way and that noise and missing data in the input are handled
elegantly by this probabilistic setup. These results establish an interesting
connection between the slowness objective and both probability and infor-
mation theory and further demonstrate the power of the elegant algorithm
of linear SFA.

5 Conclusion

We have established a theoretical basis that explains when slow feature
analysis can be expected to have emergent pattern discrimination capabili-
ties. Both our theoretical results and our computer simulations suggest that
SFA, and more generally the concept of slowness or temporal stability, could
be a powerful mechanism for extracting temporally stable information from
trajectories of network states of biological circuits without supervision, and
hence an important ingredient for spatiotemporal processing in cortical
networks (Buonomano & Maass, 2009). In particular, it provides a basis for
explaining how brains can arrive at stable percepts in spite of continuously
changing network states in a completely unsupervised way.

Appendix A: Derivation of the Relationship Between the SFA
and FLD Objective

A.1 Derivation for the Case of Two Classes. In this section we derive
the expressions for the temporal covariance matrices 〈xxT 〉t and 〈ẋẋT 〉t of
the SFA objective 2.2 for the two-class case in terms of the within-class and
between-class scatter matrices of the FLD objective, equation 2.4, SW and

Slow Feature Analysis for Pattern Discrimination 3019

SB , for the particular method of time series generation described in the
main text.

Assume we are given two disjoint point sets S1, S2 ⊂ R
n,

S1 := {x1
i |i = 1, . . . , N}, (A.1)

S2 := {x2
j | j = 1, . . . , N}, (A.2)

where x1
i and x2

j denote the data points of class 1 and 2, respectively, and N
denotes the number of data points for each of the two classes. Both point
sets can be characterized by their mean vectors (μ1, μ2) and covariance
matrices (�1, �2), given by

μ1 = 〈x1
i 〉 = 1

N

N∑
i=1

x1
i , (A.3)

μ2 = 〈x2
j 〉 = 1

N

N∑
j=1

x2
j , (A.4)

and

�1 = 1
N

〈(x1
i − μ1)(x1

i − μ1)T 〉 =
N∑

i=1

x1
i x1

i
T − μ1μ

T
1 , (A.5)

�2 = 1
N

〈(x2
j − μ2)(x2

j − μ2)T 〉 =
N∑

i=1

x2
j x

2
j
T − μ2μ

T
2 . (A.6)

The within-class and between-class scatter matrices of FLD are then
given by (see equations 2.6 and 2.5)

SW =
N∑

i=1

(x1
i − μ1)(x1

i − μ1)T +
N∑

j=1

(x2
j − μ2)(x2

j − μ2)T

= N (�1 + �2) (A.7)

and

SB = (μ1 − μ2)(μ1 − μ2)T . (A.8)

We now generate a time series xt from these two input point sets S1 and
S2 as described in the main text, using the Markov model in Figure 2. We

3020 S. Klampfl and W. Maass

can now express the mean and covariance of this time series xt in terms of
μ1, μ2, �1, and �2. For the mean, we get

μ := 〈〈xt〉t〉 = 〈〈xt〉〉t = 1
T

T∑
t=1

〈xt〉 = 〈xt〉 = 1
2
μ1 + 1

2
μ2, (A.9)

because the stationary distribution of the Markov model in Figure 2 is
π = (1

2 , 1
2) (see equation 2.10). More generally, the mean of the time series

is given by the weighted mean between the two class means, weighted by
the probability that a point is drawn from the corresponding class. Note the
different expectation operators: 〈·〉t denotes the temporal average over the
time series xt , whereas the average over all possible time series xt generated
from S1 and S2 is given by 〈·〉. That is, 〈〈xt〉t〉 refers to the temporal average
of a specific time series xt , averaged over all possible realizations of xt ,
whereas 〈〈xt〉〉t refers to the temporal average of the expected value of xt at
a specific time step t. Since this Markov model yields a stationary random
process, we can exchange the expectation operators. Similarly, the expected
covariance matrix is given by

� := 〈〈(xt − μ)(xt − μ)T 〉t〉 = 1
T

T∑
t=1

〈xtxT
t 〉 − μμT = 〈xtxT

t 〉 − μμT

= 1
2

(�1 + μ1μ
T
1) + 1

2
(�2 + μ2μ

T
2) − μμT

= 1
2
�1 + 1

2
�2 + 1

4
(μ1 − μ2)(μ1 − μ2)T ,

(A.10)

where in the last step, we used equation A.9. Note that the covariance matrix
of the time series is determined not only by the covariance matrices of the
two classes but also by their spatial separation as expressed by equation
A.10. We assume without loss of generality that μ = 0, that is, � = 〈xtxT

t 〉.
Next we consider the covariance matrix of time derivatives. For the

expected covariance matrix, we write

〈〈ẋẋT 〉t〉 = 1
T − 1

T∑
t=2

〈(xt − xt−1)(xt − xt−1)T 〉

= (〈xtxT
t 〉 + 〈xt−1xT

t−1〉) − (〈xt−1xT
t 〉 + 〈xtxT

t−1〉). (A.11)

