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Abstract

The control of neuroprosthetic devices from the activitynaftor cortex neurons
benefits from learning effects where the function of thesgroes is adapted to
the control task. It was recently shown that tuning propsraf neurons in mon-
key motor cortex are adapted selectively in order to comgienf®or an erroneous
interpretation of their activity. In particular, it was shin that the tuning curves of
those neurons whose preferred directions had been migieted changed more
than those of other neurons. In this article, we show thaettperimentally ob-
served self-tuning properties of the system can be explaimethe basis of a
simple learning rule. This learning rule utilizes neuromaise for exploration and
performs Hebbian weight updates that are modulated by aagtelwvard signal.
In contrast to most previously proposed reward-modulateloldian learning rules,
this rule does not require extraneous knowledge about vehavise and what is
signal. The learning rule is able to optimize the perforneoicthe model system
within biologically realistic periods of time and under higoise levels. When the
neuronal noise is fitted to experimental data, the modelyres learning effects
similar to those found in monkey experiments.

1 Introduction

It is a commonly accepted hypothesis that adaptation of\beheesults from changes in synap-
tic efficacies in the nervous system. However, there exitks knowledge about how changes in
synaptic efficacies change behavior and about the learmingples that underlie such changes. Re-
cently, one important hint has been provided in the expartaiestudy [1] of a monkey controlling

a neuroprostethic device. The monkey’s intended movensatity vector can be extracted from
the firing rates of a group of recorded units by the populatiector algorithm, i.e., by computing
the weighted sum of their PDs, where each weight is the undtisnalized firing rate [2}. In [1],
this velocity vector was used to control a cursor in a 3D dteality environment. The task for the
monkey was to move the cursor from the center of an imaginalog ¢o a target appearing at one of
its corners. It is well known that performance increase$\piiactice when monkeys are trained to
move to targets in similar experimental setups, i.e., timefion of recorded neurons is adapted such
that control over the new artificial “limb” is improved [3]nl[1], it was systematically studied how
such reorganization changes the tuning properties of detbneurons. The authors manipulated
the interpretation of recorded firing rates by the readoatey (i.e., the system that converts firing
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In general, a unit is not necessarily equal to a neuron in Xperéments. Since the spikes of a unit are
determined by a spike sorting algorithm, a unit may repreenmixed activity of several neurons.



rates of recorded neurons into cursor movements). Whemthgpretation was altered for a subset
of neurons, the tuning properties of the neurons in this sutisanged significantly stronger than
those of neurons for which the interpretation of the readgatem was not changed. Hence, the ex-
periment showed that motor cortical neurons can changedhgvity specifically and selectively to
compensate for an altered interpretation of their actiwithin some task. Such adjustment strategy
is quite surprising, since it is not clear how the corticapiiion mechanism is able to determine for
which subset of neurons the interpretation was altered.afé to this learning effect as the “credit
assignment” effect.

In this article, we propose a simple synaptic learning ruld apply it to a model neural network.
This learning rule is capable of optimizing performance i@ reaching task and it can explain
the learning effects described in [1]. It is biologicallyafistic since weight changes are based
exclusively on local variables and a global scalar rewagdaiR(¢t). The learning rule is reward-
modulated Hebbian in the following sense: Weight changsgrapses are driven by the correlation
between a global reward signal, the presynaptic activitg, the difference of the postsynaptic po-
tential from its recent mean (see [4] for a similar approacigveral reward-modulated Hebbian
learning rules have been studied for quite some time bothédrcontext of rate-based [5, 6, 7, 8, 4]
and spiking models [9, 10, 11, 12, 13, 14, 15, 16]. They tuttrt@be viable learning mechanismsiin
many contexts and constitute a biologically plausibleraliéve [17, 18] to backpropagation based
mechanisms preferentially used in artificial neural nekgoiOne important feature of the learning
rule proposed in this article is that noisy neuronal outputsed for exploration to improve perfor-
mance. It was often hypothesized that neuronal varialility optimize motor performance. For
example in songbirds, syllable variability results in famm variations in the motor command, i. e.
the variability of neuronal activity [19]. Furthermore gite exists evidence for the songbird system
that motor variability reflects meaningful motor exploaatithat can support continuous learning
[20]. We show that relatively high amounts of noise are beiwdffor the adaptation process but
not problematic for the readout system. We find that unddisteanoise conditions, the learning
rule produces effects surprisingly similar to those foundhie experiments of [1]. Furthermore,
the version of the reward-modulated Hebbian learning rbé tve propose does not require ex-
traneous information about what is noise and what is sigfdus, we show in this study that
reward-modulated learning is a possible explaination ¥pegimental results about neuronal tuning
changes in monkey pre-motor cortex. This suggests thatrdemadulated learning is an important
plasticity mechanism for the acquisition of goal-direcitethavior.

