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The Liquid State Machine (LSM) has emerged as a computational model
that is more adequate than the Turing machine for describing compu-
tations in biological networks of neurons. Characteristic features of this
new model are (i) that it is a model for adaptive computational systems,
(ii) that it provides a method for employing randomly connected circuits,
or even “found” physical objects for meaningful computations, (iii) that
it provides a theoretical context where heterogeneous, rather than stereo-
typical, local gates or processors increase the computational power of a
circuit, (iv) that it provides a method for multiplexing different com-
putations (on a common input) within the same circuit. This chapter
reviews the motivation for this model, its theoretical background, and
current work on implementations of this model in innovative artificial
computing devices.

1.1. Introduction

The Liquid State Machine (LSM) had been proposed in [1] as a computa-

tional model that is more adequate for modelling computations in cortical

microcircuits than traditional models, such as Turing machines or attractor-

based models in dynamical systems. In contrast to these other models, the

LSM is a model for real-time computations on continuous streams of data

(such as spike trains, i.e., sequences of action potentials of neurons that

provide external inputs to a cortical microcircuit). In other words: both

inputs and outputs of a LSM are streams of data in continuous time. These

inputs and outputs are modelled mathematically as functions u(t) and y(t)

of continuous time. These functions are usually multi-dimensional (see
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Fig. 1.1, Fig. 1.2, and Fig. 1.3), because they typically model spike trains

from many external neurons that provide inputs to the circuit, and many

different ”readouts” that extract output spike trains. Since a LSM maps

input streams u(·) onto output streams y(·) (rather than numbers or bits

onto numbers or bits), one usually says that it implements a functional or

operator (like a filter), although for a mathematician it simply implements

a function from and onto objects of a higher type than numbers or bits. A

characteristic feature of such higher-type computational processing is that

the target value y(t) of the output stream at time t may depend on the

values u(s) of the input streams at many (potentially even infinitely many)

preceding time points s.

Another fundamental difference between the LSM and other computa-

tional models is that the LSM is a model for an adaptive computing system.

Therefore its characteristic features only become apparent if one considers

it in the context of a learning framework. The LSM model is motivated by

the hypothesis that the learning capability of an information processing de-

vice is its most delicate aspect, and that the availability of sufficiently many

training examples is a primary bottleneck for goal-directed (i.e, supervised

or reward-based) learning. Therefore its architecture is designed to make

the learning as fast and robust as possible. It delegates the primary load of

goal-directed learning to a single and seemingly trivial stage: the output- or

readout stage (see Fig. 1.4), which typically is a very simple computational

component. In models for biological information processing each readout

usually consists of just a single neuron, a projection neuron in the terminol-

ogy of neuroscience, which extracts information from a local microcircuit

and projects it to other microcircuits within the same or other brain areas.

It can be modelled by a linear gate, a perceptron (i.e., a linear gate with

a threshold), by a sigmoidal gate, or by a spiking neuron. The bulk of the

LSM (the ”Liquid”) serves as pre-processor for such readout neuron, which

amplifies the range of possible functions of the input streams u(t) that it

can learn. Such division of computational processing into Liquid and read-

out is actually quite efficient, because the same Liquid can serve a large

number of different readout neurons, that each learn to extract a different

”summary” of information from the same Liquid. The need for extracting

different summaries of information from a cortical microcircuit arises from

different computational goals (such as the movement direction of objects

versus the identity of objects in the case where u(t) represents visual in-

puts) of different projection targets of the projection neurons. Data from

neurophysiology show in fact that for natural stimuli the spike trains of
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Fig. 1.1.: Modelling a generic cortical microcircuit by a LSM. Template for a generic
cortical microcircuit based on data from [2], see [3, 4] for details. The width of arrows
indicates the product of connection probabilities and average strength (i.e., synaptic
weight) between excitatory (left hand side) and inhibitory (right hand side) neurons on
three cortical layers. Input stream 1 represents sensory inputs, input stream 2 represents
inputs from other cortical areas. Arrows towards the top and towards the bottom indicate
connections of projection neurons (“readouts”) on layer 2/3 and layer 5 to other cortical
microcircuits. In general these projection neurons also send axonal branches (collaterals)
back into the circuit.

different projection neurons from the same column tend to be only weakly

correlated. Thus the LSM is a model for multiplexing diverse computations

on a common input stream u(t) (see Fig. 1.1, Fig. 1.2, and Fig. 1.3).