The two terms in the first part of equation A.11 consist of covariances
between input samples of the same time index and can be rewritten as

Slow Feature Analysis for Pattern Discrimination 3021

(using equation A.10)

〈xtxT
t 〉≈ 1

2

(
�1 + μ1μ

T
1

) + 1
2

(
�2 + μ2μ

T
2

)
(A.12)

〈xt−1xT
t−1〉 = 〈xtxT

t 〉. (A.13)

Because of the stationarity of xt , the covariance matrix is independent of
a time shift. The approximation in equation A.12 holds for large T , since
the summation in equation A.10 contains T terms and the summation in
equation A.11 contains T − 1 terms. Similarly, the two terms in the second
part of equation A.11 consist of the cross-covariances between adjacent time
steps. If the classes of xt and xt−1 are fixed, then xt is chosen independent
of xt−1, and we can split up the expectation operator 〈xt−1xT

t 〉 = 〈xt−1〉〈xT
t 〉

into the product of the two class means. Considering the four possible class
transitions, we write

〈xt−1xT
t 〉= 1

2
(1 − p)μ1μ

T
1 + 1

2
(1 − p)μ2μ

T
2 + 1

2
pμ1μ

T
2 + 1

2
pμ2μ

T
1

(A.14)

〈xtxT
t−1〉= 〈xt−1xT

t 〉T = 〈xt−1xT
t 〉. (A.15)

Plugging equations A.12 to A.15 back into equation A.11 yields

〈〈ẋẋT 〉t〉 = �1 + �2 + p(μ1 − μ2)(μ1 − μ2)T . (A.16)

In equations A.10 and A.16, we have expressed the covariance matrix of
the time series xt , 〈xxT 〉t , and the covariance matrix of its time derivatives,
〈ẋẋT 〉t , in terms of the means and covariances of the two point sets of the
FLD problem. We repeat these here for clarity (we drop the expectation 〈·〉
for convenience):

〈xxT 〉t = 1
2
�1 + 1

2
�2 + 1

4
(μ1 − μ2)(μ1 − μ2)T , (A.17)

〈ẋẋT 〉t = �1 + �2 + p(μ1 − μ2)(μ1 − μ2)T . (A.18)

Remember that p is the transition probability between the classes, ac-
cording to Figure 2. Recalling the definition of SW (in equation A.7) and SB

(in equation A.8), we finally obtain the result

〈xxT 〉t = 1
2N

SW + 1
4

SB, (A.19)

〈ẋẋT 〉t = 1
N

SW + p · SB . (A.20)

3022 S. Klampfl and W. Maass

A.2 Derivation for the Case of More Than Two Classes. In this section
we derive the expressions for the temporal covariance matrices 〈xxT 〉t and
〈ẋẋT 〉t of the SFA objective, equation 2.2, for the general case of more than
two classes in terms of the within-class and between-class scatter matrices
of the FLD objective, equation 2.4, SW and SB , for the particular method
of time series generation described in the main text. We proceed as in the
previous section for the two-class case.

Assume we are given C disjoint point sets Sc ⊂ R
n, c = 1, . . . , C ,

Sc := {xc
i |i = 1, . . . , Nc}, (A.21)

where xc
i denote the data points of class c and Nc denotes the number of data

points in each class. Let NT = ∑C
c=1 Nc be the total number of points. Each

of these point sets can be characterized by its mean vector and covariance
matrix, given by

μc = 1
Nc

Nc∑
i=1

xc
i , (A.22)

�c = 1
Nc

Nc∑
i=1

xc
i xc

i
T − μcμ

T
c . (A.23)

The within-class and between-class covariance matrices of the Fisher linear
discriminant in the multiclass case are defined by

SW =
C∑

c=1

Nc∑
i=1

(xc
i − μc)(xc

i − μc)T

=
C∑

c=1

Nc�c (A.24)

and

SB =
C∑

c=1

Nc(μc − μ)(μc − μ)T

=
C∑

c=1

Ncμcμ
T
c − NTμμT , (A.25)

where μ = 1/NT
∑C

c=1 Ncμc is the total mean of the input points.

Slow Feature Analysis for Pattern Discrimination 3023

We generate a time series xt from these point sets as described in the main
text, using the Markov model with states S = {1, 2, . . . , C} and transition
probabilities

Pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a · Nj

NT
if i �= j,

1 −
∑
k �= j

Pik if i = j,
(A.26)

for i, j ∈ S. First, we show that

π =
(

N1

NT
,

N2

NT
, . . . ,

NC

NT

)
(A.27)

is a stationary distribution of equation A.27. This can be easily seen by
verifying that for all j ∈ S,

π j =
∑
i∈S

πi Pi j

=
∑
i �= j

Ni

NT
· a · Nj

NT
+ Nj

NT

⎛
⎝1 −

∑
k �= j

a · Nk

NT

⎞
⎠

= a · Nj

NT

∑
i �= j

Ni

NT
+ Nj

NT
− a · Nj

NT

∑
k �= j

Nk

NT

= Nj

NT
. (A.28)