2 Learning effects in monkey motor cortex

In this section, we briefly describe the experimental resafl{1] as well as the network that we used
to model learning in motor cortex. Neurons in motor and preanoortex of primates are broadly
tuned to intended arm movement direction [212 3T his sets the basis for the ability to extract
intended arm movement from recorded neuronal activity ithese areas. The tuning curve of a
direction tuned neuron is given by its firing rate as a funttdmovement direction. This curve can
be fitted reasonably well by a cosine function. The prefediegttion (PD)p; € R? of a neuron is
defined as the direction in which the cosine fit to its firingeriatmaximal, and the modulation depth
is defined as the difference in firing rate between the maxirofithe cosine fit and the baseline
(mean). The experiments in [1] consisted of a sequence obii@in control sessionCalibration,
Control, Perturbation, andWashout. The tuning functions of an average of 40 recorded neurons
were obtained in th€alibration session where the monkey moved its hand in a center out regachi
task. Those PDs (or manipulated versions of them) were lsted for decoding neural trajectories.
We refer to PDs used for decoding as “decoding PDs” (dPDs)derato distinguish them from
measured PDs. I6ontrol, Perturbation, andWashout sessions the monkey had to perform a cursor
control task in a 3D virtual reality environment (see FigiB). The cursor was initially positioned
in the center of an imaginary cube, a target position on ortee€orners of the cube was randomly
selected and made visible. When the monkey managed to hiatpet position with the cursor
or a 3s time period expired, the cursor position was resehéootigin and a new target position
was randomly selected from the eight corners of the imagisabe. In theControl session, the
measured PDs were used as dPDs for cursor control. Ifrafterbation session, the dPDs of a
randomly selected subset of neurons (25% or 50% of the redandurons) were altered. This was

2Arm movement refers to movement of the endpoint of the arm.
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Figure 1: Description of the 3D cursor control task and nekwmodel for cursor control. A)
Schematic of the network model. A set of neurons project ta:°**! noisy neurons in motor
cortex. The monkey arm movement was modeled by a fixed linegaping from the activities of
the modeled motor cortex neurons to the 3D velocity vectothef monkey arm. A subset of
neurons in the simulated motor cortex was recorded for eursatrol. The cursor velocity was
given by the population vector. B) The task was to move thearurom the center of an imaginary
cube to one of its eight corners.

achieved by rotating the measured PDs by 90 degrees aroamghithor z axes (all PDs were rotated
around a single common axis in each experiment). We ternethesrongotated neurons. Other
dPDs remained the same as in antrol session ifon-rotated neurons). The measured PDs were
used for cursor control in the subsequé&viishout session. In thderturbation session, neurons
adapted their firing behavior to compensate for the alteRidsd The authors observed differential
effects of learning for the two groups of non-rotated negrand rotated neurons. Rotated neurons
tended to shift their PDs in the direction of dPD rotatiorysttompensating for the perturbation.
For non-rotated neurons, the change of the preferred trecivas weaker and significantly less
strongly biased towards the rotation direction. We refethie differential behavior of rotated and
non-rotated neurons as the “credit assignment effect”.