One assumes that the Liquid is not adapted for a single computational

task (i.e., for a single readout neuron), but provides computational prepro-
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Fig. 1.2.: Hypothetical computational function of a generic cortical microcircuit in the
context of the LSM model. In general the projection neurons also provide feedback back
into the microcircuit (see Theorem 1.2 in section 3).

cessing for a large range of possible tasks of different readouts. It could also

be adaptive, but by other learning algorithms than the readouts, for exam-

ple by unsupervised learning algorithms that are directed by the statistics

of the inputs u(t) to the Liquid. The Liquid is in more abstract mod-

els a generic dynamical system – preferentially consisting of diverse rather

than uniform and stereotypical components (for reasons that will become

apparent below). In biological models (see Fig. 1.1, Fig. 1.2, Fig. 1.3) the

Liquid is typically a generic recurrently connected local network of neurons,

modelling for example a cortical column which spans all cortical layers and
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Fig. 1.3.: Multi-tasking in real-time. Below the 4 input spike trains (shown at the top)
the target outputs (dashed curves) and actual outputs (solid curves) of 7 linear readout
neurons are shown in real-time (on the same time axis). Targets were to output every
30ms the sum of the current firing rates of input spike trains 1 and 2 during the preceding
30ms (f1), the sum of the current firing rates of input spike trains 3 and 4 during the
preceding 30ms (f2), the sum of f1 and f2 in an earlier time interval [t-60ms, t-30 ms]
(f3) and during the interval [t-150ms, t] (f4), spike coincidences between inputs 1&3
(f5(t) is defined as the number of spikes which are accompanied by a spike in the other
spike train within 5ms during the interval [t-20ms, t]), a simple nonlinear combination f6

(product) and a randomly chosen complex nonlinear combination f7 of earlier described
values. Since all readouts were linear units, these nonlinear combinations are computed
implicitly within the generic microcircuit model (consisting of 270 spiking neurons with
randomly chosen synaptic connections). The performance of the model is shown for test
spike inputs that had not been used for training (see [5] for details).

has a diameter of about 0.5 mm. But it has been shown that also an ac-

tual physical Liquid (such as a bucket of water) may provide an important

computational preprocessing for subsequent linear readouts (see [6] for a

demonstration, and [7] for theoretical analysis). We refer to the input vec-



March 25, 2010 14:9 World Scientific Review Volume - 9in x 6in 189˙v2

6 W. Maass

tor x(t) that a readout receives from a Liquid at a particular time point t as

the liquid state (of the Liquid) at this time point t (in terms of dynamical

systems theory, this liquid state is that component of the internal state of

the Liquid - viewed as a dynamical system - that is visible to some readout

unit). This notion is motivated by the observation that the LSM generalizes

the information processing capabilities of a finite state machine (which also

maps input functions onto output functions, although these are functions

of discrete time) from a finite to a continuous set of possible values, and

from discrete to continuous time. Hence the states x(t) of an LSM are more

”liquid” than those of a finite state machine.

Fig. 1.4.: Structure of a Liquid State Machine (LSM) M , which transforms input streams
u(·) into output streams y(·). LM denotes a Liquid (e.g., some dynamical system), and
the “liquid state” xM (t) ∈ R

k is the input to the readout at time t. More generally,
xM (t) is that part of the current internal state of the Liquid that is “visible” for the
readout. Only one input- and output channel are shown for simplicity.

