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Spiking neurons are very flexible computational modules, which can im-
plement with different values of their adjustable synaptic parameters an
enormous variety of different transformations F from input spike trains
to output spike trains. We examine in this letter the question to what
extent a spiking neuron with biologically realistic models for dynamic
synapses can be taught via spike-timing-dependent plasticity (STDP) to
implement a given transformation F . We consider a supervised learning
paradigm where during training, the output of the neuron is clamped to
the target signal (teacher forcing). The well-known perceptron conver-
gence theorem asserts the convergence of a simple supervised learning
algorithm for drastically simplified neuron models (McCulloch-Pitts neu-
rons). We show that in contrast to the perceptron convergence theorem,
no theoretical guarantee can be given for the convergence of STDP with
teacher forcing that holds for arbitrary input spike patterns. On the other
hand, we prove that average case versions of the perceptron convergence
theorem hold for STDP in the case of uncorrelated and correlated Pois-
son input spike trains and simple models for spiking neurons. For a wide
class of cross-correlation functions of the input spike trains, the resulting
necessary and sufficient condition can be formulated in terms of linear
separability, analogously as the well-known condition of learnability by
perceptrons. However, the linear separability criterion has to be applied
here to the columns of the correlation matrix of the Poisson input. We
demonstrate through extensive computer simulations that the theoreti-
cally predicted convergence of STDP with teacher forcing also holds for
more realistic models for neurons, dynamic synapses, and more general
input distributions. In addition, we show through computer simulations
that these positive learning results hold not only for the common inter-
pretation of STDP, where STDP changes the weights of synapses, but also
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for a more realistic interpretation suggested by experimental data where
STDP modulates the initial release probability of dynamic synapses.

1 Introduction

Spike-timing-dependent plasticity (STDP) has emerged in recent years as
the experimentally most studied form of synaptic plasticity (see Abbott
& Nelson, 2000; Frégnac, 2002; Gerstner & Kistler, 2002, for reviews). Nu-
merous modeling studies have related STDP to various important learning
rules and learning mechanisms such as Hebbian learning, short-term predic-
tion (Mehta, 2001; Rao & Sejnowski, 2002), gain adaptation (Song, Miller,
& Abbott, 2000), and boosting of temporally correlated inputs (Kempter,
Gerstner, & van Hemmen, 1999; Song, et al., 2000; Gütig, Aharonov, Rotter,
& Sompolinsky, 2003). The question of how a neuron can learn to fire at a
prescribed time, given some presynaptic spike history, was investigated in
the context of sequence learning, for example, in Gerstner, Ritz, and van
Hemmen (1993) and Senn, Schneider, & Ruf, (2002). These two papers ex-
ploit tuning of synaptic delays to achieve timing precision. In this letter,
we address the more general question to what extent STDP might support
a more universal type of learning where a neuron learns to implement an
“arbitrary given” map F from input spike trains to output spike trains.
Obviously the goal to learn “arbitrary given” target transformations F is
too ambitious, since there exist many maps F from input spike trains to
output spike trains that cannot be realized by a neuron for any setting of
its adjustable parameters. For example, no values of synaptic efficacies w
could enable a generic neuron to produce a high-rate output spike train in
the absence of any input spikes. Furthermore, a neuron can only learn to
implement those transformations F in a stable manner that it can imple-
ment with a parameter setting that represents a equilibrium point for the
learning rule under consideration (in this case, STDP). Since it is well known
that the common version of STDP always produces bimodal distribution of
weights, where each weight either assumes its minimal or its maximal pos-
sible value, we will consider in this article (with the exception of section 6)
only the learning of target transformations F that can be implemented with
such bimodal distribution of weights. Thus, we focus on those transforma-
tions F from input spike trains to output spike trains that can in principle
be implemented by the neuron in a stable manner for some values p of its
adjustable parameters, and ask which of these transformations F can be
learned by such neuron, starting from some rather arbitrary values p0 of
these adjustable parameters.

On the basis of the experimental literature, it is not at all clear which of the
many parameters that influence the input-output behavior of a biologically
realistic synapse should be viewed as being adjustable for a specific protocol
for inducing synaptic plasticity (i.e., “learning”). For example, there exists
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strong empirical evidence (Markram & Tsodyks, 1996) that the common
induction protocol with repeated pairings of pre- and postsynaptic spikes in
a specific temporal relation does not change the scaling factors w of the am-
plitudes of excitatory postsynaptic potentials, (EPSPs, commonly referred
to as “weight” or “synaptic efficacy”), but rather the synaptic release prob-
ability U for the first spike in a train of spikes. Whereas an increase of this
parameter U will increase the amplitude of the EPSP for the first after a
long inactive period spike in a spike train, just as an increase of the scaling
factor w would do, it tends to decrease the amplitudes of shortly following
EPSPs. We examine in this article through computer simulations both the
case where scaling factors w and the case where initial release probabilities
U are adjusted by STDP.

In contrast to most preceding modeling studies for STDP, we will consider
in the computer simulations of this article only biologically realistic models
for dynamic synapses—those that are subject to short-term plasticity such
as paired-pulse depressions and paired-pulse facilitation, in addition to the
long-term plasticity induced by STDP. We assume that during learning, the
neuron is taught to fire at particular points in time via extra input currents,
which could, for example, represent synaptic inputs from other cortical or
subcortical areas. Such a learning scenario is particularly compelling in cases
where a neuron learns to predict input from other cortical or subcortical ar-
eas. This learning protocol is identical to the experimental paradigm inves-
tigated by Yves Frégnac and his collaborators (Frégnac, Schulz, Thorpe, &
Bienenstock, 1988, 1992; Frégnac & Shulz, 1999), where synaptic plasticity
is induced through the injection of currents into the postsynaptic neuron
at particular points in time (relative to the time of the stimulus). We will
refer to the conjecture that STDP enables neurons to learn (starting with
arbitrary initial values of its parameters p) under this protocol any input-
output transformation F that the neuron could in principle implement in a
stable manner for some values p of its adjustable parameters as the spiking
neuron convergence conjecture (SNCC) for STDP. Obviously this conjec-
ture is closely related to the well-known perceptron convergence theorem
(Rosenblatt, 1962; Haykin, 1999; Duda, Hart, & Storck, 2001), which asserts
that the corresponding statement is true for the much simpler case of percep-
trons (i.e., McCulloch-Pitts neurons or threshold gates with static synapses,
static batch inputs, and static batch outputs—instead of time-varying input
and output streams).

We will specify the models for neurons and synapses and the rule for
STDP that are examined in this article in section 2. In section 3, we discuss the
relationship between STDP and the perceptron learning rule. Furthermore
we prove in section 3 that the SNCC for STDP does not hold in a worst-case
scenario for arbitrary distributions of input spike trains.

In section 4, we carry out an analytical average case analysis of supervised
learning with STDP for Poisson input spike trains (for the case of linear Pois-
son neurons and synapses without short-terms dynamics), and we prove
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that the SNNC holds in an average case sense for arbitrary uncorrelated
Poisson input spike trains. We also derive in section 4 a criterion that clar-
ifies under which conditions the SNNC holds for correlated Poisson input
spike trains. In some situations, this criterion can be formulated in terms of
linear separability, like the well-known learning criterion for perceptrons,
but applied to the columns of the correlation matrix for the Poisson input.

In sections 5 and 6, we demonstrate through computer simulations that
the SNCC for STDP also holds for more general ensembles of uncorrelated
and correlated Poisson spike trains as inputs and for more realistic models
for neurons and synapses: for leaky integrate-and-fire neurons with dy-
namic synapses. In section 7, we show that such approximate convergence
of learning also occurs when instead of weights, the initial release probabil-
ities U of the synapses are modulated by STDP.

2 Models for Neurons, Synapses, and STDP

A standard leaky integrate-and-fire neuron model was used for our simu-
lations. The membrane potential Vm of such neuron is given by

τm
dVm

dt
= −(Vm − Vresting) + Rm · (

Isyn(t) + Ibackground + Iinject(t)
)
,

where τm = Cm · Rm is the membrane time constant, Rm is the membrane re-
sistance, Isyn(t) is the current supplied by the synapses, Ibackground is a constant
background current, and Iinject(t) represents currents induced by a “teacher.”
If Vm exceeds the threshold voltage Vthresh, it is reset to Vreset and held there
for the length Trefract of the absolute refractory period (see appendix A for
details).

We modeled the short-term-synaptic dynamics according to the model
proposed in Markram, Wang, and Tsodyks (1998), with synaptic parameters
U, D, F . The model predicts the amplitude Ak of the excitatory postsynaptic
current (EPSC) for the kth spike in a spike train with interspike intervals
�1, �2, . . . , �k−1 through the equations

Ak = w · uk · Rk

uk = U + uk−1(1 − U) exp(−�k−1/F ) (2.1)

Rk = 1 + (Rk−1 − uk−1 Rk−1 − 1) exp(−�k−1/D)

with hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values
for the first spike are u1 = U and R1 = 1 (see Maass & Markram, 2002, for a
justification of this version of the equation, which corrects a small error in
Markram et al., 1998).

The parameters U, D, and F were randomly chosen from gaussian dis-
tributions that were based on empirically found data for such connections.
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Depending on whether the input was excitatory (E) or inhibitory (I), the
mean values of these three parameters (with D, F expressed in seconds)
were chosen to be 0.5, 1.1, 0.05 (E) and 0.25, 0.7, 0.02 (I). The SD of each
parameter was chosen to be 10% of its mean (with negative values replaced
by values chosen from a uniform distribution between 0 and two times the
mean).

The effect of STDP is commonly tested by measuring in the postsynaptic
neuron the amplitude A1 of the EPSP (or EPSC) for a single spike from the
presynaptic neuron (after a longer resting period subsequent to the protocol
for induction of STDP). Since A1 = w · U · R1, one can interpret any change
�A in the amplitude of A1 (in comparison with the value of A1 before
applying the protocol for STDP) as being caused by a proportional change
�w of the parameter w (with U unchanged), by a proportional change �U
of the initial release probability u1 = U (with w unchanged), or by a change
of both w and U (and possible even further synaptic parameters). The first
case is the one that is most commonly assumed in modeling studies (see,
e.g., Abbott & Nelson, 2000; Frégnac, 2002; Gerstner & Kistler, 2002), and is
analyzed in sections 5 and 6 of this letter. The second case is strongly favored
by the experimental data of Markram & Tsodyks (1996), and it is apparently
not contradicted by any of the other experimental data (since one usually
measures the efficacy of the synapse after induction of plasticity with just
a single test spike). This case is examined in section 7 of this letter. The
third case is not considered because of a lack of quantitative experimental
data.