Network and neuron model: Our aim in this article is to explain the described effectshe
simplest possible model. The model consisted of two pojmulatof neurons, see Figure 1A. The
input population modeled those neurons which provide inpuhe neurons in motor cortex. It
consisted ofn = 100 neurons with activities: (t), ...,z (t) € R. Another population modeled
neurons in motor cortex which receive inputs from the inpopydation. It consisted ofit°**! =
340 neurons with activities; (t), . . ., s, (). All modeled motor cortex neurons were used to
determine the monkey arm movement in our model. A small nurobthem ¢ = 40) modeled
recorded neurons used for cursor control. We denote theitéesiof this subset as, (¢), . . ., s, (t).

The total synaptic inpu;(t) for neuron: at timet was modeled as a noisy weighted sum of its
inputs:

a;(t) = i wijx;(t) + &(t), &, (t) drawn from distributiorD(v), Q)
j=1

wherew;; is the synaptic efficacy from input neurgno neurori. These weights were set randomly
from a uniform distribution in the intervgl-0.5,0.5] at the beginning of each simulatiom; (¢)
models some exploratory signal needed to explore possitigibnetwork behaviors. In cortical
neurons, this exploratory signal could for example resoltf neuronal or synpatic noise, or it could
be spontaneous activity of the neuron. An independent safrgoh the zero mean distributidn(v)
was drawn as the exploratory sigra(t) at each time step. The parametefexploration level)

3The distinction between these two layers is purely funetiolnput neurons may be situated in extracortical
areas, in other cortical areas, or even in motor cortexfitSehe functional feature of these two populations
in our model is that learning takes place solely in synap$gsajections between these population since the
aim of this article is to explain the learning effects in tfmglest model. But in principle the same learning is
applicable to multilayer networks.



determines the variance of the distribution and hence theuairof noise in the neuron. A nonlinear
function was applied to the total synaptic inpsf(t) = o (a;(t)), to obtain the activitys;(¢) of
neuron; at timet. We usedr : R — R is the piecewise linear activation functief) = max{z,0}

in order to guarantee non-negative firing rates.

Task model: We modeled the cursor control task as shown in Figure 1B.tigssible cursor target
positions were located at the corners of a unit cube in 3Despdtch had its center at the origin
of the coordinate system. At each time steppe desired direction of cursor movemerit(¢) was
computed from the current cursor and target position. Byeation, the desired directign’ (¢) had
unit Euclidean norm. From the desired movement direcgit(t), the activitieszy (t), ..., (1)

of the neurons that provide input to the motor cortex neunwase computed and the activities
s1(t), ..., sn(t) of the recorded neurons were used to determine the cursocitielia their popu-
lation activity vector (see below).

In order to model the cursor control experiment, we had tewueine the PDs of recorded neurons.
Obviously, to determine PDs, one needs a model for monkeyrasaement. In monkeys, the trans-
formation from motor cortical activity to arm movementsahves a complicated system of several
synaptic stages. In our model, we treated this transfoomats a black box. Experimental findings
suggest that monkey arm movements can be predicted quitdoyal linear model based on the
activities of a small number of motor cortex neurons [3]. \Werefore assumed that the direction
of the monkey arm movemegt*"™(¢) at timet¢ can be modeled in a linear way, using the activi-
ties of the total population of thet°*e! cortical neurons; (¢), ..., s, (t) in our simple model
and a fixed randomly chos&nx n*°*@! linear mappingy (see [23]). With the transformation from
motor cortex neurons to monkey arm movements being defihednput to the network for a given
desired directiory* should be chosen such that motor cortex heurons produce kayarm move-
ment close to the desired movement direction. We therefatated from the desired movement
direction input activitiesx(t) = crare(WH)TQTy* (), whereQ' denotes the pseudo-inverse of
Q, Wtetal denotes the matrix of weights;; before learning, and,.;. scales the input activity
such that the activities of the neurons in the simulated maidex could directly be interpreted as
rates in Hz [23]. This transformation from desired diren8do input neuron activities was defined
initially and held fixed during each simulation becausenésy took place in our model in a single
synaptic stage from neurons of the input population to nesino the motor cortex population in our
model and therefore the coding of desired directions didchanhge in the input population.