This architecture of a LSM, consisting of Liquid and readouts, makes

sense, because it turns out that in many contexts there exist common com-

putational preprocessing needs for many different readouts with different

computational goals. This can already be seen from the trivial fact that

computing all pairwise products of a set of input numbers (say: of all com-

ponents of a multi-dimensional input u(t′) for a fixed time point t′) gives

any subsequent linear readout the virtual expressive power of any quadratic

computation on the original input u(t′). A pre-processor for a linear read-
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out is even more useful if it maps more generally any frequently occurring

(or salient) different input streams u(·) onto linearly independent liquid

states x(t) [8], similarly as an RBF-kernel for Support Vector Machines. A

remarkable aspect of this more general characterization of the preprocess-

ing task for a Liquid is that it does not require that it computes precise

products, or any other concrete nonlinear mathematical operation. Any

”found” analog computing device (it could even be very imprecise, with

mismatched transistors or other more easily found nonlinear operations in

physical objects) consisting of sufficiently diverse local processes, tends to

approximate this requirement quite well. A closer look shows that the ac-

tual requirement on a Liquid is a bit more subtle, since one typically only

wants that the Liquid maps ”saliently” different input streams u(·) onto lin-

early independent liquid states x(t), whereas noisy variations of the ”same”

input stream should rather be mapped onto a lower dimensional manifold

of liquid states, see [8, 9] for details.

An at least equally important computational preprocessing task of a

Liquid is to provide all temporal integration of information that is needed by

the readouts. If the target value y(t) of a readout at time t depends not only

on the values of the input streams at the same time point t, but on a range of

input values u(s) for many different time points s (say, if y(t) is the integral

over one component of u(s) for a certain interval [t−1, t]), then the Liquid

has to collect all required information from inputs at preceding time points

u(s), and present all this information simultaneously in the liquid state x(t)

at time point t (see Fig. 1.3 and Fig. 1.4). This is necessary, because the

readout stage has by assumption no temporal integration capability of its

own, i.e., it can only learn to carry out ”static” computations that map

x(t) onto y(t). A readout does not even know what the current time t

is. It just learns a map f from input numbers to output numbers. Hence

it just learns a fixed recoding (or projection) f from liquid states into

output values. This severe computational limitation of the readout of a

LSM is motivated by the fact, that learning a static map f is so much

simpler than learning a map from input streams to output streams. And

a primary goal of the LSM is to make the learning as fast and robust as

possible. Altogether, an essential prediction of LSM-theory for information

processing in cortical microcircuits is that they accumulate information over

time. This prediction has recently been verified for cortical microcircuits

in primary visual cortex [11] and in the primary auditory cortex [12].

The advantage of choosing for a LSM the simplest possible learning de-

vice is twofold: Firstly, learning for a single readout neuron is fast, and
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cannot get stuck in local minima (like backprop or EM). Secondly, the sim-

plicity of this learning device entails a superior – in fact, arguably optimal

– generalization capability of learned computational operations to new in-

puts streams. This is due to the fact that its VC-dimension (see [10] for a

review) is equal to the dimensionality of its input plus 1. This is the small-

est possible value of any nontrivial learning device with the same input

dimension.

It is a priori not clear that a Liquid can carry the highly nontrivial com-

putational burden of not only providing all desired nonlinear preprocessing

for linear readouts, but simultaneously also all temporal integration that

they might need in order to implement a particular mapping from input

streams u(·) onto output streams y(·). But there exist two basic mathe-

matical results (see Theorems 1.1 and 1.2 in Sec. 1.3) which show that this

goal can in principle be achieved, or rather approximated, by a concrete

physical implementation of a Liquid which satisfies some rather general

property. A remarkable discovery, which had been achieved independently

and virtually simultaneously around 2001 by Herbert Jaeger [13], is that

there are surprisingly simple Liquids, i.e., generic preprocessors for a subse-

quent linear learning device, that work well independently of the concrete

computational tasks that are subsequentially learned by the learning de-

vice. In fact, naturally found materials and randomly connected circuits

tend to perform well as Liquids, which partially motivates the interest of

the LSM model both in the context of computations in the brain, and in

novel computing technologies.

Herbert Jaeger [13] had introduced the name Echo State Networks

(ESNs) for the largely equivalent version of the LSM that he had inde-

pendently discovered. He explored applications of randomly connected re-

current networks of sigmoidal neurons without noise as Liquids (in con-

trast to the biologically oriented LSM studies, that assume significant in-

ternal noise in the Liquid) to complex time series prediction tasks, and

showed that they provide superior performance on common benchmark

tasks. The group of Benjamin Schrauwen (see [14–17]) introduced the

term Reservoir Computing as a more general term for the investigation

of LSMs, ESNs and variations of these models. A variety of applica-

tions of these models can be found in a special issue of Neural Net-

works 2007 (see [18]). All these groups are currently collaborating in

the integrated EU-project ORGANIC (= Self-organized recurrent neural

learning for language processing) that investigates applications of these

models to speech understanding and reading of handwritten text (see
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http://reservoir-computing.org). An industrial partner in this project,

the company PLANET (http://english.planet.de) had already good

success in applications of Reservoir Computing to automated high-speed

reading of hand-written postal addresses.