According to Abbott & Nelson (2000), the change �A1 in the amplitude
A1 of EPSPs (for the first spike in a test spike train) that results from (usu-
ally repeated) pairing of the firing of the presynaptic neuron at some time
tpre and a firing of the postsynaptic neuron at time tpost = tpre + �t can be
approximated for many cortical synapses by terms of the form

A(�t) =
{

W+ · e−�t/τ+ , if �t > 0
−W− · e�t/τ− , if �t ≤ 0 (2.2)

with constants W+, W−, τ+, τ− > 0 (and with an extra clause that prevents
the amplitude A1 from growing beyond some maximal value Amax or below
0).

For the theoretical analysis in section 4, spike trains S(t) are represented
by sums of Dirac-δ functions S(t) = ∑

k δ(t − tk), where tk is the kth spike
time of the spike train. The leaky integrate-and-fire neuron is replaced here
by a linear Poisson neuron model as in Kempter, Gerstner, & van Hemmen
(2001) and Gütig et al. (2003). This neuron model outputs a spike train
Spost(t), which is a realization of a Poisson process with the underlying
instantaneous firing rate Rpost(t). The effect of an input spike at input i
at time t′ is modeled by an increase in the instantaneous firing rate of an
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amount wi (t′)ε(t − t′), where ε is a response kernel and wi (t′) is the synaptic
efficacy of synapse i at time t′. Thus, the response kernel ε models the time
course of a postsynaptic potential elicted by an input spike. Since the neuron
model is causal, we have the requirement ε(s) = 0 for s < 0. We will consider
plasticity only for excitatory connections so that wi ≥ 0 for all i and ε(s) ≥ 0
for all s. In addition, the response kernel is normalized to

∫ ∞
0 ds ε(s) = 1. In

the linear model, the contributions of all inputs are summed up linearly:

Rpost(t) =
n∑

j=1

∫ ∞

0
ds w j (t − s) ε(s) Sj (t − s) , (2.3)

where S1, . . . , Sn are the n presynaptic spike trains. Note that in this spike
generation process, the generation of an output spike is independent of
previous output spikes.

3 The Perceptron Convergence Theorem and a Counterexample to the
Spiking Neuron Convergence Conjecture for STDP

If one assumes that STDP affects only the parameter w, then the change
�w of the weight (or efficacy) of the synapse is according to equation 2.2
proportional to:

{
W+ · e−�t/τ+ , if �t > 0
−W− · e�t/τ− , if �t ≤ 0,

(3.1)

with an extra clause that prevents w from becoming larger than some max-
imal value wmax or smaller than 0. Hence, STDP changes the value wold of
the synaptic weight to wnew = wold + �w according to the rule

wnew =
{

min{wmax, wold + W+ · e−�t/τ+}, if �t > 0
max{0, wold − W− · e�t/τ−}, if �t ≤ 0 ,

(3.2)

with some parameters W+, W− > 0.
There exists some analogy between this STDP rule and common learning

rules such as the Hebb rule, the perceptron learning rule, and the least-mean-
square learning rule for strongly simplified neuron models that are used in
the context of artificial neural networks. These simplified neuron models
do not “fire.” Instead, their inputs and outputs consist of real numbers,
which may change their value at each discrete time step. If x = 〈x0, . . . , xn〉 ∈
R

n+1 denotes the input vector to an artificial neuron and y ∈ R the resulting
output, then the basic Hebbian learning rule for changing the weights w =
〈w0, . . . , wn〉 ∈ R

n+1 of a linear neuron with y = w · x is

�w = η · x · y, (3.3)
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where η ≥ 0 is the learning rate.
For supervised learning in artificial neural networks, there exists in ad-

dition a target value yteacher for the output of a neuron, and by replacing y
in the Hebb rule, equation 3.3, by yteacher − y, one gets the rule

�w = η · x · (yteacher − y), (3.4)

which is for a linear neuron model y = w · x the least-mean-square or
Widrow-Hoff rule (see section 2.2 in Rosenblatt, 1962; Haykin, 1999). This
learning rule implements gradient descent in weight space for the mean of
squared errors (yteacher − y)2 if applied to a list of training examples.

In the context of McCulloch-Pitts neurons, also called perceptrons or
threshold gates, whose output y assumes only values 0 or 1, this rule, equa-
tion 3.4, is the well-known perceptron learning rule (see Haykin, 1999, and
Duda et al., 2001).1 For this case one can write rule 3.4 equivalently in the
form

�w =



η · x, if yteacher = 1 and y = 0
η · (−x), if yteacher = 0 and y = 1
0, otherwise .

(3.5)

The first line of this perceptron learning rule implements learning from
a positive example x (which is in this case a positive counterexample
hypothesis defined by the current weight vector w, since yteacher = 1 but
y = sign(w · x) = 0). The second line implements learning from a negative
example x (i.e., from a negative counterexample to the current hypothesis
defined by w). The seemingly trivial third line of the rule makes sure that
w is not changed for the current example x if it is correctly classified with
the current weight vector w (i.e., yteacher = sign(w · x)).

The main result about this perceptron learning rule is the perceptron con-
vergence theorem (see Rosenblatt, 1962; Haykin, 1999; Duda et al., 2001).
It states that learning with the perceptron learning rule converges for a
given list L of examples if and only if the list L is linearly separable. If
L is linearly separable, then the weight vector to which this learning rule
converges is autonomically a solution of the corresponding classification

1 If one defines sign z = 1 if z ≥ 0, else sign z = 0 (as we do throughout this letter),
then the output y of a perceptron can be defined in compact form as y = sign(w · x). One
commonly uses the convention that in the context of perceptrons, the first component x0
of any input vector x has a fixed value x0 = 1. This implies that

sign(w · x) =
{

1, if
∑n

i=1 wi xi ≥ −w0
0, otherwise,

and hence the weight w0 for this dummy component x0 of the input, multiplied with −1,
assumes the effective role of an adaptive threshold for the perceptron.
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problem. Obviously linear separability of L is a necessary condition for the
convergence of perceptron learning. But this simple condition from linear
algebra is also sufficient: if there exists a weight vector w∗ that can clas-
sify the list L = 〈〈x(1), y1〉, . . . , 〈x(m), ym〉〉 of examples from R

n+1 × {0, 1}
without error, (i.e., sign(w∗ · x(k)) = yk for k = 1, . . . , m), then the perceptron
learning rule, equation 3.5, will converge to some weight vector w′ with the
same property (i.e., sign(w′ · x(k)) = yk for k = 1, . . . , m) after cycling some
finite number of times through the list L of training examples (starting from
any initial weights w ∈ R

n+1). The perceptron convergence theorem can be
interpreted as a very positive result on learnability, since it implies that the
perceptron learning rule enables a perceptron to learn any map from inputs
x to outputs y that it could possibly implement in a stable manner.

Note that any weight vector that allows a perceptron to become con-
sistent with a list L of training examples yields an equilibrium point for
the perceptron learning rule, since in contrast to STDP, this learning rule
automatically becomes inactive when errors no longer occur for the train-
ing examples. Hence, any setting of w that allows a perceptron to solve a
given classification task is automatically stable with regard to the perceptron
learning rule. Such automatic stability is not provided by STDP. Therefore,
in order to make the spiking neuron convergence conjecture more mean-
ingful (by giving it a larger chance to be true), we consider in this section
only learning tasks for spiking neurons for which a solution exists that is
stable with regard to STDP. In other words, we want to clarify whether in
a supervised paradigm where the output is clamped to the teacher signal,
STDP enables a spiking neuron, starting from any initial weights, to learn
any transformation F from input spike trains to output spike trains that
it can possibly implement in a stable manner (this is the spiking neuron
convergence conjecture, or SNCC; see section 1).

One salient difference between the perceptron learning rule and STDP is
caused by the different structure of inputs and outputs of perceptrons and
spiking neurons: inputs and outputs to a perceptron are (static) vectors of
numbers, whereas they are functions of time (spike trains) in the case of a
spiking neuron. Thus, mathematically, the transformation F from inputs to
outputs computed by a spiking neuron with n input channels is a filter that
maps n functions Si that represent n input spike trains S1, . . . , Sn onto some
output spike train S of the same form.2 Apart from this basic difference
regarding the types of inputs and outputs, the perceptron learning rule and
STDP also differ in the following structural aspects:

i. The sign of any weight wi of a perceptron can be changed by the
perceptron learning rule, whereas one usually does not assume that

2 Obviously a spiking neuron can implement only causal filters F , where for any time
t, the value of S(t) depends on only the initial segments of S1, . . . , Sn up to time t.
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STDP can turn an excitatory synapse into an inhibitory synapse, or
vice versa.

ii. In the case where an example x that should be classified negatively
is incorrectly classified through the current weight vector w (i.e.,
y = sign(w · x) = 1 but yteacher = 0), the perceptron rule changes w in
a way that makes a reoccurrence of this mistake less likely. Something
quite different happens in the analogous scenario for STDP if the
neuron fires in response to an input for which it is not supposed to fire.
In our training paradigm, where hyperpolarizing teacher currents
suppress all undesired firing during training, no changes of synaptic
parameters are triggered by such mistakes during training. Hence,
this mistake is likely to show up again during testing (where there are
no teacher currents anymore). For the alternative training paradigm
where the teacher does not suppress this undesired firing during
training, rules 2.1 to 2.3, 3.1, and 3.2 for STDP change the synaptic
parameters in a way that positively reinforces future reoccurrences
of this mistake.3

iii. The perceptron learning rule leaves the weights of the perceptron
unchanged when it does not make a mistake (i.e., yteacher = y; see the
third line of equation 3.5), whereas STDP will continue to change
synaptic parameters even if the neuron fires exactly at the desired
times t (even if this firing occurs without the help of an extra “teaching
current”).