For the mean of the time series xt we get, analogous to equation A.9,

〈x〉t =
C∑

c=1

πcμc = 1
NT

C∑
c=1

Ncμc . (A.29)

Note that for the particular choice of equation A.26, the mean of the time
series becomes equal to the total mean of the input points. Similarly, we
obtain for the covariance matrix

〈xxT 〉t =
C∑

c=1

πc
(
�c + μcμ

T
c

) − μμT

= 1
NT

C∑
c=1

Nc�c + 1
NT

C∑
c=1

Ncμcμ
T
c − μμT

= 1
NT

SW + 1
NT

SB . (A.30)

3024 S. Klampfl and W. Maass

For the covariance of time derivatives, we proceed analogous to the previ-
ous section and write

〈ẋẋT 〉t = (〈xtxT
t 〉 + 〈xt−1xT

t−1〉) − (〈xt−1xT
t 〉 + 〈xtxT

t−1〉), (A.31)

with

〈xtxT
t 〉=

C∑
c=1

πc
(
�c + μcμ

T
c

)
(A.32)

〈xt−1xT
t−1〉= 〈xtxT

t 〉 (A.33)

〈xt−1xT
t 〉=

∑
i, j∈S

πi Pi jμiμ
T
j (A.34)

〈xtxT
t−1〉= 〈xt−1xT

t 〉T = 〈xt−1xT
t 〉. (A.35)

The last equation holds because πi Pi j = π j Pji . Plugging equations A.32 to
A.35 back into A.31 yields

〈ẋẋT 〉t = 2
C∑

c=1

πc�c + 2
C∑

c=1

πcμcμ
T
c − 2

C∑
i=1

C∑
j=1

πi Pi jμiμ
T
j

= 2
NT

C∑
c=1

Nc�c + 2
NT

C∑
c=1

Ncμcμ
T
c − 2

NT

C∑
c=1

Nc Pccμcμ
T
c

− 2
NT

C∑
c=1

Ncμc

⎛
⎝∑

k �=c

Pckμ
T
k

⎞
⎠

= 2
NT

C∑
c=1

Nc�c + 2
NT

C∑
c=1

Nc

⎛
⎝∑

k �=c

a · Nk

NT

⎞
⎠ μcμ

T
c

− 2
NT

C∑
c=1

Ncμc

⎛
⎝∑

k �=c

a · Nk

NT
μT

k

⎞
⎠

= 2
NT

C∑
c=1

Nc�c + 2a
N2

T

C∑
c=1

Nc(NT − Nc)μcμ
T
c

− 2a
N2

T

C∑
c=1

Ncμc(NTμ − Ncμc)T

Slow Feature Analysis for Pattern Discrimination 3025

= 2
NT

C∑
c=1

Nc�c + 2a
NT

[
C∑

c=1

Ncμcμ
T
c − NTμμT

]

= 2
NT

SW + 2a
NT

SB . (A.36)

Finally, we repeat the results of equations A.30 and A.36,

〈xxT 〉t = 1
NT

SW + 1
NT

SB, (A.37)

〈ẋẋT 〉t = 2
NT

SW + 2a
NT

SB, (A.38)

and note the similarity to the results for the case of two classes in the
previous section, equations A.19 and A.20.

A.3 Derivation for Time Series Consisting of Trajectories. In this sec-
tion we derive the expressions given in equations 2.21 to 2.24, which refor-
mulate the SFA objective for the case of time series consisting of trajectories
of training examples rather than a sequence of individual points that are
independently chosen.

First, we consider the case where the time series xt consists of multiple
repetitions of a fixed trajectory t̃ := (x̃1, x̃2, . . . , x̃T̃) of length T̃ and random
intervals of independently drawn “noise” samples drawn from the same
distribution (characterized by mean μ and covariance �) as the x̃k . We
assume without loss of generality that μ = 〈xt〉t = 0. Furthermore, let T be
the total length of xt , and let p̃ be the fraction of these T time steps of xt that
are occupied by the trajectory t̃.

For the expected covariance matrix of xt we get

〈〈xxT 〉t〉= 1
T

T∑
t=1

〈xxT 〉

= 1
T

∑
t∈t̃

〈xxT 〉 + 1
T

∑
t �∈t̃

〈xxT 〉

= p̃
T̃

T̃∑
k=1

xkxT
k + (1 − p̃)�

= p̃�̃ + (1 − p̃)�. (A.39)

3026 S. Klampfl and W. Maass

We use the notation t ∈ t̃ to denote that a time step t within the time series
xt belongs to an instance of t̃. The matrix

�̃ := 1
T̃

T̃∑
k=1

x̃k x̃T
k (A.40)

is the covariance matrix of t̃ with itself. Note that the average 〈·〉 in equation
A.39 is over all realizations of xt with a fixed trajectory t̃. If we also average
over different realizations of t̃, the covariance becomes �.