We will contrast these models and their computational use with that of

Turing machines in the next section. In Sec. 1.3 we will give a formal def-

inition of the LSM, and also some theoretical results on its computational

power. We will discuss applications of the LSM and ESN model to biology

and new computing devices in Sec. 1.4 (although the discussion of its bio-

logical aspects will be very short in view of the recent review paper [19] on

this topic).

1.2. Why Turing machines are not useful for many impor-

tant computational tasks

The computation of a Turing machine always begins in a designated initial

state q0, with the input x (some finite string of symbols from some finite

alphabet) written on some designated tape. The computation runs until a

halt-state is entered (the inscription y of some designated tape segment is

then interpreted as the result of the computation). This is a typical example

for an offline computation (Fig. 1.5A), where the complete input x is avail-

able at the beginning of the computation, and no trace of this computation,

or of its result y, is left when the same Turing machine subsequently carries

out another computation for another input x̃ (starting again in state q0).

In contrast, the result of a typical computation in the neuronal system of

a biological organism, say the decision about the location y on the ground

where the left foot is going to be placed at the next step (while walking

or running), depends on several pieces of information: on information from

the visual system, from the vestibular system which supports balance con-

trol, from the muscles (proprioceptive feedback about their current state),

from short term memory (how well did the previous foot placement work?),

from long term memory (how slippery is this path at the current weather

condition?), from brain systems that have previously decided where to go

and at what speed, and on information from various other parts of the

neural system. In general these diverse pieces of information arrive at dif-

ferent points in time, and the computation of y has to start before the

last one has come in (see Fig. 1.5B). Furthermore, new information (e.g.,

visual information and proprioceptive feedback) arrives continuously, and

it is left up to the computational system how much of it can be integrated
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into the computation of the position y of the next placement of the left

foot (obviously those organisms have a better chance to survive which also

can integrate later arriving information into the computation). Once the

computation of y is completed, the computation of the location y′ where

the right foot is subsequently placed is not a separate computation, that

starts again in some neutral initial state q0. Rather, it is likely to build on

pieces of inputs and results of subcomputations that had already been used

for the preceding computation of y.

Fig. 1.5.: Symbolic representation of offline and online computations. (A) In an offline
computation all relevant input computations are available at the start of the compu-
tation, and the algorithm may require substantial computation time until the result
becomes available. (B) In online computations additional pieces of information arrive
all the time. The most efficient computational processing scheme integrates as many
preceding input pieces as possible into its output whenever an output demand arises. In
that sense computations by a LSM are optimally efficient.

The previously sketched computational task is a typical example for

an online computation (where input pieces arrive all the time, not in one
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batch), see Fig. 1.5B. Furthermore it is an example for a real-time com-

putation, where one has a strict deadline by which the computation of the

output y has to be completed (otherwise a 2-legged animal would fall).

In fact, in some critical situations (e.g., when a 2-legged animal stumbles,

or hits an unexpected obstacle) a biological organism is forced to apply

an anytime algorithm, which tries to make optimal use of intermediate re-

sults of computational processing that has occurred up to some externally

given time point t0 (such forced halt of the computation could occur at“any

time”). Difficulties in the control of walking for 2-legged robots have taught

us how difficult it is to design algorithms which can carry out this seem-

ingly simple computational task. In fact, this computational problem is

largely unsolved, and humanoid robots can only operate within environ-

ments for which they have been provided with an accurate model. This

is perhaps surprising, since on the other hand current computers can beat

human champions in seemingly more demanding computational tasks, such

as winning a game of chess. One might argue that one reason, why walk-

ing in a new terrain is currently a computationally less solved task, is that

computation theory and algorithm design have focused for several decades

on offline computations, and have neglected seemingly mundane computa-

tional tasks such as walking. This bias is understandable, because evolution

had much more time to develop a computational machinery for the control

of human walking, and this computational machinery works so well that we

don’t even notice anymore how difficult this computational task is.