It had been shown in Amit, Wong, and Campbell (1989) that the first
apparent difference (i) between perceptron learning and STDP is not crucial
for the convergence of learning, since the perceptron convergence theorem
also holds for a sign-constrained version of the perceptron learning rule.4

We will show in the remainder of this section that the structural difference ii
(even without difference, iii) is quite serious, and entails a falsification of the
SNCC for STDP in some worst-case learning scenarios. To elucidate this fact,
we first demonstrate in Figure 1 that the perceptron convergence theorem
would no longer hold for certain learning scenarios if the second line of
the perceptron learning rule, equation 3.5 (which specifies its response to
negative counterexamples) is deleted, even if one starts with initial weights
of value 0. The reason is that in this case, the resulting decision boundary

3 This may be just a deficit of current formalizations of STDP, not of the biological reality
of synaptic plasticity. Debanne et al. (1998) and Frégnac (2002) have provided evidence
for synaptic plasticity resulting from teacher-induced suppression of firing (Figure 2D in
Markram, Lübke, Frotscher, and Sakmann (1997) also shows this effect).

4 Senn & Fusi (in press) have recently shown that the perceptron convergence theorem
also remains valid for a learning rule that in addition keeps the sizes of positive weights
bounded.
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Figure 1: Demonstration that the perceptron convergence theorem fails if the
second line of the perceptron learning rule, equation 3.5, is deleted, even if one
starts with small initial weights. Assume that the hyperplane H∗ generated by
weight vector w∗ is the target decision boundary (positive examples above H∗,
negative examples below H∗), and that the list L of examples that occurs in the
perceptron convergence theorem consists of just two examples: the positive ex-
ample 〈1.5, 1.5〉 and the negative example 〈4, 0〉.∗ If one starts, for example, with
the initial weight vector w = 〈0, 0〉, a decision boundary parallel to H will arise,
no matter how long the training is continued, if the second line of the perceptron
learning rule is deleted. Any such decision boundary will missclassify one of
the two examples in the list L .

∗ Formally the perceptron learning rule is applied in this example to a list L
consisting of the positive example 〈1, 1.5, 1.5〉 and the negative example 〈1, 4, 0〉,
that is, L = 〈〈1, 1.5, 1.5, 1〉, 〈1, 4, 0, 0〉〉. Thus, the points 〈1.5, 1.5〉, 〈4, 0〉 have to be
expanded by an additional dummy coordinate with value 1, whose associated
weight represents the (adjustable) constant term in the resulting hyperplane H
(see note 1). But this formal detail does not affect the validity of the argument.

depends on accidental details of the positive examples in the training set L ,
and negative examples cannot have any impact on learning.

One can transfer the main idea of the counterexample illustrated in
Figure 1 into the domain of spike trains and prove in this way that the
SNCC for STDP is false, at least for certain learning scenarios (see Figure 2).
If the set of possible spike inputs consists of only the two patterns shown in
Figure 2, then STDP does not converge from all initial weight settings to a
stable solution, although a stable solution exists. Details of the verification
are in appendix B.

Since we consider in Figure 2 only inputs where each presynaptic neuron
fires at most once before the target firing time t3 of the postsynaptic neuron,
the same example also proves that the SNCC for STDP fails if one assumes
that STDP changes the initial release probabilities U instead of the scaling
factors w (see the synapse model discussed in section 2, with a rule for �U
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Figure 2: Construction of a counterexample to an analogous version (SNCC)
of the perceptron convergence theorem for STDP. S1, S2, S3 denote three input
spike trains to three synapses of a neuron. (A) A positive example where firing
of the postsynaptic neuron at time t3 is desired. (B) A negative example where
no firing of the postsynaptic neuron is desired. See appendix B for details.

that is analogous to the previously discussed rule, equation 3.1, for �w;
this rule will be discussed as rule 7.1). Thus we have proven that the spiking
neuron convergence conjecture for STDP is not generally valid for either the case
where synaptic efficacies w are modulated by STDP or for the case where initial
release probabilities U are modulated by STDP.

4 Theoretical Results on STDP in the Context of Supervised Learning:
Average Case Analysis

We showed in the preceding section that it is not possible to derive for
STDP a convergence result that has the same mathematical structure as the
perceptron convergence theorem (yielding a guarantee of convergence for
any set of inputs just under the assumption that a suitable weight vector
exists). Therefore, we now turn to an average case analysis of STDP for
Poisson input spike trains.

The reason that the validity of the SNCC for STDP depends on the dis-
tribution of inputs can already be read off from the analogous scenario for
the perceptron learning rule without line 2 of equation 3.5 that is shown
in Figure 1. If the list L of training examples contained not just a single
positive example (i.e., one example of a point that lies above the target deci-
sion boundary H∗) but rather a larger set of positive examples covering the
area above H∗, then L would contain more positive examples 〈x1, x2〉 with
x2 > x1 than positive examples with x2 < x1. This asymmetry in the coordi-
nates of positive examples is likely to cause a weight vector w with w2 > w1,
since the perceptron learning rule in equation 3.8 without line 2 creates a
weight vector w that is proportional to the sum of positive counterexamples
that occur during learning. Hence, the angle between the resulting vector
w and the target vector w∗ is likely to get smaller for such more uniform
distribution of inputs (compared with the worst-case scenario discussed
in Figure 1). Analogously, if one generates positive training examples for
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a spiking neuron by injecting Poisson input spike trains, rather than con-
structing particular examples of spatiotemporal input patterns as in Figure
2, one creates a more uniform distribution of spatiotemporal input patterns
for which the neuron is supposed to fire. In this way, the learning process
via STDP also implicitly gets information about the distribution of nega-
tive examples, that is, spatiotemporal input patterns for which the neuron
is not supposed to fire, and hence they can indirectly influence the learn-
ing process even without any explicit provision in the rule for STDP that
discourages the firing of the neuron for such input patterns.

It turns out that for the average case, a form of the SNCC does, in fact
hold (see theorem 1) if the output of the neuron is clamped to the teacher sig-
nal; hence, neither false positives nor false negatives arise during training.
Furthermore, we show in theorem 2 that a general criterion for learnability
can be given that has the form of a condition on the correlation matrix of
Poisson inputs. Curiously enough, this condition has the form of a linear
separability condition, just like the condition on learnability for perceptrons,
although it arises here in a quite different context. In general, it turns out that
all these provable convergence results for STDP require a suitable choice of
the relationship between the parameters W+ and W− that scale the relative
impact of synaptic facilitation and depression in STDP.

As a preparation for the subsequent average case analysis, we need to
express weight changes resulting from STDP by suitable integrals. STDP
exploits correlations between input and output spike trains on the timescale
of the positive learning window. Inputs that are strongly correlated with
the output spike train are reinforced. If the integral over the whole learning
window is negative, inputs with correlations on chance level or slightly
above are weakened. More formally, let Si be the spike train of input i
and let S∗ be the output spike train. Both are represented in this section as
sums of δ-functions (see the definitions at the end of section 2). We consider
the total weight change �wi (t) = wi (t + T) − wi (t) resulting from pre- and
postsynaptic spikes within a given time interval of length T . Ignoring the
effect of weight clipping, the total weight change is the integral over all
individual weight changes resulting from learning rule 3.1:

�wi (t) =
∫ t+T

t
dt′

∫ t+T

t
dt′′ A(t′ − t′′)S∗(t′′)Si (t′). (4.1)

By substituting s = t′′ − t′ we get

�wi (t) =
∫ t+T

t
dt′

∫ t+T−t′

t−t′
ds A(s)S∗(t′ + s)Si (t′). (4.2)

But weight changes during the time interval [t, t + T] can potentially also
be caused by pre- or postsynaptic spikes that do not fall into this interval
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(especially if T is small). This can be taken into account by extending the
integration range of the second interval to (−∞, ∞), so that one arrives at

�wi (t) =
∫ t+T

t
dt′

∫ ∞

−∞
ds A(s)S∗(t′ + s)Si (t′). (4.3)

This formula assumes for simplicity that all weight updates resulting from
pre- and postsynaptic firing are always credited to the time point t′ of the
presynaptic firing. The error caused by this approximation is small if the
learning rates defined by W+, W− (i.e., the size of each single weight update)
are sufficiently small and the firing rates are sufficiently small so that the
value of a weight cannot change too much over the length of a single learning
window of STDP (i.e., during a single time interval of a length s for which
A(s) is still relatively large).

4.1 A Necessary Condition on Input Spike Trains. If we assume that
the statistics of input and output spike trains are constant over a learning
trial, the total weight change over a sufficiently long time interval T pro-
vides a good predictor for the end result of a learning process. Consider a
neuron with n synapses and a set M ⊆ {1, . . . , n}. Suppose that the neuron
computes the target transformation F ∗ if and only if wi = wmax

i for all i ∈ M
and wi = 0 for all i 
∈ M. Then for learning F ∗, the learning window should
be such that all weights wi with i ∈ M have positive total weight change. On
the other hand, all weights wi with i 
∈ M will need to have negative total
weight change (if it is allowed that the initial weights can be nonzero). If one
assumes a simple learning window with exponentially decaying positive
and negative parts as given in rule 3.1, one can determine the possible range
of W−/W+ by this criterion. For every i ∈ M, the total change of wi has to
be positive:

∫ t+T

t
dt′

∫ ∞

0
ds W+ S∗(t′ + s)Si (t′) e−s/τ+

−
∫ t+T

t
dt′

∫ 0

−∞
ds W− S∗(t′ + s)Si (t′) es/τ− > 0. (4.4)

Therefore, W−/W+ must satisfy

W−
W+

<

∫ t+T
t dt′ ∫ ∞

0 ds S∗(t′ + s)Si (t′) e−s/τ+∫ t+T
t dt′ ∫ 0

−∞ ds S∗(t′ + s)Si (t′) es/τ−
(4.5)
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for all i ∈ M. Furthermore, for every i 
∈ M, the total change of wi has to be
negative, that is, W−/W+ must satisfy

W−
W+

>

∫ t+T
t dt′ ∫ ∞

0 ds S∗(t′ + s)Si (t′) e−s/τ+∫ t+T
t dt′ ∫ 0

−∞ ds S∗(t′ + s)Si (t′) es/τ−
(4.6)

for all i 
∈ M. A value in the middle between these maximum and minimum
values for W−/W+ seems desirable to minimize the effects of noise in the
learning process.