The covariance matrix of time derivatives can be written as

〈〈ẋẋT 〉t〉 = 2〈〈xxT 〉t〉 − 1
T − 1

T∑
t=2

(〈xtxT
t−1〉 + 〈xt−1xT

t 〉)

≈ 2 · p̃�̃ + 2 · (1 − p̃)� − p̃ · T̃ − 1
T̃

· �̃t, (A.41)

where

�̃t := 1
T̃ − 1

T̃∑
k=2

(x̃k x̃T
k−1 + x̃k−1x̃T

k) (A.42)

is the covariance of t̃ with t̃ delayed by one time step, that is, it captures the
temporal correlations of time lag 1. This matrix enters equation A.41 with
a coefficient p̃(T̃ − 1)/T̃ , because each of the p̃T/T̃ trajectories of the time
series contributes T̃ − 1 times the expected value, equation A.42, to the sum
in the first line of equation A.41. Note that all other temporal correlations
of xt , apart from those caused by t̃, are zero. The approximation in equation
A.41 is valid for large T (i.e., when T/(T − 1) ≈ 1).

Inserting equations A.39 and A.41 into the SFA objective, equation 2.2,
yields

J SF A(w) = wT 〈ẋẋT 〉tw
wT 〈xxT 〉tw

= 2 − p̃ · T̃ − 1
T̃

· wT �̃tw
wT 〈xxT 〉tw

, (A.43)

and therefore

min J SF A(w) ⇔ max
wT �̃tw

wT 〈xxT 〉tw
. (A.44)

Next, we consider the two-class problem, where the time series xt consists
of a sequence of trajectories chosen from two classes T1 and T2. After each
trajectory, the class of the next trajectory is switched with probability p, or

Slow Feature Analysis for Pattern Discrimination 3027

left unchanged with probability 1 − p, according to the Markov model in
Figure 2. These two trajectory sets can be characterized by their means, μ1
and μ2, and their covariances, �1 and �2. Each of these quantities equals
equations A.3 to A.6 evaluated for point sets S1 and S2 composed of the
individual points of the trajectories in T1 and T2, respectively. Furthermore,
let �̃

(1)
t and �̃

(2)
t be the average temporal covariance matrices with time lag

1 for trajectories in T1 and T2,

�̃
(c)
t := 1

N(T̃ − 1)

N∑
i=1

T̃∑
k=2

[(x̃c
i,k − μc)(x̃c

i,k−1 − μc)T

+ (x̃c
i,k−1 − μc)(x̃c

i,k − μc)T], (A.45)

where N is the number of trajectories in each of the sets T1 and T2 and T̃ is
the length of a trajectory (we assume for simplicity that all trajectories have
the same length). x̃c

i,k is the kth point in the ith trajectory of class c. Note
that in contrast to equation A.42, the mean μc is class specific and different
from zero.

The expected covariance matrix of the time series xt is not affected by
temporal correlations and is therefore equal to the case where individual
points are chosen instead of trajectories (see equation A.10),

〈〈xxT 〉t〉 =
C∑

c=1

πc
(
�c + μcμ

T
c

)
, (A.46)

where C = 2 is the number of classes and πc = 1/2 is the probability of
being in state c for the stationary distribution of the Markov model. For the
expected covariance matrix of time derivatives, we write

〈〈ẋẋT 〉t〉 = 2〈〈xxT 〉t〉 − 1
T − 1

T∑
t=2

(〈xtxT
t−1〉 + 〈xt−1xT

t 〉). (A.47)

The time series has length T and consists of T/T̃ trajectories. Therefore,
we can split up the sum in the second term on the right-hand side of the
last equation into T − T/T̃ contributions from transitions (xt−1, xt) within a
trajectory and T/T̃ − 1 contributions of switches between two temporally
adjacent trajectories (i.e., at time points t when a new trajectory starts).
Concerning the first part of the sum, each of the T/T̃ trajectories contributes
T̃ − 1 times the expected value

∑
c πc(�̃(c)

t + 2μcμ
T
c). The second part is

determined according to the transition probabilities between the classes,

3028 S. Klampfl and W. Maass

similar to equations A.14 and A.34:

〈〈ẋẋT 〉t
〉 ≈ 2

C∑
c=1

πc�c + 2
C∑

c=1

πcμcμ
T
c − T̃ − 1

T̃

C∑
c=1

πc�̃
(c)
t

− 2
(

1 − 1
T̃

) C∑
c=1

πcμcμ
T
c − 2

T̃

∑
c1,c2

πc1 Pc1c2μc1
μT

c2
. (A.48)

Again we approximated T/(T − 1) ≈ 1. For the Markov model in Figure 2
and �̃t = ∑C

c=1 πc�̃
(c)
t , we can write

〈〈ẋẋT 〉t〉 = �1 + �2 − T̃ − 1
T̃

�̃t + p
T̃

(μ1 − μ2)(μ1 − μ2)T . (A.49)

Using the definitions of the within-class and between-class scatter matrices
of the FLD (see equations A.7 and A.8), we can rewrite equations A.46 and
A.49:

〈xxT 〉t = 1
2NT̃

SW + 1
4

SB, (A.50)

〈ẋẋT 〉t = 1
NT̃

SW + p
T̃

· SB − T̃ − 1
T̃

· �̃t. (A.51)

Appendix B: Simulation Details

B.1 Estimating the Error Between SFA and FLD. We estimated the de-
viation between the result of FLD applied to a two-dimensional, two-class
classification problem and the result of SFA applied to a time series gener-
ated from this classification problem using the Markov model in Figure 2
as the angle α between the weight vectors yielded by both methods,

α = arccos
wSF A · wF L D

||wSF A|| · ||wF L D|| . (B.1)

We evaluated this angular error as a function of p, the switching probability
in Figure 2, that is, the probability that two consecutive points in the time
series are from different classes.

For each probability p (we varied p from 0.01 to 1.0 linearly in intervals
of 0.01), we generated 100 different random classification problems in the
following way. For each of the two classes, a two-dimensional mean vector
and 2-by-2 covariance matrix was chosen. The coordinates of the mean
were drawn independently and uniformly from the interval [−4, 4]. The
covariance matrix was determined by its two eigenvalues (drawn uniformly

Slow Feature Analysis for Pattern Discrimination 3029

from [0, 1]) and a rotation angle (drawn uniformly from [0, 2π]). For each
class, 250 points were drawn from a gaussian distribution with the selected
mean and covariance. The time series for SFA is generated using the Markov
model in Figure 2 with the given switching probability p. The length T of
this time series is chosen to be 10,000 samples.

We computed the average angle between the weight vectors found by
SFA and FLD on those 100 classification problems, yielding values between
0 and 180 degrees. We replaced angles α > 135◦ with angles 180◦ − α, since
projection directions with different signs are equivalent. Angles between
45 and 135 degrees were obtained only for p > 0.5, where they averaged to
about 90 degrees.

B.2 Calculating the Probability of Linear Separability. To calculate the
probability of linear separability in Figure 6B, we proceeded in the following
way. We generated pairs of point sets (i.e., trajectories), each consisting of
100 points drawn uniformly from the d-dimensional hypercube [0, 1]d . We
tested whether these two random point sets are linearly separable using
an efficient method proposed in Yogananda, Murthy, and Gopal (2007). We
evaluated the probability of linear separability for each dimension d as the
percentage of 1000 such randomly generated classification problems that
resulted in linearly separable point sets. For each classification problem,
we also searched for the minimal distance between any two points from
different sets. We calculated the average minimum distance over all 1000
classification problems for each dimension d .

We found that the curve for the probability of linear separability closely
resembles the analytical result of Cover (1965), which considered the frac-
tion of all possible dichotomies of N given data points in general position
in d dimensions, which are linearly separable.

B.3 Detailed Description of the Network Simulations.

B.3.1 Generation of Input Spike Trains. In our circuit simulations, we use
two different types of input: spike trains generated from isolated spoken
digits preprocessed with a model of the cochlea and spike patterns embed-
ded in a continuous stream of Poisson input.

In the speech recognition tasks, we use the isolated spoken digits data
set in Hopfield and Brody (2000, 2001). This data set consists of of the audio
signals recorded from five speakers pronouncing the digits 0 and 1 to 9 in 10
different utterances (trials) each (i.e., overall there are 500 speech samples).
The duration of an utterance is several 100 ms.

To generate a biologically realistic network input, the raw audio signals
are converted into the output of a cochlea (“cochleagram”) using Lyon’s
passive ear model (Lyon, 1982). This computational model consists of a
linear filter bank and a nonlinear gain control network and captures the
filtering properties of the cochlea and hair cells of the inner ear. The resulting

3030 S. Klampfl and W. Maass

analog cochleagram is an 86-dimensional time series with values between
0 and 1. An implementation of this cochlea model can be found in the
Auditory Toolbox for Matlab (Slaney, 1998).

This analog waveform is then transformed into spike trains using the
BSA algorithm (Schrauwen & Campenhout, 2003). This method is able to
reconstruct a spike train from an analog trace with a given reconstruction
filter. Filtering the spike train with this reconstruction filter should yield
a trace with a minimal deviation from the original waveform. We used
the implementation from the Reservoir Computing Toolbox (Verstraeten,
Schrauwen, D’Haene, & Stroobandt, 2007). We chose a reconstruction filter
with an exponential form (τ = 30 ms) and selected the threshold parameter
of the algorithm to be 0.97 (standard value). In order to obtain lower firing
rates of the spiking stimuli, we scaled the amplitude of the reconstruction
filter such that it has an integral of 40. Furthermore we selected 20 from
these 86 spike trains in equidistant steps. The same spike patterns have also
been used for the speech recognition task in Legenstein et al. (2008).