As described above, a subset of the motor cortex populatascliosen to model recorded neurons
that were used for cursor control. For each modeled recandatbni € {1,...,n}, we determined
the preferred directiop; € R? as well as the baseline activit§ and the modulation depth; by
fitting a cosine tuning on the basis of simulated monkey armameents [1, 23]. In the simulation
of a Perturbation session, dPDp; of rotated neurons were rotated versions of the measure@pPDs
(asin [1], one of thex, y, or z axis was chosen and the PDs were rotated by 90 degrees atosind t
axis), whereas the dPDs of non-rotated neurons were idgntidheir measured PDs. The dPDs
were then used to determine the movement velogits) of the cursor by the population vector
algorithm [1, 2, 23]. This decoding strategy is consisteitih\&n interpretation of the neural activity
which codes for the velocity of the movement.

3 Adaptation with an onlinelearning rule

Adaptation of synaptic efficacies;; from input neurons to neurons in motor cortex is necessary
if the actual decoding PDg§; do not produce optimal cursor trajectories. Assume thaoptimal
dPDspy, ..., P, are used for decoding. Then for some ing(t), the movement of the cursor is
not in the desired directiop* (t). The weightsw;; should therefore be adapted such that at every
time stept the direction of movement(t) is close to the desired directigrt (¢). We can quantify
the angular matctk,,., (t) at timet by the cosine of the angle between movement diregtighand

desired directioy™ (¢): Rong(t) = M% This measure has a value of 1 if the cursor moves
exactly in the desired direction, it is O if the cursor moveggendicular to the desired direction, and

itis -1 if the cursor movement is in the opposite direction.

We assume in our model that all synapses receive informatimut a global reward®(t). The
general idea that a neuromodulatory signal gates localtimplasticity was studied in [4]. In that



study, the idea was implemented by learning rules where #ighwchanges are proportional to the
covariance between the reward sigiabnd some measure of neuronal activifyat the synapse.
Here, N could correspond to the presynaptic activity, the postpiinactivity, or the product of
both. The authors showed that such learning rules can explahenomenon called Herrnstein’'s
matching law. Interestingly, for the analysis in [4] the sifie implementation of this correlation
based adaptation mechanism is not important. We investigahis article a learning rule of this
type:

EHrule:  Aw;;(t) =na;(t) [a;(t) — a;i(t)] [R(t) — R(t)], ()
wherea;(t) and R(t) denote the low-pass filtered version @ft) and R(¢) with an exponential
kernef. We refer to this rule as the exploratory Hebb rule (EH ruteltiis article. The important
feature of this learning rule is that apart from variablesahtare locally available for each neuron
(zj(t), ai(t), @;(t)), only a single scalar signaR(t), is needed to evaluate performarcd&.he
reward signalR(t) is provided by some neural circuit which evaluates perforogeof the system.
In our simulations, we simply used the angular mafh, (¢) as this reward signal. Weight updates
of the rule are based on correlations between deviatiorfseafeward signaR(¢) and the activation
a;(t) from their means. It adjusts weights such that rewards abwee@n are reinforced. The EH
rule (2) approximates gradient ascent on the reward signahploring alternatives to the actual
behavior with the help of some exploratory siggét). The deviation of the activation from the
recent meam;(t) — a;(t) is an estimate of the exploratory tegy(¢) at timet if the meana;(¢) is
based on neuron activatiods w;;x;(t") which are similar to the activation_; w;;z;(t) at timet.
Here we make use of (1) the fact that weights are changingstewly and (2) the continuity of the
task (inputsxk at successive time points are similar). Then, (2) can be ag@am approximation of

Awij(t) = nz;(H)&(t) [R(t) — R(t)] - ®3)

This rule is a typical node-perturbation learning rule [622, 10] which can be shown to approxi-
mate gradient ascent, see e.g. [10]. A simple derivationsihaws the link between the EH rule (2)
and gradient ascent is given in [23].