4.2 Correlated and Uncorrelated Poisson Input. In general, the spike
trains S1, . . . , Sn, S∗ may not be known, only the process that generated
them. For example, one may only know the statistics of the inputs (e.g.,
correlated Poisson spike trains), but not the actual realizations. Furthermore,
if we assume that the target spike train S∗ is generated by some neuron with a
certain target weight vector, the spike generation process might be stochastic
and S∗ is therefore not known explicitly. In these cases, the change �wi is a
random variable with a mean drift and fluctuations around it. We will focus
on the drift by assuming that individual weight changes are very small and
only averaged quantities enter the learning dynamics (see Kempter et al.,
1999).

The STDP rule, 3.2, avoids the growth of weights beyond bounds 0 and
wmax by simple clipping. This leads to weights that tend to assume either
of the clipping values 0 or wmax. Alternatively, one can make the weight
update dependent on the actual weight value,

�w =
{

W+ · f+(w) · e−�t/τ+ , if �t > 0
−W− · f−(w) · e�t/τ− , if �t ≤ 0,

(4.7)

with suitable functions f+(w) and f−(w) (see Kistler & van Hemmen, 2000;
van Rossum, Bi, & Turrigiano, 2000; Rubin, Lee, & Sompolinsky, 2001).
In Gütig et al. (2003), a general rule is suggested where the weight de-
pendence has the form of a power law with a nonnegative exponent µ:
f+(w) = ((wmax − w)/wmax)µ+ and f−(w) = (w/wmax)µ− . For µ+ = µ− = 0
this rule recovers the basic additive update. The case µ+ = µ− = 1 corre-
sponds to a multiplicative model where the update is linearly dependent
on the current weight value.

In the remainder of this section, we assume for simplicity that wmax = 1
and µ+ = µ− = µ. Then the weight-dependent update factors simplify to
f µ
+ (w) := (1 − w)µ and f µ

− (w) := wµ. Thus, rule 4.7 becomes

�w =
{

W+ · (1 − w)µ · e−�t/τ+ , if �t > 0
−W− · wµ · e�t/τ− , if �t ≤ 0. (4.8)
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With this synaptic update rule, the total weight change can be approximated
by

�wi (t) =
∫ t+T

t
dt′

[∫ ∞

0
ds W+ f µ

+ (wi (t))e−s/τ S∗(t′ + s)Si (t′)

−
∫ 0

−∞
ds W− f µ

− (wi (t))es/τ S∗(t′ + s)Si (t′)
]

, (4.9)

where we have set τ+ = τ− = τ for convenience and replaced f+(wi (t′)) by
f+(wi (t)), as well as f−(wi (t′)) by f−(wi (t)) (assuming that learning proceeds
on a timescale larger than T—i.e., that wi (t) does not changes much during
a time interval of length T).

Consider the ensemble of all possible realizations of input and output
spike trains given by some fixed spike generation processes for input and
output spike trains. The average over this ensemble is in the following
denoted by 〈.〉E and called ensemble average. Taking the ensemble average
over the weight change in equation 4.9 and dividing by T yields

〈�wi 〉E (t)
T

= 1
T

∫ t+T

t
dt′

[
f µ
+ (wi (t))

∫ ∞

0
ds W+e−s/τ 〈S∗(t′ + s)Si (t′)〉E

− f µ
− (wi (t))

∫ 0

−∞
ds W−es/τ 〈S∗(t′ + s)Si (t′)〉E

]
, (4.10)

where the function 〈Si (t′)S∗(t′ + s)〉E , which measures the correlation be-
tween Si and S∗, is defined as the joint probability density for observing
an input spike at synapse i at time t′ and an output spike at time t′ + s. A
real neuron does not integrate over the whole ensemble; instead, learning is
driven by a single realization of the stochastic process. But instead of aver-
aging over several trials, we may also consider one single long trial during
which input and output characteristics remain constant. In the following
analysis, input and output spike trains will always be assumed to result
from Poisson processes. Because disjoint time intervals are independent in
a Poisson process, the integral in equation 4.9 decomposes into many in-
dependent events. Thus, for sufficiently small individual weight updates,
learning is self-averaging (see also Kempter et al., 1999). This means that
instead of learning on different examples from the ensemble, one can also
learn from a long single example to achieve the mean drift in equation 4.10.

We can exchange the integrals in equation 4.10 and introduce a tempo-
rally averaged correlation function Ci (s; t) := 1

T

∫ t+T
t dt′〈Si (t′)S∗(t′ + s)〉E .

Since in the following we will assume that spike trains are homogeneous
Poisson spike trains, the temporal average can be skipped, and we get

Ci (s; t) = 〈Si (t)S∗(t + s)〉E (4.11)
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for the temporal averaged correlation function. We approximate the left-
hand side of equation 4.10 by dwi (t)/dt ≡ ẇi (t), and thereby obtain

ẇi (t) = W+ f µ
+ (wi (t))

∫ ∞

0
ds e−s/τ Ci (s; t)

− W− f µ
− (wi (t))

∫ 0

−∞
ds es/τ Ci (s; t). (4.12)

We call ẇi (t) the synaptic drift of synapse i .
We now return to the previously discussed learning task. Consider an

arbitrary set M ⊆ {1, . . . , n} and assume that the target weight vector w∗

satisfies w∗
i = 1 if i ∈ M and w∗

i = 0 otherwise. The target output spike train
S∗ is produced by a neuron with synaptic efficacies w∗ and input spike
trains S1, . . . , Sn. The question is whether a neuron with some rather ar-
bitrary initial weight vector can learn the target transformation F ∗, which
maps inputs S1, . . . , Sn to the target output S∗, defined by S1, . . . , Sn, w∗. We
assume that the neuron receives S1, . . . , Sn as inputs and is forced to spike
only at times given by S∗ during training. Note that for homogeneous Pois-
son spike trains as inputs and a stationary generation process of the target
output S∗, Ci (s; t) is constant over time. We will skip the dependence on t
in the notation to emphasize this.

A precise mathematical characterization of those target transformations
F ∗ (defined by some weight vector w∗), which can be learned by STDP,
turns out to be a bit complicated. One complication arises from the fact
that a direct analysis of convergence for the STDP rules 3.1 and 3.2 is very
difficult because the resulting fluctuations around the barriers 0 and wmax

are hard to analyze. It turns out that rule 4.18, that is, rule 4.7 with f+(w) =
f µ
+ (w) = (1 − w)µ and f−(w) = f µ

− (w) = wµ, is easier to analyze. But this
rule no longer yields convergence to the target vector w∗ (in the case of
supervised training with teacher-enforced output spike train S∗), but yields
instead convergence to some other weight vector that is now dependent on
µ. For example, equation 4.20 in the proof of theorem 2 will show that STDP
with multiplicative updates according to rule 4.8 converges to a weight
vector in (0, 1)n even if w∗ ∈ {0, 1}n. We express this weight vector through
a function W : R

+ → (0, 1)n, which maps each µ > 0 onto a weight vector
W(µ) (we set R

+ := {x ∈ R : x > 0} in this article). For µ → 0, this rule, 4.8,
approximates the original STDP rule, 3.1, and, accordingly, the function
W(µ) converges to the target vector w∗. Thus, we have to replace a direct
analysis of supervised learning with rule 3.1 by the analysis of the limit of
supervised learning with rule 4.8 for µ → 0. This motivates the following
definition of learnability:

Definition 1. We say that a target weight vector w∗ ∈ {0,1}n can approximately
be learned in a supervised paradigm where the output is clamped to the teaching
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signal by STDP with soft weight bounds on homogeneous Poisson input spike trains
(short: “w∗ can be learned”) if and only if there exists a function W : R

+ → (0, 1)n

with limν→0W(ν) = w∗ and there exist W+, W− > 0, such that for all µ > 0,
the ensemble averaged weight vector 〈w(t)〉E with learning dynamics given by
equation 4.12 converges to W(µ) for any initial weight vector w(0) ∈ [0, 1]n.

The following theorem asserts that stability of target weight vectors un-
der STDP already implies that they can be learned. This implies that each
locally stable equilibrium point of the weight dynamics is a global attractor
for the dynamical system defined by the learning equations.5

Theorem 1. A target weight vector w∗ ∈ {0, 1}n can be learned if and only if
there exists a function W : R

+ → (0, 1)n with lim
ν→0W(ν) = w∗ and there ex-

ist W+, W− > 0, such that for all µ > 0, W(µ) is a stable equilibrium point of
the ensemble averaged weight vector 〈w(t)〉E with learning dynamics given by
equation 4.12.

Proof. Due to teacher forcing, the integrals over the positive and negative
learning window in equation 4.12 do not depend on w(t) and are therefore
constant. We use the abbreviation C pos

i for
∫ ∞

0 ds e−s/τ Ci (s) and Cneg
i for∫ 0

−∞ ds es/τ Ci (s). The learning dynamics can therefore be separated into n
independent one-dimensional dynamical systems.

To show the “if” part of theorem 1, we show that for any µ > 0, the sta-
ble equilibrium point W(µ) = 〈wµ1, . . . , wµn〉 is the only equilibrium point
of the system. Consider an arbitrary µ > 0 and an arbitrary synapse i .
Since wµi is a stable equilibrium point, the synaptic drift for small per-
turbations from wµi is such that wi converges to wµi . We show that the
synaptic drift has this property for all initial values wi (0) ∈ [0, 1] (since
the system is time invariant, it suffices to consider perturbations at t = 0).
For all wi (0) < wµi with wi (0) sufficiently close to wµi , we know that the
synaptic drift is positive, because the equilibrium point is stable. From
equation 4.12, we get 0 < ẇi (0) = W+C pos

i (1 − wi (0))µ − W−Cneg
i wi (0)µ. By

definition, we have C pos
i , Cneg

i ≥ 0, and C pos
i = Cneg

i = 0 is impossible since
this would imply ẇi (0) = 0 for all values of wi (0). Therefore, it holds for
all w′

i (0) with 0 ≤ w′
i (0) < wi (0) that W+C pos

i (1 − wi (0))µ − W−Cneg
i wi (0)µ <

W+C pos
i (1 − w′

i (0))µ − W−Cneg
i w′

i (0)µ. Hence, the synaptic drift is positive
for all weight values smaller than wµi . A similar argument shows that the
synaptic drift is negative for all weight valueswi (0) with wµi < wi (0) ≤ 1.

