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Special issue on echo state networks and liquid state machines
Seeking plausible models for brain computation has been a
continuing effort in neuroscience, computer science, biophysics
and machine learning. Quite generally speaking, there are
two routes toward understanding brains. In a bottom-up
way, one can attempt to re-create artificial brain structures
from empirical observations, whose emerging dynamics are
then studied by simulation, searching for dynamical patterns
that can be understood in terms of information processing.
Conversely, one can proceed in a top-down way, starting
from computational metaphors taken from computer science
or signal processing and control engineering, and try to
synthesize artificial brain modules from these principles whilst
relating them to what is known about biological brains.
Whatever route one takes, at some point one has to introduce
a computational mechanism, some mathematical information
processing principle. A large number of such principles have
been considered — we just mention logical calculi, Turing
computation, “cybernetic” regulation mechanisms, energy-
minimizing and particle dynamics motivated by information
theory and statistical physics, field theories and pattern-forming
nonlinear PDEs, or chaotic attractor dynamics. Originating
from outside neuroscience, these information processing
mechanisms often are difficult to connect to known neural
processing mechanisms. There is however a subset of such
principles of very elementary nature whose main learning and
activation phenomena can readily be mapped to biology —
and indeed have been partially motivated by natural neural
systems. We would count in this category the perceptron
(trained with the Widrow–Hoff rule), Hopfield networks, and
self-organizing maps. The elementary nature of these models
makes them amenable to mathematical analysis and invites
mapping them to biological brains in many ways. We view
echo state networks and liquid state machines, the heroes
of this special issue, as a further member in this family of
versatile basic computational metaphors with a clear biological
footing.

Circuits of neurons in the brain are recurrently connected,
and recurrently connected circuits are obviously needed for
all computational and cognitive tasks that require temporal
integration of information. However it has turned out
to be difficult to understand how synapses within such
see front matter c© 2007 Elsevier Ltd. All rights reserved.
eunet.2007.04.001
recurrent circuits should be modified in order to improve the
computational performance of the system. One radical solution
is to view the recurrent circuit as a generic device (in analogy
to the kernel of a support vector machine), and to concentrate
learning efforts on the training of linear readouts from the
recurrent circuit. This strategy has the advantage that training
cannot get stuck in local minima of the mean squared error
function, and that generalization of learned responses to new
instances of the task is optimally supported (due to the low
VC-dimension of linear readouts in comparison with nonlinear
learning devices). This strategy had in fact already been
suggested in Rosenblatt’s book on perceptrons (Rosenblatt,
1962), as a side remark in connectionist AI (Hinton, 1981) and
also in neuroscience (Buonomano & Merzenich, 1995). The
resulting new computational model has been investigated
more rigorously under the name of echo state networks
(ESNs) and liquid state machines (LSMs). The hallmark of
both models is that they compute using a large, distributed,
nonlinear dynamical recurrent network with fixed weights,
called a reservoir, with adaptation restricted to the readout.
This greatly simplifies the training in practical applications,
and avoids the biological implausibility of multilayer gradient
descent optimization of previous recurrent neural networks.
These two models had been designed independently, with
different application types and different parameter regimes
in mind. Theoretical results on LSMs are quite general, and
have been formulated within the mathematical frameworks of
dynamical system theory and filtering theory. Hence they apply
in particular also to ESNs. But since the primary goal of the
development of LSMs was to provide a biologically plausible
paradigm for computations in generic cortical microcircuits,
applications of this model have only been explored for circuits
of spiking neurons with a biologically characteristic large
amount of internal noise. In contrast, ESNs have been designed
to provide high performance for a number of engineering
tasks, and have been primarily applied to recurrent artificial
neural networks without internal noise, which are better suited
for such tasks. Theoretical results for ESNs (e.g. on the
connection between network structure and memory time span)
have contributed more complex results that are valid for
simpler classes of recurrent circuits (in particular for circuits
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consisting of linear neurons). As to terminology, “reservoir
computing” appears to be increasingly used as the generic
name for LSMs, ESNs, and variants thereof which are being
created.

During the last few years, a number of research groups
have started to explore these new computational paradigms
from different angles. This special issue can be seen both as
a snapshot and a resume of the current state of the art. One
research question that is common to most of this research is the
question of which recurrent circuits (or more generally: which
dynamical systems) are optimal for a given range of tasks.
This research can be seen as a parallel to ongoing research on
support vector machines in machine learning, where one asks
which kernels are optimal for a given range of application tasks
(although the situation there is similar insofar as there one also
gets already very good performance with a fixed generic kernel,
for example an RBF-kernel).