The embedded spike patterns, on the other hand, consist of 10 Pois-
son spike train segments of length Tseg = 250 ms and with rate r = 20 Hz.
Poisson spike trains are generated by positioning spikes in time according
to interspike intervals drawn from an exponential distribution with rate r
until the segment length Tseg is reached. Additionally, a refractory period
of 3 ms after a spike is considered, during which no further spike can oc-
cur. Similar spike patterns have been considered, for example in Häusler
and Maass (2007). For each pattern class, one such pattern is generated. To
model the continuous Poisson input, we preceded each pattern instance
with a random Poisson input with a duration uniformly drawn between
100 ms and 500 ms.

B.3.2 Our Model of a Cortical Microcircuit. As a cortical microcircuit we
use the laminar circuit model from Häusler and Maass (2007) consisting of
560 spiking neurons (Izhikevich neuron model) with dynamic conductance-
based synapses. The short-term dynamics of these synapses has been mod-
eled according to the phenomenological model proposed in Markram,
Wang, and Tsodyks (1998). To reproduce the background synaptic input
that cortical neurons typically receive in vivo, additional synaptic noise
is incorporated as an Ornstein-Uhlenbeck (OU) process as conductance
input (Destexhe et al., 2001). All parameters of this model, including short-
term synaptic dynamics and background synaptic activity, are chosen as in
Häusler and Maass (2007).

The neurons are organized in six pools; an excitatory and inhibitory pool
for each of layers 2/3, 4, and 5. The numbers of neurons in each layer are 168,
112, and 280, respectively. The connection strengths and probabilities within
a pool and between the pools are obtained from data found in Thomson
et al. (2002) and Gupta et al. (2000). All of the stimulus spike trains (5 for
the spike pattern task; 20 for the speech recognition task) are fed into the

Slow Feature Analysis for Pattern Discrimination 3031

circuit via the input stream that connects mainly to layer 4 (input stream 1
in Figure 1 of Häusler & Maass, 2007). The second input stream into layer
2/3 is switched off.

B.3.3 Training the Readouts of the Circuit. We instantiated a single circuit
and simulated the same network for each stimulus in all the experiments
described in this article. In the speech recognition tasks, the network is
simulated for the same amount of time for all stimuli (500 ms for Figure 8
and 750 ms for Figure 9). We low-pass filtered the response spike trains with
an exponential filter in order to model the contribution of these spikes to the
membrane potential of a hypothetical readout neuron. The time constant
of this exponential filter is chosen to be 30 ms. We refer to this low-pass
filtered high-dimensional analog trace as the trajectory of network states in
response to a particular stimulus.

To generate a training input for SFA, we sampled these trajectories with
a sampling time of 1 ms and concatenated a random sequence of such
trajectories in time (100 trajectories for Figure 8, 1000 trajectories for Figure 9,
and 200 trajectories for Figure 7). For the embedded spike pattern task,
one trajectory is defined by the response during one noise-pattern pair.
Note that the same stimulus yields different trajectories due to the intrinsic
OU noise of the network that is used to model the background synaptic
activity. We proceeded in a similar way as we generated the time series from
a classification problem. After each drawing of a trajectory, we switched
the class from which the next trajectory is drawn according to a Markov
model such as that in Figure 2. The probability p for switching the class
is chosen to be 0.2 for all experiments, except that for the experiment in
Figure 7, we had to choose a lower value of p = 0.01. We ensured that in the
resulting training sequence, the number of trajectories was balanced across
different classes by requiring that the standard deviation of the numbers of
trajectories for each class was at most T/20. Before applying SFA or FLD, we
projected the trajectories onto the first 100 principal components in order
to prevent the covariance matrices from becoming singular, which would
lead to numerical issues in the corresponding eigenvalue problems. For
the SVM classification of the network states in Figure 8A, we used a linear
kernel with C = 10. The training set for both FLD and SVM consisted of
the network states sampled every 1 ms of all trajectories considered, but
only states during stimulus presentation are taken into account. The same
applies to the SVM classification of the slow features for the evaluation of
the SFA performance. This performance is evaluated using 10-fold stratified
cross validation, where the folds are sampled according to the class size.

B.4 Software. We performed all simulations using Python and NumPy.
We used the implementations of SFA and FLD contained in the MDP
toolkit (Zito, Wilbert, Wiskott, & Berkes, 2008). The Modular toolkit for
data processing (MDP) is a data processing framework written in Python.

3032 S. Klampfl and W. Maass

The circuit simulations were carried out with the PCSIM software package
(http://www.lsm.tugraz.at/pcsim). PCSIM is a parallel simulator for bio-
logically realistic neural networks with a fast C++ simulation core and a
Python interface. For support vector machines (SVM), we used the libSVM
toolbox contained in the PyML package (http://pyml.sourceforge.net/).
Figures were created using Python/Matplotlib and Matlab.

Acknowledgments

We are very grateful to Laurenz Wiskott who provided particularly helpful
comments on this article. Furthermore, we thank Henning Sprekeler and
Lars Büsing for stimulating comments and discussions. This article was
written under partial support by the Austrian Science Fund FWF project
S9102-N13 and project FP6-015879 (FACETS), project FP7-216593 (SECO),
and project FP7-231267 (ORGANIC) of the European Union.