The EH learning rule differs from other node-perturbatiafes in an important aspect. In many
node-perturbation learning rules, the noise needs to besailie to the learning mechanism sepa-
rately from the output signal. For example, in [6] and [7] dxiyy neurons were used. The weight
updates there depend on the probability of the neuron tauvuitgn [10] the noise term is directly
incorporated in the learning rule. The EH rule does not diyemeed the noise signal. Instead a
temporally filtered version of the neurons activation isduseestimate the noise signal. Obviously,
this estimate is only sufficiently accurate if the input te treuron is temporally stable on small time
scales.

4 Comparison with experimentally observed learning effects

In this section, we explore the EH rule (2) in a cursor corttiek that was modeled to closely match
the experimental setup in [1]. Each simulated session statsbf a sequence of movements from
the center to a target position at one of the corners of thegiimaay cube, with online weight updates
during the movements. In monkey experiments, perturbaifatecoding PDs lead to retuning of
PDs with the above described credit assignment effect filrdler to obtain biologically plausible
values for the noise distribution in our neuron model, théseaon our model was fitted to data
from experiments (see [23]). Analysis of the neuronal resgs in the experiments showed that the
variance of the response for a given desired direction daaeghly linearly with the mean firing
rate of that neuron for this direction. We obtained this hétrawith our neuron model with noise
that is a mixture of an activation-independent noise soarmka noise source where the variance
scales linearly with the activation of the neuron. In patée, the noise terng;(¢) of neuroni was
drawn from the uniform distribution ifi—v;(x(t)), v; (x(¢))] with an exploration level; given by

vi(x(t)) = 10 + 2.8\/0 (Z;":l Wi (t)). The constants where chosen fit neuron behavior in the

data. We note that in all simulations with the EH rule, theuirguctivitiesz ; (¢) were scaled in such a
way that the output of the neuron at tiheould be interpreted directly as the firing rate of the neuron

*We usedi; (t) = 0.8a;(t — 1) + 0.2a;(t) and R(t) = 0.8R(t — 1) + 0.2R(t)
5A rule where the activation; is replaced by the output and obtained very similar results.
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Figure 2: One example simulation of the 50% perturbatioreexpent with the EH rule and data-
derived network parameters. A) Angular matgh,,, as a function of learning time. Every 100th
time point is plotted. B) PD shifts drawn on the unit sphembifeary units) for non-rotated (black
traces) and rotated (light cyan traces) neurons from tinéial values (light) to their values after
training (dark, these PDs are connected by the shortesbpetie unit sphere). The straight line in-
dicates the rotation axis. C) Same as B, but the view wasaltrch that the rotation axis is directed
towards the reader. The PDs of rotated neurons are conystetated in order to compensate for
the perturbation.
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Figure 3: PD shifts in simulateBerturbation sessions are in good agreement with experimental
results (compare to Figure 3A,B in [1]). Shift in the PDs measd after simulated perturbation
sessions relative to initial PDs for all units in 20 simuthexperiments where 25% (A) or 50% (B)
of the units were rotated. Dots represent individual daiats@and black circled dots represent the
means of rotated (light gray) and non-rotated (dark grayfsun

at timet. With such scaling, we obtained output values of the neuwdti®ut the exploratory signal

in the range of 0 to 120Hz with a roughly exponential disttidm. Having estimated the variability

of neuronal response, the learning rateemained the last free parameter of the model. To constrain
this parametemn was chosen such that the performance in the 25% perturbtas&rapproximately
matched the monkey performance.