5 A point x∗ in the state space of a dynamical system is called an equilibrium point if it
has the property that whenever the state of the system starts at x∗, it remains at x∗ for all
future times. A equilibrium point x∗ is said to be stable if the state of the system converges
to x∗ for all sufficiently small disturbances away from it.
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Together, this implies that wµ is the only globally stable equilibrium point of
the learning dynamics. Hence, the ensemble averaged weight vector 〈w(t)〉E

converges to W(µ) for any initial weight vector w(0) ∈ [0, 1]n.
We now show the “only if” part of theorem 1. If the target vector can

be learned, then for some W+, W− > 0, we know that for any µ > 0, the
ensemble averaged weight vector 〈w(t)〉E converges to W(µ) for any initial
weight vector w(0) ∈ [0, 1]n. Since W(µ) ∈ (0, 1)n, we can draw w(0) from a
small surrounding of W(µ) which is still in [0, 1]n. This implies that W(µ) is
a stable equilibrium point of 〈w(t)〉E under the learning dynamics. Hence,
for these values of W+ and W−, it holds for all µ > 0 that W(µ) is a stable
equilibrium point of 〈w(t)〉E under the learning dynamics. This implies the
“only if” part of theorem 1.

For a more thorough analysis of the learning equation, we will have
to incorporate a specific neuron model. For the integrate-and-fire neuron,
no closed formula exists that relates the correlation between inputs and
outputs to the neuron parameters. We therefore give an analysis for the
linear Poisson neuron model (see section 2; see also Gerstner & Kistler,
2002). The next theorem is the main result of this section. We define the
normalized cross correlation between input spike trains Si and Sj with a
common rate r > 0 as

C0
i j (s) = 〈Si (t) Sj (t + s)〉E

r2 − 1, (4.13)

which assumes value 0 for uncorrelated Poisson spike trains. In our neuron
model, correlations are shaped by the response kernel ε(s), and they enter the
learning equation 4.12 with respect to the learning window. This motivates
the definition of window correlations,

c+
i j = 1 + 1

τ

∫ ∞

0
ds e−s/τ

∫ ∞

0
ds ′ ε(s ′)C0

i j (s − s ′), (4.14)

for the positive learning window and

c−
i j = 1 + 1

τ

∫ 0

−∞
ds es/τ

∫ ∞

0
ds ′ ε(s ′) C0

i j (s − s ′) (4.15)

for the negative learning window. In these definitions, the second integral
expresses a filtering of the correlation function with the response kernel
ε. We call the matrices C± = {c±

i j }i, j=1,...,n the window correlation matrices.
Note that window correlations are nonnegative and that for homogeneous
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Poisson input spike trains and a nonnegative response kernel, they are pos-
itive.6 We are now ready to formulate an analytical criterion for learnability:

Theorem 2. A weight vector w∗ can be learned for homogeneous Poisson input
spike trains with window correlation matrices C+ and C− to a linear Poisson
neuron with nonnegative response kernel if and only if w∗ 
= 0 and

∑n
k=1 w∗

k c+
ik∑n

k=1 w∗
k c−

ik
>

∑n
k=1 w∗

k c+
jk∑n

k=1 w∗
k c−

jk

for all pairs 〈i, j〉 ∈ {1, . . . , n}2 with w∗
i = 1 and w∗

j = 0.

This theorem can be interpreted in the following way. The amount of corre-
lation between input i and the output also depends on other inputs k, which
are correlated with this input. Furthermore, the impact of such a correlated
input depends on its weight. In the linear model, these effects are summed
up. Theorem 2 asserts a criterion on the fraction of such summed corre-
lations in the positive and negative learning window. This fraction needs
to be larger for synapses that should be potentiated than for synapses that
should be depressed.

Proof. We will prove theorem 2 with the help of theorem 1. We therefore
first analyze the equilibrium points of equation 4.12 for the linear Poisson
neuron model. Consider a linear Poisson neuron with the constant target
weight vector w∗. We obtain the correlation function 〈Si (t) S∗(t + s)〉E of
input i with the output by inserting the instantaneous rate of the linear
Poisson neuron with given input spike trains S1, . . . , Sn (see equation 2.3)
into Equation 4.11:7

Ci (s) = 〈Si (t) S∗(t + s)〉E =
n∑

j=1

w∗
j

∫ ∞

0
ds ′ ε(s ′) 〈Si (t) Sj (t + s − s ′)〉E .

6 From equation 4.14, it follows that c+
i j = 0 only if

∫ ∞
0 ds 〈Si (t) Sj (t + s)〉E = 0.

According to Bayes’ theorem, this equality can be rewritten as 〈Si (t)〉E
∫ ∞

0 ds 〈Sj (t +
s)|spike in Si at time t〉E = 0. This implies that either the rate of Si or the rate of Sj is zero,
which contradicts our assumption of positive rate. A similar argument can be applied for
c−

i j .
7 To show that this is valid, we observe that 〈Si (t)S∗(t′)〉E = 〈Si (t)〈S∗(t′)〉E ′ 〉E (this is

just a rearrangement of the summation terms). Here, 〈 . 〉E ′ indicates the ensemble average
over the ensemble for given S1, . . . , Sn, that is, only S∗(t′) is varied.
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With the use of simple mathematics, we can rewrite this equation as

Ci (s) = r2
n∑

j=1

w∗
j

[
1 +

∫ ∞

0
ds ′ ε(s ′) C0

i j (s − s ′)
]

. (4.16)

Equation 4.16 describes the input-output correlations of a neuron with target
weights w∗. Since the output of the teached neuron in our setup is clamped
to S∗, these correlations drive learning in the synapses of the taught neuron.
Substituting equation 4.16 into 4.12 and using equation 4.13, we can calculate
the synaptic drift as

ẇi = r2W+ f µ
+ (wi )

n∑
j=1

w∗
j

∫ ∞

0
ds e−s/τ

[
1 +

∫ ∞

0
ds ′ε(s ′) C0

i j (s − s ′)
]

− r2W− f µ
− (wi )

n∑
j=1

w∗
j

∫ 0

−∞
ds es/τ

[
1 +

∫ ∞

0
ds ′ε(s ′) C0

i j (s − s ′)
]

.

(4.17)

Equation 4.17 can be rewritten in terms of the window correlations c+
i j and

c−
i j as

ẇi = τr2

[
W+ f µ

+ (wi )
n∑

j=1

w∗
j c

+
i j − W− f−(wi )

n∑
j=1

w∗
j c

−
i j

]
. (4.18)

We find the equilibrium point wµi of synapse i by setting ẇi = 0 in
equation 4.18. This yields

f µ
− (wµi )

f µ
+ (wµi )

=
(

wµi

1 − wµi

)µ

= W+
W−

∑n
j=1 w∗

j c
+
i j∑n

j=1 w∗
j c

−
i j

, (4.19)

which is defined for w∗ 
= 0 (note that w∗
j ≥ 0 for j = 1, . . . , n, and c+

i j , c−
i j > 0

for i, j = 1, . . . , n). We denote W+
W−

∑n
j=1 w∗

j c+
i j∑n

j=1 w∗
j c−

i j
by �i and find

wµi =
(

1 + 1

�
1/µ

i

)−1

. (4.20)

The equilibrium points of the learning dynamics for given µ and W+, W− are
therefore given by wµ = 〈wµ1, . . . , wµn〉. If we cannot find values for W+, W−
such that these equilibrium points are stable, then the target function cannot
be learned due to theorem 1. The stability analysis of the equilibrium points
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is based on equation 4.18. One can see that the drift is identical to zero for all
W+, W− if w∗ = 0. In this case, every point in the state space is an equilibrium
point, but none is stable. It follows that the target function cannot be learned
if w∗ = 0.

In the following, we assume that w∗ 
= 0. We show that in this case,
the equilibrium point is stable for all µ, W+, W− > 0. We consider a small
perturbation δw of a single component wi from the equilibrium point wµi .
This leads to some drift ẇi of the perturbed system:

ẇi = τr2

n

[
W+ f µ

+ (wµi + δw)
n∑

j=1

w∗
j c

+
i j − W− f−(wµi + δw)

n∑
j=1

w∗
j c

−
i j

]
.

(4.21)

For all µ > 0 and δw > 0, it holds that f µ
+ (wi + δw) < f µ

+ (wi ) and f µ
− (wi +

δw) > f µ
− (wi ). Because c+

i j , c−
i j > 0, the synaptic drift of the perturbed sys-

tem ẇi is smaller than the synaptic drift of the system in equilibrium,
which is 0. It follows that the synaptic drift is negative for δw > 0. A
similar argument shows that the synaptic drift is positive for δw < 0.
Therefore, the equilibrium point of the system is stable if and only if
w∗ 
= 0.

To summarize, we know that there exists a function W : R
+ → (0, 1)n

such that for all W+, W−, µ > 0, W(µ) is a stable equilibrium point of the
learning dynamics if and only if w∗ 
= 0. Here, we can identify W(µ) with
wµ. If we compare this statement with theorem 1, we can deduce that the
target vector w∗ can be learned if and only if w∗ 
= 0 and limµ→0 wµi = w∗

i
for all i ∈ {1, . . . , n}. In the following, we show that this criterion is indeed
equivalent to the criterion given in theorem 2.