References

Atick, J. J., & Redlich, A. N. (1993). Convergent algorithm for sensory receptive field
development. Neural Computation, 5, 45–60.

Becker, S., & Hinton, G. E. (1992). A self-organizing neural network that discovers
surfaces in random-dot stereograms. Nature, 355(6356), 161–163.

Berkes, P. (2005a). Handwritten digit recognition with nonlinear Fisher discriminant
analysis. In Proc. of ICANN (Vol. 2, pp. 285–287). Berlin: Springer.

Berkes, P. (2005b). Pattern recognition with slow feature analysis. Cognitive Sciences
EPrint Archive (CogPrint) 4104. Available online at http://cogprints.org/4104/.

Berkes, P. (2006). Temporal slowness as an unsupervised learning principle. Unpublished
doctoral dissertation, Humboldt-Universität zu Berlin.

Berkes, P., & Wiskott, L. (2003). Slow feature analysis yields a rich repertoire of
complex cell properties. Journal of Vision, 5(6), 579–602.

Berkes, P., & Wiskott, L. (2006). On the analysis and interpretation of inhomogeneous
quadratic forms as receptive fields. Neural Computation, 18(8), 1868–1895.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer-Verlag.
Blaschke, T., Berkes, P., & Wiskott, L. (2006). What is the relation between slow feature

analysis and independent component analysis? Neural Computation, 18(10), 2495–
2508.

Blaschke, T., Zito, T., & Wiskott, L. (2007). Independent slow feature analysis and
nonlinear blind source separation. Neural Computation, 19(4), 994–1021.

Bray, A., & Martinez, D. (2003). Kernel-based extraction of slow features: Complex
cells learn disparity and translation invariance from natural images. In S. Becker,
S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems,
15 (pp. 253–260). Cambridge, MA: MIT Press.

Broome, B. M., Jayaraman, V., & Laurent, G. (2006). Encoding and decoding of
overlapping odor sequences. Neuron, 51, 467–482.

Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal
processing in cortical networks. Nature Reviews in Neuroscience, 10(2), 113–125.

http://www.lsm.tugraz.at/pcsim
http://pyml.sourceforge.net/
http://cogprints.org/4104/

Slow Feature Analysis for Pattern Discrimination 3033

Buonomano, D. V., & Mauk, M. D. (1994). Neural network model of the cerebellum:
Temporal discrimination and the timing of motor responses. Neural Computation,
6, 38–55.

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition. IEEE Transactions on Electronic
Computers, 14(3), 326–334.

Cox, D. D., Meier, P., Oertelt, N., and DiCarlo, J. J. (2005). “Breaking” position-
invariant object recognition. Nature Neuroscience, 8(9), 1145–1147.

Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle:
An information-theoretic approach. Neural Computation, 20(4), 1026–1041.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathe-
matical modeling of neural systems. Cambridge, MA: MIT Press.

Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating
synaptic conductances recreate in vivo–like activity in neocortical neurons. Neu-
roscience, 107(1), 13–24.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in
Cognitive Sciences, 11(8), 333–341.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. Hoboken, NJ:
Wiley.

Einhäuser, W., Kayser, C., König, P., & Körding, K. P. (2002). Learning the invariance
properties of complex cells from their responses to natural stimuli. European
Journal of Neuroscience, 15(3), 475–486.

Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of
recent memory sequences in prefrontal cortex during sleep. Science, 318(5853),
1147–1150.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7, 179–188.

Földiák, P. (1991). Learning invariance from tranformation sequences. Neural Com-
putation, 3, 194–200.

Franzius, M., Sprekeler, H., & Wiskott, L. (2007). Slowness and sparseness lead to
place, head-direction, and spatial-view cells. PLoS Computational Biology, 3(8),
e166.

Franzius, M., Vollgraf, R., & Wiskott, L. (2007). From grids to places. Journal of
Computational Neuroscience, 22(3), 297–299.

Franzius, M., Wilbert, N., & Wiskott, L. (2008). Invariant object recognition with
slow feature analysis. In V. Kurkova, R. Neruda, & J. Koutnik (Eds.), Proc. 18th
Intl. Conf. on Artificial Neural Networks (pp. 961–970). Berlin: Springer.

Goodall, M. C. (1960). Statistics: Performance of a stochastic net. Nature, 185(4712),
557–558.

Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity
of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–
278.

Häusler, S., & Maass, W. (2007). A statistical analysis of information processing
properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17(1),
149–162.

Hopfield, J. J., & Brody, C. D. (2000). What is a moment? “Cortical” sensory integra-
tion over a brief interval. Proc. Nat. Acad. Sci. USA, 97(25), 13919–13924.

3034 S. Klampfl and W. Maass

Hopfield, J. J., & Brody, C. D. (2001). What is a moment? Transient synchrony as a
collective mechanism for spatio-temporal integration. Proc. Nat. Acad. Sci. USA,
98(3), 1282–1287.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New
York: Wiley.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17, 2443–2452.