We simulated the two types of perturbation experimentsntegadn [1] in our model network with

40 recorded neurons. In the first set of simulations, a ranskemnof 25% of recorded neurons were
rotated neurons iPerturbation sessions. In the second set of simulations, we chose 50 %eof th
recorded neurons to be rotated. In each simulation, 32@tswgere presented to the model, which
is similar to the number of target presentations in [1]. Rssior one example run are shown in
Figure 2. The shifts in PDs of recorded neurons induced hgitrg in 20 independent trials were
compiled and analyzed separately for rotated neurons anetatated neurons. The results are
in good agreement with the experimental data, see Figuren3hd simulated 25% perturbation



experiment, the mean shift of the PD for rotated neurons&2gs 4.8 degrees, whereas for non-
rotated neurons, it wasb + 1.6 degrees. This relatively small effect is similar to the effebserved

in [1] where the PD shift of rotated (non-rotated) units Wa$ (5.2) degrees. The effect is more
pronounced in the 50% perturbation experiment (see bel¥g)also compared the deviation of the
movement trajectory from the ideal straight line in rotatidirection half way to the targ&from
early trials to the deviation of late trials, where we scaleel results to a cube of 11cm side length
in order to be able to compare the results directly to theltegu[1]. In early trials, the trajectory
deviation was9.2 + 8.8mm, which was reduced by learning 204 + 4.9mm. In the simulated
50% perturbation experiment, the mean shift of the PD faatest neurons wak3.1 + 4.2 degrees,
whereas for non-rotated neurons, it wes1 + 2.6 degrees (in monkey experiments [1] this was
21.7 and16.1 degrees respectively). The trajectory deviation @&g + 7.5mm in early trials, and
4.8 + 5.1mm in late trials. Here, the early deviation was strongentimathe monkey experiment,
while the late deviation was smaller.

The EH rule (2) falls into the general class of correlati@séd learning rules described in [4].
In these rules the weight change is proportional to the ¢amae of the reward signal and some
measure of neuronal activity. We performed the same exgertimith slightly different correlation-
based rules

Awii(t) = naj(t)ai(t) [R(t) — R(t)] , (4)
Awij(t) = na;t)[ai(t) — ai(t)] R(?), (5)

(compare to (2)). The performance improvements were sirtolahose obtaint with the EH rule.
However, no credit assignment effect was observed withethdes. In the simulated 50% perturba-
tion experiment, the mean shift of the PD of rotated neuraons{rotated neurons) wd®.8 + 3.6
(12.0 £ 2.4) degrees for rule (4) an2b.5 4+ 4 (26.8 + 2.8) degrees for rule (5).

In the monkey experiment, training in th&rturbation session also induced in a decrease of the
modulation depth of rotated neurons. This resulted in aesead contribution of these neurons
to the cursor movement. We observed a qualitatively sinméaultin our simulations. In the 25%
perturbation simulation, modulation depths decreasederage by2.7+4.3Hz for rotated neurons.
Modulation depths for non-rotated neurons increased orageeby2.2 + 3.9Hz (average over 20
independent simulations). In the 50% perturbation sinmuatthe changes in modulation depths
were—3, 6 + 5.5Hz for rotated neurons arid4 4+ 6Hz for non-rotated neuron'sThus, the relative
contribution of rotated neurons on cursor movement deeckas

Comparing the results obtained by our simulations to théseomkey experiments (compare Figure
3 to Figure 3 in [1]), it is interesting that quantitativelyrslar effects were obtained when noise
level and learning rate was constrained by the experimelatal. One should note here that tuning
changes due to learning depend on the noise level. For srpdiration levels, PDs changed only
slightly and the difference in PD change between rotatednamdrotated neurons was small, while
for large noise levels, PD change differences can be quitgtidr Also the learning rateinfluences
the amount of PD shift differences with higher learning sdesading to stronger credit assignment
effects, see [23] for details.