1.3. Formal Definition and Theory of Liquid State Machines

A computation machine M that carries out online computations typically

computes a function F that does not map input numbers or (finite) bit

strings onto output numbers or bit strings, but input streams onto output

streams. These input- and output streams are usually encoded as functions

u : Z → R
n or u : R → R

n, where the argument t of u(t) is interpreted as

the (discrete or continuous) time point t when the information that is en-

coded by u(t) ∈ R
n becomes available. Hence such computational machine

M computes a function of higher type (usually referred to as operator,

functional, or filter), that maps input functions u from some domain U

onto output functions y. In lack of a better term we will use the term filter

in this section, although filters are often associated with somewhat trivial

signal processing or preprossessing devices. However, one should not fall

into the trap of identifying the general term of a filter with special classes
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of filters such as linear filters. Rather one should keep in mind that any

input to any organism is a function of time, and any motor output of an

organism is a function of time. Hence biological organisms compute filters.

The same holds true for any artificial behaving system, such as a robot.

We will only consider computational operations on functions of time

that are input-driven, in the sense that the output does not depend on any

absolute internal clock of the computational device. Filters that have this

property are called time invariant. Formally one says that a filter F is time

invariant if any temporal shift of the input function u(·) by some amount t0

causes a temporal shift of the output function by the same amount t0, i.e.,

(Fut0)(t) = (Fu)(t+t0) for all t, t0 ∈ R, where ut0 is the function defined by

ut0(t) := u(t+t0). Note that if the domain U of input functions u(·) is closed

under temporal shifts, then a time invariant filter F : U → R
R is identified

uniquely by the values y(0) = (Fu)(0) of its output functions y(·) at time

0. In other words: in order to identify or characterize a time invariant filter

F we just have to observe its output values at time 0, while its input varies

over all functions u(·) ∈ U . Hence one can replace in the mathematical

analysis such filter F by a functional, i.e., a simpler mathematical object

that maps input functions onto real values (rather than onto functions of

time).

Various theoretical models for analog computing are of little practical

use because they rely on hair-trigger decisions, for example they allow that

the output is 1 if the value of some real-valued input variable u is ≥ 0, and

0 otherwise. Another unrealistic aspect of some models for computation

on functions of time is that they automatically allow that the output of

the computation depends on the full infinitely long history of the input

function u(·). Most practically relevant models for analog computation on

continuous input streams degrade gracefully under the influence of noise,

i.e., they have a fading memory. Fading memory is a continuity property

of filters F , which requires that for any input function u(·) ∈ U the output

(Fu)(0) can be approximated by the outputs (Fv)(0) for any other input

functions v(·) ∈ U that approximate u(·) on a sufficiently long time interval

[−T, 0] in the past. Formally one defines that F : U → R
R has fading

memory if for every u ∈ Un and every ε > 0 there exist δ > 0 and T > 0

so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with ‖u(t) − v(t)‖ < δ for all

t ∈ [−T, 0]. Informally, a filter F has fading memory if the most significant

bits of its current output value (Fu)(0) depend just on the most significant

bits of the values of its input function u(·) in some finite time interval

[−T, 0]. Thus, in order to compute the most significant bits of (Fu)(0) it is
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not necessary to know the precise value of the input function u(s) for any

time s, and it is also not necessary to have knowledge about values of u(·)

for more than a finite time interval back into the past.

The universe of time-invariant fading memory filters is quite large. It

contains all filters F that can be characterized by Volterra series, i.e., all

filters F whose output (Fu)(t) is given by a finite or infinite sum (with

d = 0, 1, . . .) of terms of the form
∞∫

0

. . .
∞∫

0

hd(τ1, . . . , τd) · u(t − τ1) · . . . ·

u(t − τd)dτ1 . . . dτd, where some integral kernel hd is applied to products

of degree d of the input stream u(·) at various time points t − τi back in

the past. In fact, under some mild conditions on the domain U of input

streams the class of time invariant fading memory filters coincides with the

class of filters that can be characterized by Volterra series.