Ji, D., & Wilson, M. A. (2008). Firing rate dynamics in the hippocampus induced by
trajectory learning. J. Neurosci., 28(18), 4679–4689.

Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural
stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc.
Nat. Acad. Sci. USA, 104(47), 18772–18777.

Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational
performance for neural microcircuit models. Neural Networks, 20(3), 323–334.

Legenstein, R., Naeger, C., & Maass, W. (2005). What can a neuron learn with spike-
timing-dependent plasticity? Neural Computation, 17, 2337–2382.

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Computational Biology, 4(10), 1–27.

Li, N., & DiCarlo, J. J. (2008). Unsupervised natural experience rapidly alters invari-
ant object representation in visual cortex. Science, 321, 1502–1507.

Lyon, R. F. (1982). A computational model of filtering, detection, and compression
in the cochlea. In Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing
(pp. 1282–1285). Piscataway, NJ: IEEE.

Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14(11), 2531–2560.

Maass, W., Natschläger, T., & Markram, H. (2004). Computational models for generic
cortical microcircuits. In J. Feng (Ed.), Computational neuroscience: A comprehensive
approach (pp. 575–605). London: Chapman & Hall, and Boca Raton, FL: CRC.

Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same
axon of neocortical pyramidal neurons. Proc. Nat. Acad. Sci. USA, 95, 5323–5328.

Masquelier, T., Guyonneau, R., & Thorpe, S. J. (2009). Competitive STDP-based spike
pattern learning. Neural Computation, 21(5), 1259–1276.

Masquelier, T., & Thorpe, S. J. (2007). Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Computational Biology, 3(2), e31.

Mazor, O., & Laurent, G. (2005). Transient dynamics versus fixed points in odor
representations by locust antennal lobe projection neurons. Neuron, 48, 661–673.

Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential
synapse. Neural Computation, 3(3), 312–320.

Rabinovich, M., Huerta, R., & Laurent, G. (2008). Transient dynamics for neural
processing. Science, 321, 48–50.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT
Press.

Schrauwen, B., & Campenhout, J. V. (2003). BSA, a fast and accurate spike train
encoding scheme. In J. Van Campenhout (Ed.), Proceedings of the International
Joint Conference on Neural Networks. Piscataway, NJ: IEEE.

Slow Feature Analysis for Pattern Discrimination 3035

Slaney, M. (1998). Auditory Toolbox: A MATLAB toolbox for auditary modeling work
(Tech. Report 55). Cupertino, CA: Apple Computer.

Sprekeler, H., Michaelis, C., & Wiskott, L. (2007). Slowness: An objective for spike-
timing-plasticity? PLoS Computational Biology, 3(6), 1136–1148.

Stone, J. V., & Bray, A. J. (1995). A learning rule for extracting spatio-temporal
invariances. Network: Computation in Neural Systems, 6(3), 429–436.

Thomson, A. M., West, D. C., Wang, Y., & Bannister, A. P. (2002). Synaptic connections
and small circuits involving excitatory and inhibitory neurons in layers 2–5 of
adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling
in vitro. Cerebral Cortex, 12(9), 936–953.

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The information bottleneck method.
In Proceedings of the 37th Annual Allerton Conference on Communication, Control and
Computing (pp. 368–377). Champaign, IL: University of Illinois.

Turner, R., & Sahani, M. (2007). A maximum-likelihood interpretation for slow
feature analysis. Neural Computation, 19(4), 1022–1038.

Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007). An experimen-
tal unification of reservoir computing methods. Neural Networks, 20(3), 391–403.

Verstraeten, D., Schrauwen, B., Stroobandt, D., & Campenhout, J. V. (2005). Isolated
word recognition with the liquid state machine: A case study. Inf. Process. Lett.,
95(6), 521–528.

Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and decorrelation in primary
visual cortex during natural vision. Science, 287(5456), 1273–1275.

Wallis, G., & Rolls, E. T. (1997). A model of invariant object recognition in the visual
system. Prog. Neurobiol, 51, 167–194.

Wiskott, L. (1998). Learning invariance manifolds. In Proc. of the 5th Joint Symp. on
Neural Computation (pp. 196–203).

Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free
responses. Neural Computation, 15(9), 2147–2177.

Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning
of invariances. Neural Computation, 14(4), 715–770.

Wyss, R., König, P., & Verschure, P. F. M. J. (2006). A model of the ventral visual
system based on temporal stability and local memory. PLoS Computational Biology,
4(5), 0001–0008.

Yogananda, A. P., Murthy, M. N., & Gopal, L. (2007). A fast linear separability test
by projection of positive points on subspaces. In ICML ’07: Proceedings of the 24th
International Conference on Machine Learning (pp. 713–720). New York: ACM.

Zito, T., Wilbert, N., Wiskott, L., & Berkes, P. (2008). Modular toolkit for data Process-
ing (MDP): A Python data processing framework. Frontiers in Neuroinformatics,
2, 8.

Received December 5, 2009; accepted May 22, 2010.