The articles of this special issue fall into three groups.
In the first group one finds contributions which investigate
LSMs as models of natural neural systems, at various levels
of abstraction. Yamazaki and Tanaka study the cerebellum as
an LSM and state evidence that the granular layer acts as the
reservoir, while the Purkinje cells act as the readout neurons,
unlike the established analogy with the perceptron. Joshi
maps LSM modules (with empirically plausible dynamical
parameters) to subtasks of a more complex behavioral task that
involves working memory and decision making, and shows that
quite different subtasks can be learned using the same reservoir
and different readouts. Lazar, Pipa and Triesch combine
spike timing dependent plasticity and intrinsic plasticity to
maintain homeostasis of neuronal activity that stabilizes the
LSM and benefits the recognition of temporal patterns in time
series. Finally, Legenstein and Maass ask which aspects of
recurrent circuits of spiking neurons are relevant for their
computational performance, and derive two measures (one of
which evaluates to what extent a given neural circuit shares
properties with an RBF-kernel, the other is a VC-dimension
measure that estimates generalization capability) which predict
the computational capability of a given circuit of spiking
neurons.

The largest group of articles deals with reservoir analysis
and optimization on a more abstract level, without a
direct claim of biological modeling or with a particular
application in the focus. Jaeger et al. study ESNs made of
leaky integrator neurons, present basic stability conditions,
investigate parameter optimization by stochastic gradient
descent, and demonstrate the usefulness of leaky integrator
ESNs in test cases that require long time constants and
insensitivity to time warped patterns. Steil uses the intrinsic
plasticity of neurons to propose a new local, unsupervised
adaptation rule for in-reservoir connections that improves the
richness of its dynamics from a information point of view.
Another approach to optimize reservoir dynamics is taken
by Xue, Yang and Haykin, who implement lateral inhibition
structures in a modular ESN to improve the richness of
the reservoir dynamics. Ozturk and Principe propose a new
readout for ESNs which use a special type of linear associative
memory called MACE to achieve high specificity in dynamical
pattern recognition applications. Verstraeten et al. present a
Lyapunov exponent based method for evaluating the richness
of the reservoir, and compare reservoir computing methods
(LSM, ESN and RNN with a backpropagation decorrelation
rule) in a set of experiments using their reservoir computing
toolbox.

The final group of articles gives a small sample of a
variety of engineering and data analysis applications that
are currently emerging. Venayagamoorthy applies ESNs to
monitoring a multi-machine power system, demonstrating
improved performance with much simpler training when
compared with time delay neural networks. Skowronski and
Harris bring ESNs to speech recognition and show improved
performance with respect to Hidden Markov Models in low
signal to noise ratio regimes. Tong et al. use ESNs in language
modeling to learn grammatical structure and show that their
performance is similar to that of Elman networks, even though
the ESN does not train the recurrent connections.

Reservoir computing is a very young field. This special issue
gives witness of its fertility. We would like to conclude by
pointing out two themes which we perceive as main directions
for research in the next few years. First, not much is known at
this early stage about the relationship between the dynamical
characteristics of a given task (biological or engineering) and
reservoir properties. Here we expect both a growth of analytical
insight, and the development of practical methods to optimize a
reservoir toward the task at hand, by design or by unsupervised
adaptation. We furthermore predict a confluence of research
on general properties of naturally occurring graphs (scale free
networks etc.), which have so far only been tested in their role
as communication networks, research on dynamical properties
(such as criticality) of circuits that employ various types of
connectivity graphs, and research on computational properties
of the resulting reservoirs. Secondly, once we know which
connectivity structure and dynamical properties are optimal for
the execution of particular types of tasks, research on the design
of “optimal” computation systems for complex tasks, such
as processing multiscale high-dimensional data (e.g. speech,
video input streams, or robot sensor data), will move to the
design and analysis of networks of interconnected reservoirs
(e.g. hierarchies of reservoirs with different time constants).
This second line of research is likely to also provide new
insight into the computational role of individual brain areas
within a recurrent network of interconnected brain areas, that
collaborate on the solution of complex cognitive and motor
control tasks in the brain.

We would like to thank a large number of referees, whose
comments have contributed to the improvement of the articles
in this volume.
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