In spite of their complexity, all these filters can be uniformly approxi-

mated by the simple computational models M of the type shown in Fig. 1.4,

which had been introduced in [1]:

Theorem 1.1. (based on [20]; see Theorem 3.1 in [21] for a detailed proof).

Any filter F defined by a Volterra series can be approximated with any

desired degree of precision by the simple computational model M shown in

Fig. 1.1 and Fig. 1.2.

• if there is a rich enough pool B of basis filters (time invariant, with fading

memory) from which the basis filters B1, . . . , Bk in the filterbank LM can

be chosen (B needs to have the pointwise separation property) and

• if there is a rich enough pool R from which the readout functions f can be

chosen (R needs to have the universal approximation property, i.e., any

continuous function on a compact domain can be uniformly approximated

by functions from R).

Definition 1.1. A class B of basis filters has the pointwise separation

property if there exists for any two input functions u(·), v(·) with u(s) 6=

v(s) for some s ≤ t a basis filter B ∈ B with (Bu)(t) 6= (Bv)(t).

It turns out that many real-world dynamical systems (even a pool of

water) satisfy (for some domain U of input streams) at least some weak

version of the pointwise separation property, where the outputs xM (t) of

the basis filters are replaced by some “visible” components of the state

vector of the dynamical system. In fact, many real-world dynamical systems

also satisfy approximately an interesting kernel propertya, which makes
aA kernel (in the sense of machine learning) is a nonlinear projection Q of n input
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it practically sufficient to use just a linear readout function fM . This

is particularly important if LM is kept fixed, and only the readout fM

is selected (or trained) in order to approximate some particular Volterra

series F . Reducing the adaptive part of M to the linear readout function

fM has the unique advantage that a learning algorithm that uses gradient

descent to minimize the approximation error of M cannot get stuck in local

minima of the mean-squared error. The resulting computational model can

be viewed as a generalization of a finite state machine to continuous time

and continuous (“liquid”) internal states xM (t). Hence it is called a Liquid

State Machine.

If the dynamical systems LM have fading memory, then only filters

with fading memory can be represented by the resulting LSMs. Hence they

cannot approximate arbitrary finite state machines (not even for the case

of discrete time and a finite range of values u(t)). It turns out that a large

jump in computational power occurs if one augments the computational

model from Fig. 1.4 by a feedback from a readout back into the circuit

(assume it enters the circuit like an input variable).

Theorem 1.2. [22]. There exists a large class Sn of dynamical sys-

tems C with fading memory (described by systems of n first order differ-

ential equations) that acquire through feedback universal computational ca-

pabilities for analog computing. More precisely: through a proper choice

of a (memoryless) feedback function K and readout h they can simulate

any given dynamical system of the form z(n) = G(z, z′, . . . , z(n−1)) + u

with a sufficiently smooth function G (see Fig. 1.6). This holds in par-

ticular for neural circuits C defined by differential equations of the form

x′

i(t) = −λixi(t) + σ(
∑n

j=1 aijxj(t)) + bi · σ(v(t)) (under some conditions

on the λi, aij , bi).

If one allows several feedbacks K, such dynamical systems C become

universal for nth order dynamical systems defined by a system consisting

of a corresponding number of differential equations. Since such systems

of differential equations can simulate arbitrary Turing machines [23], these

dynamical systems C with a finite number of feedbacks become (according

variables u1, . . . , un into some high-dimensional space. For example all products ui · uj

could be added as further components to the n-dimensional input vector < u1, . . . , un >.
Such nonlinear projection Q boosts the power of any linear readout f applied to Q(u).
For example in the case where Q(u) contains all products ui · uj , a subsequent linear
readout has the same expressive capability as quadratic readouts f applied to the original
input variables u1, . . . , un. More abstractly, Q should map all inputs u that need to be
separated by a readout onto a set of linearly independent vectors Q(u).
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Fig. 1.6.: Illustration of the notation and result of Theorem 1.2

.

to the Church-Turing thesis) also universal for digital computation.