The performance of the system before and after learningde/shin Figure 4. The neurons in the
network after training are subject to the same amount ofenassthe neurons in the network be-
fore training, but the angular match after training showsmiess fluctuation than before training.
Hence, the network automatically suppresses jitter onrjedtory in the presence of high explo-
ration levelsv. We quantified this observation by computing the standaxiatien of the angle
between the cursor velocity vector and the desired movemtieattion for 100 randomly drawn
noise sample$.The mean standard deviation for 50 randomly drawn targectons was always
decreased by learning. In the mean over the 20 simulatibagnean STD over 50 target directions
was 7.9 degrees before learning and 6.3 degrees afterdgatience, the network not only adapted
its response to the input, it also found a way to optimizesétssgivity to the exploratory signal.

5These deviations were computed as described in [1]

"When comparing these results to experimental results, asédtake into account the modulation depths
in monkey experiments were around 10Hz whereas in the stiaof they were around 25Hz

8This effect is not caused by a larger norm of the weight vectdihe comparison was done with weight
vectors after training normalized to their L2 norm beforaning.
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Figure 4: Network performance before and after learning
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5 Discussion

Jarosiewicz et al. [1] discussed three strategies thatiqmatentially be used by the monkey to com-
pensate for the errors caused by perturbations: re-aimgageighting, and re-mapping. Using the
re-aiming strategy, the monkey compensates for pertuhsithy aiming for a virtual target located
in the direction that offsets the visuomotor rotation. Tlkhars identified a global change in the
activity level of all neurons. This indicates a re-aimingagegy of the monkey. Re-weighting would
suppress the use of rotated units, leading to a reductiomedf tnodulation depths. A reduction of
modulation depths of rotated neurons was also identifiedaérekperimentals. A re-mapping strat-
egy would selectively change the directional tunings odted units. Rotated neurons shifted their
PDs more than the non-rotated population in the experimétgsce, the authors found elements of
all three strategies in their data. These three elementswbmal adaptation were also identified in
our model: a global change in activity of neurons (all nesrohanged their tuning properties; re-
aiming), a reduction of modulation depths for rotated nesrge-weighting), and a selective change
of the directional tunings of rotated units (re-mappind)isTimodeling study therefore suggests that
all three elements can be explained by a single synaptidati@pstrategy that relies on noisy neu-
ronal activity and visual feedback that is made accessibédl synapses in the network by a global
reward signal. It is noteworthy that the credit assignmémrmenon is an emergent feature of the
learning rule rather than implemented in some direct watyifinely, this behavior can be explained
in the following way. The output of non-rotated neurons issistent with the interpretation of the
readout system. So if this output is strongly altered, pennce will likely drop. On the other hand,
if the output of a rotated neuron is radically differentstiwill often improve performance. Hence,
the relatively high noise levels measured in experimempasbably important for the credit assign-
ment phenomenon. Under such realistic noise conditionsmmael produced effects surprisingly
similar to those found in the monkey experiments. Thus, shisly shows that reward-modulated
learning can explain detailed experimental results abeutranal adaptation in motor cortex and
therefore suggests that reward-modulated learning is saméial plasticity mechanism in cortex.

The results of this modeling paper also support the hypethiggroduced in [24]. The authors pre-
sented data which suggests that neural representationgehandomly (background changes) even
without obvious learning, while systematic task-correthtepresentational changes occur within a
learning task.

Reward-modulated Hebbian learning rules are currentlyrtbst promising candidate for a learning
mechanism that can support goal-directed behavior by egahptic changes in combination with
a global performance signal. The EH rule (2) is one partitylsimple instance of such rules that
exploits temporal continuity of inputs and an explorati@nsal - a signal which would show up as
“noise” in neuronal recordings. We showed that large exilon levels are beneficial for learning
while they do not interfere with the performance of the syshecause of pooling effects of readout
elements. This study therefore provides a hypothesis aheuble of “noise” or ongoing activity in
cortical circuits as a source for exploration utilized bgdblearning rules.
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