We define two sets of indices M and M̄, where M contains all indices i
with w∗

i = 1 and M̄ contains all indices i with w∗
i = 0. More formally, we

define M = {i ∈ {1, . . . , n}|w∗
i = 1} and M̄ = {i ∈ {1, . . . , n}|w∗

i = 0}. Note
that limµ→0 wµi = 1 if and only if �i > 1. Furthermore, limµ→0 wµi = 0 if
and only if �i < 1. Therefore, limµ→0 wµ = w∗ holds if and only if �i > 1
for all i ∈ M and �i < 1 for all i ∈ M̄. By the definition of �i , this state-
ment is equivalent to the following statement: limµ→0 wµ = w∗ if and
only if

W−
W+

<

∑n
j=1 w∗

j c
+
i j∑n

j=1 w∗
j c

−
i j

for all i ∈ M, and (4.22)

W−
W+

>

∑n
j=1 w∗

j c
+
i j∑n

j=1 w∗
j c

−
i j

for all i ∈ M̄. (4.23)



2358 R. Legenstein, C. Naeger, and W. Maass

Equations 4.22 and 4.23 can be taken together to form a single criterion:
limµ→0 wµ = w∗ if and only if

∑n
k=1 w∗

k c+
ik∑n

k=1 w∗
k c−

ik
>

∑n
k=1 w∗

k c+
jk∑n

k=1 w∗
k c−

jk
for all pairs 〈i, j〉 with i ∈ M and j ∈ M̄.

(4.24)

If condition 4.24 is satisfied, we know that we can find values for W+, W− >

0 such that conditions 4.22 and 4.23 are satisfied. On the other hand, if
condition 4.24 is not satisfied, there are no such values. Note that condition
4.24 is satisfied if no such pairs exist (i.e., w∗

i = 1 for all i). In this case, we
can choose W−/W+ arbitrarily small to guarantee convergence. Hence, we
have shown that a target vector w∗ can be learned if and only if w∗ 
= 0 and
condition 4.24 is satisfied. This concludes the proof of theorem 2.

For a wide class of cross-correlation functions, one can establish a re-
lationship between learnability by STDP and the well-known concept of
linear separability from linear algebra.

Definition 2. Let c1, . . . , cm ∈ R
n and y1 , . . . , ym ∈ {0, 1}. We say that a vector

w ∈ R
n linearly separates the list 〈〈c1 , y1 〉, . . . , 〈cm, ym〉〉 if there exists a threshold

� such that yi = sign(ci · w − �) for i = 1, . . . , m.

The perceptron convergence theorem asserts that a list of training exam-
ples can be learned if a weight vector exists that separates the list (i.e., if
the list is linear separable). We will show that the definition of linear sepa-
rability turns out to be useful also in the context of spiking neurons if it is
applied to the window correlation matrix C+ of input spike trains. Because
of synaptic delays, the response of a spiking neuron to an input spike is
delayed by some time t0. One can model such a delay in the response kernel
by the restriction ε(s) = 0 for all s ≤ t0.8 The following corollary asserts that
if input correlations C0

i j (s) vanish for time differences s < −t0 (i.e., cross
correlations appear only in a time window smaller than the delay), then
learnability can be stated in terms of linear separability. As shown in the the
proof of corollary 1, this condition implies that c−

i j = 1 for all i, j .

Corollary 1. If there exists a t0 ≥ 0 such that the response kernel ε(s) = 0 for all
s ≤ t0 and C0

i j (s) = 0 for all s < −t0 , i, j = 1, . . . , n, and the window correlation
matrix C+ is positive, then the following holds for the case of homogeneous Poisson

8 Different synapses have different delays. Here, we consider only a single delay t0
for all synapses. However, this assumption is not critical for the analysis. It can easily be
generalized to various different delays.
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input spike trains to a linear Poisson neuron with response kernel ε: A weight
vector w∗ can be learned if and only if w∗ 
= 0 and w∗ linearly separates the list
L = 〈〈c+

1 , w∗
1 〉, . . . , 〈c+

n , w∗
n〉〉, where c+

1 , . . . , c+
n are the rows of C+.

Corollary 1 can be viewed as an analogon of the perceptron convergence
theorem for the average case analysis of STDP.

Proof. The window correlations c−
i j are given by

c−
i j = 1 + 1

τ

∫ 0

−∞
ds es/τ

∫ ∞

0
ds ′ ε(s ′)C0

i j (s − s ′)

= 1 + 1
τ

∫ 0

−∞
ds es/τ

[∫ t0

0
ds ′ ε(s ′)C0

i j (s − s ′)

+
∫ ∞

t0
ds ′ ε(s ′)C0

i j (s − s ′)
]

= 1 .

The first integral in the square brackets vanishes because ε(s ′) = 0 for s ′ ∈
[0, t0]. The second integral in the square brackets vanishes because C0

i j (s −
s ′) = 0 for s − s ′ < −t0 and ε(t0) = 0.

We can apply theorem 2. The inequality in theorem 2 becomes
∑n

k=1 w∗
k c+

ik∑n
k=1 w∗

k
>∑n

k=1 w∗
k c+

jk∑n
k=1 w∗

k
. Let M = {i ∈ {1, . . . , n}|w∗

i = 1} and M̄ = {i ∈ {1, . . . , n}|w∗
i = 0}.

We find that the weight vector can be learned if and only if w∗ 
= 0 and

n∑
k=1

w∗
k c+

ik >

n∑
k=1

w∗
k c+

jk (4.25)

for all pairs 〈i, j〉 with i ∈ M and j ∈ M̄.
It remains to be shown that condition 4.25 is equivalent to the statement

that w∗ linearly separates the list L = 〈〈c+
1 , w∗

1〉, . . . , 〈c+
n , w∗

n〉〉. Condition 4.25
is satisfied if and only if there exists some threshold � such that w∗ · c+

i >

� > w∗ · c+
j for all pairs 〈i, j〉 with i ∈ M and j ∈ M̄. This is equivalent to

the condition that there exists some threshold � such that sign(c+
i · w∗ −

�) = w∗
i for all i = 1, . . . , n. Therefore condition 4.25 holds if and only if w∗

linearly separates L .

The formulation of corollary 1 is tight in the sense that linear separability
of the list L alone (as opposed to linear separability by the target vector w∗)
is not sufficient to imply learnability. This follows from the following fact:
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Proposition 1. There exists a window correlation matrix C+ = {c+
i j }i, j=1 ,...,n with

window correlations c+
i j and there exist vectors w, w∗ ∈ {0, 1}n, such that w lin-

early separates the list L = 〈〈c+
1 , w∗

1 〉, . . . , 〈c+
n , w∗

n〉〉 but w∗ does not linearly sep-
arate L. Thus, the list L is linearly separable, but the target vector w∗ cannot be
learned by STDP.

Proof. Consider homogeneous Poisson input spike trains of rate r that
have normalized cross correlation functions of the form C0

i j (s) = ci j

r δ(s) with
nonnegative correlation coefficients ci j . Let C denote the matrix with entries
ci j and ci denote the ith row of C . Furthermore consider some response ker-
nel ε with ε(s) = 0 for s ≤ 0. Obviously, we can apply corollary 1 here. The
positive window correlation functions are of the form c+

i j = 1 + ci jγ for some
constant γ > 0. One can show that for target values y1, . . . , yn ∈ {0, 1}, the
list L = 〈〈c+

1 , y1〉, . . . , 〈c+
n , yn〉〉 is linearly separated by a vector w ∈ {0, 1}n

if and only if w linearly separates the list L = 〈〈c1, y1〉, . . . , 〈cn, yn〉〉 (see ap-
pendix C). We will therefore consider the matrix C of correlation coefficients
ci j instead of C+.

Consider the matrix and vectors

C =




1 0.25 0.1 0.5 0
0.25 1 0.1 0.5 0
0.1 0.1 1 0.05 0
0.5 0.5 0.05 1 0
0 0 0 0 1


 , w∗ =




1
1
1
0
1


 , w =




0
0
1
0
1


 .

The list L = 〈〈c1, w∗
1〉, . . . , 〈cn, w∗

n〉〉 where ci is the ith row vector of C is
not separated by w∗, because Cw∗ = (1.35, 1.35, 1.2, 1.05, 1)T . However, w
separates L because Cw = (0.1, 0.1, 1, 0.05, 1)T . One can show that there
exist Poisson spike trains with correlation matrix C (see Legenstein & Maass,
2004).

For uncorrelated input spike trains of rate r > 0, each input spike train is
correlated only with itself and only for zero time lag. Thus, the normalized
cross-correlation functions are given by C0

i j (s) = δi j

r δ(s), where δi j is the Kro-
necker delta function. In this case, the condition for corollary 1 is satisfied for
every response kernel ε with ε(s) = 0 for s ≤ 0. Furthermore, the positive
window correlations are given by c+

i j = 1 + δi jγ for some constant γ > 0.
For arbitrary target values y1, . . . , yn, a weight vector w separates the cor-
responding list list L = 〈〈c+

1 , y1〉, . . . , 〈c+
n , yn〉〉 if and only if w separates the

list L ′ = 〈〈e1, y1〉, . . . , 〈en, yn〉〉 where the vectors e1, . . . , en are the the col-
umn vectors of the identity matrix (see appendix C). But every weight vec-
tor w∗ ∈ {0, 1}n with w 
= 0 separates the list 〈〈e1, w∗

1〉, . . . , 〈en, w∗
n〉〉. Hence,

for a window correlation matrix with such entries, every weight vector
w∗ ∈ {0, 1}n separates the corresponding list. Thus, with suitable values of



What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? 2361

W− and W+, any target weight vector w∗ ∈ {0, 1}n with w∗ 
= 0 can be learned
for the case of uncorrelated Poisson input spike trains:

Corollary 2. A target weight vector w∗ ∈ {0 , 1 }n can be learned in the case of
uncorrelated Poisson input spike trains to a linear Poisson neuron with response
kernel ε such that ε(s) = 0 for all s ≤ 0 if and only if w∗ 
= 0.

Equations 4.21 and 4.22 give necessary conditions for the relationship be-
tween long-term depression and long-term potentiation for successful learn-
ing. For uncorrelated Poisson input, equation 4.23 predicts that W−/W+ has
to be larger than 1. By equation 4.22, this fraction is bounded from above by

W−
W+

< 1 + w∗
i

τr
∑n

j=1 w∗
j
. (4.26)

As described in section 4.1, an optimal fraction W−/W+ lies halfway between
1 and the upper extreme of this inequality. For increasing n and a constant
fraction of nonzero weights, the sum in the denominator of equation 4.26
becomes larger. Equation 4.26 therefore predicts that this ratio drops with
increasing n (see experiment 1 in section 5).