Theorem 1.2 suggests that even quite simple neural circuits with feed-

back have in principle unlimited computational powerb. This suggests that

the main problem of a biological organism becomes the selection (or learn-

ing) of suitable feedback functions K and readout functions h. For dynam-

ical systems C that have a good kernel-property, already linear feedbacks

and readouts endow such dynamical systems with the capability to emulate

a fairly large range of other dynamical systems (or “analog computers”).

Recent theoretical work has addressed methods for replacing supervised

training of readouts by reinforcement learning [24] (where readout neurons

explore autonomously different settings of their weights, until they find

some which yield outputs that are rewarded) and by completely unsuper-

vised learning (where not even rewards for successful outputs are available).

It is shown in [25] that already the repeated occurrence of certain trajecto-

ries of liquid status enables a readout to classify such trajectories according

to the type of input which caused them. In this way a readout can for

example learn without supervision to classify (i.e., “understand”) spoken

digits. The theoretical basis for this result is that unsupervised slow feature

extraction approximates the discrimination capability of the Fisher Linear

Discriminant if the sequence of liquid states that occur during training

satisfies a certain statistical condition.

bOf course, in the presence of noise this computational power is reduced to that of a
finite state machine, see [22] for details.
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1.4. Applications

LSMs had been introduced in the process of searching for computational

models that can help us to understand the computations that are carried

out in a “cortical microcircuit” [26], i.e., in a local circuit of neurons in the

neocortex (say in a “cortical column”). This approach has turned out to

be quite successful, since it made it possible to carry out quite demanding

computations with circuits consisting of reasonably realistic models for bi-

ological neurons (“spiking neurons”) and biological synapses (“dynamical

synapses”). Note that in this model a large number of different readout

neurons can learn to extract different information from the same circuit.

One concrete benchmark task that has been considered was the classifi-

cation (“recognition”) of spoken digits [27]. It turned out that already a

LSM where the “Liquid” consisted of a randomly connected circuit of just

135 spiking neurons performed quite well. In fact, it provided a nice exam-

ple for “anytime computations”, since the linear readout could be trained

effectively to guess at “any time”, while a digit was spoken, the proper

classification of the digit [1, 5]. More recently it has been shown that with

a suitable transformation of spoken digits into spike trains one can achieve

with this simple method the performance level of state-of-the-art algorithms

for speech recognition [14].

A number of recent neurobiological experiments in vivo has lead many

biologists to the conclusion, that also for neural computation in larger neu-

ral systems than cortical microcircuits a new computational model is needed

(see the recent review [28]). In this new model certain frequently occurring

trajectories of network states – rather than attractors to which they might

or might not converge – should become the main carriers of information

about external sensory stimuli. The review [19] examines to what extent

the LSM and related models satisfy the need for such new models for neural

computation.

It has also been suggested [29] that LSMs might present a useful frame-

work for modeling computations in gene regulation networks. These net-

works also compute on time varying inputs (e.g., external signals) and

produce a multitude of time varying output signals (transcription rates of

genes). Furthermore these networks are composed of a very large number

of diverse subprocesses (transcription of transcription factors) that tend to

have each a somewhat different temporal dynamics (see [30]). Hence they

exhibit characteristic features of a Liquid in the LSM model. Furthermore

there exist perceptron-like gene regulation processes that could serve as
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readouts from such Liquids (see chapter 6 in [30]).

In the remainder of this section I will review a few applications of the

LSM model to the design of new artificial computing system. In [6] it had

been demonstrated that one can use a bucket of water as Liquid for a phys-

ical implementation of the LSM model. Input streams were injected via 8

motors into this Liquid and video-images of the surface of the water were

used as “liquid states” x(t). It was demonstrated in [6] that the previ-

ously mentioned classification task of spoken digits could in principle also

be carried out with this – certainly very innovative – computing device.

But other potential technological applications of the LSM model have also

been considered. The article [15] describes an implementation of a LSM

in FPGAs (Field Programmable Gate Arrays). In the USA a patent was

recently granted for a potential implementation of a LSM via nanoscale

molecular connections [31]. Furthermore work is in progress on implemen-

tations of LSMs in photonic computing, where networks of semiconductor

optical amplifiers serve as Liquid (see [16] for a review).