For uncorrelated Poisson input and with different powers µ+ and µ−,
equation 4.19, which describes the fixed point of a synapses i , reads

wµ−
µi

(1 − wµi )µ+
= W+

W−

(
1 + 1

τr
w∗

i∑n
j=1 w∗

j

)
. (4.27)

Note that this equation holds not only for binary target vectors w∗ but also
for continuous target vectors w∗ ∈ [0, 1]n. The learning rule therefore reflects
the ordering of the target weights w∗ in its equilibrium point (i.e., for two
synapses i, j with w∗

i > w∗
j , we get wµi > wµj ). With appropriate parameters

µ+, µ−, W+, and W−, one should be able to learn a good approximation to
w∗. This is confirmed with computer simulations in section 6.2. However,
this ordering breaks down for correlated inputs, because cross correlations
between inputs have a strong influence on the equilibrium points of the
learning dynamics.

5 Computer Simulations of Supervised Learning with STDP: Weight
Modulations

We have shown through computer simulations that in spite of the negative
result from section 3 for the SNCC in a worst-case input scenario, the SNCC
for STDP is approximately satisfied for Poisson input spike trains, with
andwithout correlations among them. This positive result is not surprising
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in view of the theoretical predictions of section 4, but it is not automatically
implied by the preceding theory. In order to make a theoretical analysis fea-
sible, we needed to make in section 4 a number of simplifying assumptions
on the neuron model (linear Poisson neuron) and the synapse model (static
synapses). In addition, a number of approximations had to be used in or-
der to simplify the estimates; for example, we had analyzed only ensemble
average and drift and had assumed that the impact of stochastic fluctua-
tions could be ignored. As a consequence, we will see for the more realistic
models of neurons and synapses that the weight vector in general does not
converge to the target vector, but rather fluctuates in the neighborhood of
the target vector.

We consider in this section and in sections 6 and 7 the more realistic
models for neurons and synapses discussed in section 2. We also show
that in some cases, a less restrictive teacher forcing suffices that tolerates
undesired firing of the neuron during training. Details on the simulations
can be found in appendix A.

Apart from the failure of common rules for STDP to respond appropri-
ately (by a suitable reduction of weights of excitatory synapses) to “negative
examples,” where the neuron fires although it should not fire, we identified
in section 3 two other structural differences between the perceptron learning
rule and STDP:

i. STDP cannot change the “sign” of a synapse.

iii. STDP keeps changing synaptic parameters for inputs that are already
processed in the desired way by the neuron.

In all our simulations, we apply STDP just to excitatory synapses (and
they remain excitatory), whereas the parameters of inhibitory synapses re-
main unchanged (largely because of a lack of commonly accepted experi-
mental data on STDP for “generic” inhibitory synapses). We show that the
resulting structural difference i to the perceptron learning rule causes no
problem for the convergence of learning in the computer experiments dis-
cussed in this letter (note that no inhibitory inputs were considered in the
theoretical analysis of section 4).

The problem iii certainly has an impact insofar as it causes never-ending
fluctuations around the target vector and does not allow a locking onto the
target vector after finitely many steps as in the case of perceptron learning.
The theoretical analysis of section 4 had assumed that the neuron never fires
during training except when it is supposed to fire. In the subsequent com-
puter simulations, the neuron received a strong depolarizing input when it
was supposed to fire and a hyperpolarizing input, which prevented most
(but not all) undesired firing, when it was not supposed to fire. It turns out
that the use of such hyperpolarizing teacher input is not necessary if one
instead starts the learning with small (randomly assigned) initial weights.



What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? 2363

With large initial weights and without hyperpolarizing teacher input, learn-
ing capabilities are weak (results not shown).

5.1 Experiment 1 (Uncorrelated Input). In this experiment, a leaky
integrate-and-fire neuron received inputs from n = 100 dynamic synapses;
90% of these synapses were excitatory and 10% were inhibitory. For each
excitatory synapse, the maximal efficacy wmax was chosen from a gaus-
sian distribution with mean 54 and SD 10.8, bounded by 54 ± 3SD9. Target
weight vectors w∗ were chosen as follows. We randomly selected one-half
of the excitatory synapses and set their weights to the corresponding maxi-
mal efficacy wmax. The weights of the other excitatory synapses were set to
zero. The resulting target weight vector w∗ was then used to define a trans-
formation F , which maps 100 input spike trains to one output spike train.
The threshold of the neuron was set such that the rate of the output spike
train was approximately 25 Hz for an input consisting of 100 uncorrelated
Poisson spike trains with a rate of 20 Hz (this input rate was used for all
subsequent experiments, except for experiment 5).

We then replaced the weights of all excitatory synapses by new, randomly
chosen values according to a gamma distribution with mean 9 and standard
deviation 6.3. Weights of inhibitory synapses remained fixed throughout
the experiment (this also holds for all other experiments discussed in this
article). We then examined whether the neuron can learn with STDP to
reproduce the previously defined transformation F from input spike trains
to output spikes for an input consisting of 100 uncorrelated Poisson spike
trains at a rate of 20 Hz. Information about the target transformation F was
given to the neuron only in the form of short current injections (1 µA for
0.2 ms) at those times when this transformation F (i.e., the neuron with the
weight vector w∗) would have produced a spike. Learning was implemented
as standard STDP (see rule 3.2) with parameters τ+ = τ− = τ = 20 ms, W+ =
0.3, and W−/W+ = 1.035.

The learning simulation was performed for 3600 seconds of simulated
biological time with one long input sequence (i.e., without repetition of
identical spike trains). Longer simulations (4 hours simulated biological
time) were performed to test the stability of results. No significant changes
in the results were observed for these runs. Results of a typical learning trial
are shown in Figure 3.

Three different performance measures were used for analyzing the learn-
ing progress (see the three curves in Figure 3B). The most informative one
(“spike correlation,” plotted in Figure 3B with a dotted line) measures for
test inputs that were not used for training (but had been generated by the
same process) the deviation between the output spike train produced by
the target transformation F for this input, and the output spike train pro-

9 Values lower than 21.6 (greater than 86.4) were replaced by 21.6 (86.4).
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Figure 3: Learning an arbitrary transformation F on 100 uncorrelated Poisson
inputs. (A) Output spike train on test data after 1 hour of training (trained)
compared to the output of the target transformation F (target). (B) Evolution of
the angle between weight vector w(t) and the vector w∗ that implements F in
radiant (angular error, solid line), the weight deviation (dashed line), and spike
correlation (dotted line). (C) Twenty weights from the vector w∗ (each weight
has its maximal possible value or value 0). (D) Corresponding weights of the
learned vector w(t) after 1 hour of training.

duced for the same input by the neuron with the current weight vector w(t).
For that purpose, each spike in these two output spike trains was replaced
by a gaussian function with an SD of 5 ms. The spike correlation between
both output spike trains was defined as the correlation between the result-
ing smooth functions of time (for segments of length 100 s). This measure
penalizes missing or superfluous spikes produced by the trained neuron,
but also imprecision in timing of spikes on the scale of a few ms. The other
two measures are obtained by comparing directly the current weight vector
w(t), with the target weight vector w∗. The angular error measures the angle
between these two vectors (solid line in Figure 3B). Note that this measure
does not reflect differences in the magnitude of vectors, in contrast to the
third measure: weight deviation. Weight deviation is the mean absolute
weight difference normalized by the mean target weight. Thus, the weight
deviation can be computed as

∑ne
i=1 |w∗

i −wi (t)|∑ne
i=1 w∗

i
, with ne being the number of

excitatory weights. Note that the latter two measures are very direct, but
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they can be deceptive, since in general, several different weight vectors can
produce good approximations to the target transformation F (especially if
inputs are strongly correlated). Figures 3C and 3D show for an arbitrary
subset of 20 of the 90 excitatory synapses the values of weights in w∗ (see
Figure 3C) and w(t) (see Figure 3D) for t = 3600 s. The weights in w∗ have
either value 0 or the randomly chosen maximal value wmax for that weight.
The results shown in Figure 3 demonstrate that the spiking neuron with
dynamic synapses was able to learn with STDP after about 30 minutes of
training the target transformation F quite well, and further learning with
STDP did not reduce the quality of the approximation. Although the cho-
sen spike correlation measure equals zero for uncorrelated Poisson spike
trains of a common rate, we tested the spike correlation of randomly chosen
weight vectors (instead of the learned vector). The spike correlation pro-
duced by 20 weight vectors drawn from the same distribution as the target
weight vector w∗ was 0.24 ± 0.04 (mean ± SD). Hence, the spike correlations
achieved are far above chance level.

In order to test whether this positive result is representative, we carried
out 100 repetitions of the same experiment with different target vectors w∗,
different initialization w(0) of the weight vector before learning, and differ-
ent numbers of inputs. Twenty repetitions of the experiment (always with
new Poisson spike trains) were carried out for five different dimensions (i.e.,
for five different numbers of simultaneously injected Poisson spike trains)
between 25 and 200. The quotient W−/W+ was set to 1.12, 1.05, 1.035, 1.025,
1.0175 for 25, 50, 100, 150, and 200 inputs respectively. Results are shown
in Figure 4. Figure 4A and 4B show that randomly chosen target transfor-
mations F are learned quite well with STDP, with only slight deterioration
of performance even for biologically realistic large numbers of input spike
train. The required training time increases roughly linearly with the number
of inputs, but stays within a reasonable range.