The exploration of potential engineering applications of the computa-

tional paradigm discussed in this article is simultaneously also carried out

for the closely related echo state networks (ESNs) [13], where one uses sim-

pler non-spiking models for neurons in the “Liquid”, and works with high

numerical precision in the simulation of the “Liquid” and the training of

linear readouts. Research in recent years has produced quite encourag-

ing results regarding applications of ESNs and LSMs to problems in tele-

communication [13], robotics [32], reinforcement learning [33], natural lan-

guage understanding [34], as well as music-production and -perception [35].

1.5. Discussion

We have argued in this article that Turing machines are not well-suited for

modeling computations in biological neural circuits, and proposed Liquid

state machines (LSMs) as a more adequate modeling framework. They

are designed to model real-time computations (as well as anytime compu-

tations) on continuous input streams. In fact, it is quite realistic that a

LSM can be trained to carry out the online computation task that we had

discussed in Sec. 1.2 (see [36] for a first application to motor control). A

characteristic feature of practical implementations of the LSM model is that

its “program” consists of the weights w of a linear readout function. These

weights provide suitable targets for learning (while all other parameters of

the LSM can be fixed in advance, based on the expected complexity and
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precision requirement of the computational tasks that are to be learnt). It

makes a lot of sense (from the perspective of statistical learning theory) to

restrict learning to such weights w, since they have the unique advantage

that gradient descent with regard to some mean-square error function E(w)

cannot get stuck in local minima of this error function (since ∇wE(w) = 0

defines an affine – hence connected – subspace of the weight space for a

linear learning device).

One can view these weights w of the linear readout of a LSM as an

analogon to the code < M > of a Turing machine M that is simulated by

a universal Turing machine. This analogy makes the learning advantage of

LSMs clear, since there is no efficient learning algorithm known which allows

us to learn the program < M > for a Turing machine M from examples for

correct input/output pairs of M . However the examples discussed in this

chapter show that an LSM can be trained quite efficiently to approximate

a particular map from input to output streams.

We have also shown in Theorem 1.2 that LSMs can overcome the lim-

itation of a fading memory if one allows feedback from readouts back into

the “Liquid”. Then not only all digital, but (in a well-defined sense) also

all analog computers can be simulated by a fixed LSM, provided that one

is allowed to vary the readout functions (including those that provide feed-

back). Hence these readout functions can be viewed as program for the sim-

ulated analog computers (note that all “readout functions” are just “static”

functions, i.e., maps from R
n into R, whereas the LSM itself maps input

streams onto output streams). In those practically relevant cases that have

been considered so far, these readout functions could often be chosen to

be linear. A satisfactory characterization of the computational power that

can be reached with linear readouts is still missing. But obviously the

kernel-property of the underlying “Liquid” can boost the richness of the

class of analog computers that can be simulated by a fixed LSM with linear

readouts.

The theoretical analysis of computational properties of randomly con-

nected circuits and other potential “Liquids” is still in its infancy. We

refer to [7–9, 17, 37] for useful first steps. The qualities that we expect

from the “Liquid” of a LSM are completely different from those that one

expects from standard computing devices. One expects diversity (rather

than uniformity) of the responses of individual gates within a Liquid (see

Theorem 1.1), as well as diverse local dynamics instead of synchronized

local gate operations. Achieving such diversity is apparently easy to attain

by biological neural circuits and by new artificial circuits on the molecular
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or atomic scale. It is obviously much easier to attain than an emulation

of precisely engineered and synchronized circuits of the type that we find

in our current generation of digital computers. These only function prop-

erly if all local units are identical copies of a small number of template

units that respond in a stereotypical fashion. For a theoretician it is also

interesting to learn that sparse random connections within a recurrent cir-

cuit turn out to provide better computational capabilities to a LSM than

those connectivity graphs that have primarily been considered in earlier

theoretical studies, such as all-to-all connections (Hopfield networks) or a

2-dimensional grid (which is commonly used for cellular automata). Al-

together one sees that the LSM and related models provide a wide range

of interesting new problems in computational theory, the chance to under-

stand biological computations, and new ideas for the invention of radically

different artificial computing devices that exploit, rather than suppress,

inherent properties of diverse physical substances.
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