5.2 Experiment 2 (Noisy Teacher). In a realistic scenario of prediction
learning, the predicted inputs are likely to have some timing jitter. We there-
fore repeated experiment 1 with the timing of “teacher spikes” jittered by
gaussian noise with zero mean and SD 4 ms. In this case, learning took con-
siderably longer (65 ± 12 minutes convergence time until an angular error of
≤ 10 degrees was achieved for the case 100 input spike trains, for 20 repeti-
tions of the experiment; 500 minutes simulated training time), and yielded
the following results: spike correlation 0.67 ± 0.1, angular error 7.5 ± 1.9
degrees, weight deviation 2.3 ± 0.5%, for W+ = 0.045, W−/W+ = 1.0055.10

10 Somewhat better results can be achieved with additional inhibitory input that re-
duces non-teacher-induced firing (see experiment 3 for details). One then gets a spike
correlation of 0.73 ± 0.16.
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Figure 4: Results on different input sizes. For each input size, the simulation
was repeated 20 times for different target transformations F, different inputs,
and different initial conditions. The mean and standard deviation is shown for
spike correlation (A) and angular error (B) after 1 hour of training. (C) Training
time needed until an angular error of less than 10 degrees is achieved.

5.3 Experiment 3 (Correlated Input). There exist many correlations
among spike trains from different neurons in a neural system, and there-
fore we have also carried out a variation of experiment 1 where different
subgroups of input spike trains had different degrees of correlation.

In this setup, inputs with weight 0 in the generation of the target transfor-
mation are correlated with the output. The reason is that such inputs are cor-
related with other inputs that have a positive weight and correlations with
the output. Furthermore, stronger correlated groups have a stronger influ-
ence on the output. In the extreme case, weighted inputs of input groups
with small correlation within the group may be less correlated with the
output than nonweighted inputs within strongly correlated groups. Again,
equations 4.5 and 4.6 help to predict successful learning and determine a
suitable quotient of W−/W+.

The experimental setup was similar to that of experiment 1. The 90 ex-
citatory inputs were divided into 9 groups of 10 synapses per group. Spike
trains were correlated within groups, whereas there were virtually no cor-
relations between spike trains of different groups.

Correlated spike trains with given correlation coefficients cc and given
decays τcc of correlations for time-shifted versions of such spike trains were
generated according to the methods that were introduced and analyzed
in Gütig et al. (2003). More precisely, spike trains Si , Sj were generated
such that the correlation function Ci j (�t) = 〈Si (t)Sj (t + �t)〉t of Si and Sj is
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exponentially decaying as a function of |�t|, with some small time constant
τcc (see appendix A). The correlation coefficient cci within group i consisting
of 10 spike trains was set to 0.1 ∗ (i − 1) for i = 1, . . . , 9. The time constant
of decay τcc was set to 10 ms.11

Target transformations F where all synapses belonging to the same group
of size 10 are all assigned the weight 0 or the maximal possible value can
be learned as well as the target transformation considered in experiment 1.
Therefore, we have focused on the more difficult case where target trans-
formations F have to be learned that require different weights for highly
correlated input spike trains. More precisely, we have chosen the most diffi-
cult case: target transformations F that were generated by assigning within
each of the 9 groups of the 10 excitatory synapses to 5 of them the weight 0
and to 5 of them their maximal weight value wmax (which was again chosen
randomly for each synapse as in experiment 1).

Figure 5A shows a typical weight vector that results in this way. Note that
learning is based not only on teacher spikes but also on non-teacher-induced
firing. Therefore, in addition to the difficulties noted above, strongly corre-
lated groups of inputs tend to cause autonomous (i.e., not teacher-induced)
firing of the neuron, which results in weight increases for all weights within
the corresponding group of synapses according to well-known results for
STDP (Song et al., 2000; Gütig et al., 2003). Obviously this effect makes it
quite hard to learn a target transformation F that requires that half of the
weights for each correlated group have value 0.

However, spike correlations of 0.79 ± 0.09 could still be achieved (20
runs, angular error 14.1 ± 10 degrees, weight deviation 8.6 ± 6.3 after 1 hour
of training, convergence time 716 ± 359 s until an angular error of ≤ 10
degrees is reached, for W+ = 0.45, W−/W+ = 1.05).

The performance was better if additional inhibitory input was given to
the neuron that reduced the occurrence of non-teacher-induced firing of
the neuron. We added 30 inhibitory synapses with weights drawn from a
gamma distribution with mean 25 and standard deviation 7.5 that received
additional 30 uncorrelated Poisson spike trains at 20 Hz. The weight vector
w(t) resulting after 1 hour of learning in the presence of such additional
inhibitory input is shown in Figure 5B. One can see that the deviation from
the target weight vector w∗ shown in Figure 5A is very small, even for highly
correlated groups of synapses with heterogeneous target weights.

On 20 trials (each with a new random distribution of maximal weights
wmax as in experiment 1, and hence with a new target transformation F ),
the mean spike correlation after 1 hour of training was 0.83 ± 0.08, with an

11 The peak correlation of the cross-correlation function is actually smaller. The corre-
lation factor cc is obtained in the limit of τcc = 0. cci can be interpreted as the correlation
present in a large time window. Since the time constant for STDP used is 20 milliseconds,
this definition is reasonable and more realistic than correlations with τcc = 0 (i.e., exact
coincidence of spikes).
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Figure 5: Effects of correlated inputs. (A) A typical target weight vector w∗

for experiment 3 (each weight has its maximal possible value or value 0) and
(B) a typical learned weight vector. No significant loss of accuracy can be seen for
weights of synapses that receive highly correlated input spike trains (cc = 0.8 for
synapses 81 to 90) in comparison with synapses that receive weakly correlated
(cc = 0.1 · (i − 1) for the ith group) or uncorrelated inputs (e.g., synapses 1 to
10). (C) The result of experiment 4 with sharper correlation (τcc = 6 ms instead
of 10 ms) and 4 groups with the correlation cc plotted on the x-axis (solid line). It
also shows as a dashed line the spike correlation achieved by randomly drawn
weight vectors (where half of the weights were set to wmax and the other weights
were set to 0).

angular error of 6.8 ± 4.7 degrees and a weight deviation of 4.25 ± 2.2%.
The spike correlation produced by 20 weight vectors drawn from the same
distribution as the target weight vector w∗ was 0.45 ± 0.05.

5.4 Experiment 4 (Dependence of Learning Performance on Input Cor-
relation). In order to evaluate the dependence of correlation among inputs,
we proceeded similarly as in experiment 3, but increased and sharpened the
correlation among inputs. Now 4 groups consisting each of 10 input spike
trains were constructed for which the correlations within each group had
the same value cc (the input spike train to the other 50 excitatory synapses,
were uncorrelated, as were the inputs to 10 inhibitory synapses; 30 extra un-
correlated inhibitory inputs were added during training as in experiment 3
to reduce undesired firing). In order to make the effects of these correlated
inputs more pronounced, the time constant τcc for the temporal decay of
input correlations was reduced from 10 to 6 ms. Target transformations F
were chosen as in experiment 3 in the most adverse way: half of the weights
of w∗ within each correlated group were set to 0, the other half to a ran-
domly chosen maximal value. The learning performance after 1 hour of
training for 20 trials is plotted in Figure 5C for seven different values of the
correlation cc that is applied in four of the input groups (solid line). The
quotient W−/W+ was set to 1.05, 1.055, 1.06 for correlations of 0.3, 0.4, and
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higher correlations, respectively. Note that higher correlations induce more
correlation of unweighted inputs with the output. Due to equation 4.5, this
implies larger W−/W+ for larger correlations. W+ was set to 0.45. One sees
that highly correlated inputs do indeed reduce the performance of learn-
ing “difficult” target transformation F with STDP. The resulting correlation
between the target output spike train produced by F and the output spike
train produced by the neuron with weight vector w(t) after training is not
too bad, even for highly correlated inputs (0.64 ± 0.05 for cc = 0.9), although
the learned weight vector w(t) is far off the target vector w∗ (angular error
of 40 ± 3.4 degrees for cc = 0.9). In this case, many different weight vec-
tors produce quite similar output spike trains since the majority of output
spikes of F are caused by correlated activity in one of the four correlated
input groups, and redistribution of weights within each correlated group
causes only slight changes in the output spike trains (see the dashed line
in Figure 5C). Furthermore, STDP is not well suited for selecting the right
ones within these correlated groups for weight amplification.

In order to test the approximate validity of theorem 2 for leaky integrate-
and-fire neurons and dynamic synapses, we repeated the above experi-
ment for input correlations cc = 0.1, 0.2, 0.3, 0.4, and 0.5. For each correla-
tion value, 20 learning trials (with different target vectors) were simulated.
Sixty-five percent of the 100 learning trials were classified as being learn-
able. The normalized cross correlation between inputs i and j (see equation
4.13) is approximately given by C0

i j (s) = cc
2τccr e−|s|/τcc for a mean input rate of

r = 20 Hz and a correlation decay constant of τcc = 6 ms. We had to choose
a response kernel ε such that ε(s) reflects the probability of spiking of the
integrate-and-fire neuron as a function of time s since an input spike. This
is experimentally measured with the peristimulus time histogram (PSTH).
For an integrate-and-fire neuron without synaptic noise, the PSTH is pro-
portional not to the shape of the EPSP but to its derivative (see Herrmann
& Gerstner, 2001). Since the derivative of the EPSP also assumes negative
values and its integral from 0 to infinity is vanishing, we could not use it for
the analysis (we assumed in the analysis that the response kernel is positive
and that its integral equals 1). Instead, we determined the PSTH of the neu-
ron in simulations and fitted a double exponential to its positive part. This
resulted in a response kernel of the form ε(s) = 1

τ1−τ2
(e−s/τ1 − e−s/τ2 ) with

τ1 = 2 ms and τ2 = 1 ms (least mean squares fit).
For this model, we calculated the window correlations c+

i j and c−
i j numer-

ically. For each trial, we first checked whether the (randomly chosen) target
vector w∗ was learnable according to the condition given in theorem 2 (note
that any rescaling of the target weight vector does not change the result). The
actual performance of learning with STDP was evaluated after 50 minutes
of training. To guarantee the best possible performance for each learning
trial, training was performed on 27 different values for W−/W+ between
1.02 and 1.15. In each trial, the best performance was chosen to evaluate
the quality of convergence. The result is shown in Figure 6. Figure 6 shows
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Figure 6: Comparison between theory and simulation results for a leaky
integrate-and-fire neuron for input correlations between 0.1 and 0.5 (τcc =
6 ms). Each cross marks a trial where the target vector was learnable according
to theorem 2. Each open circle marks a trial that is not learnable according to
theorem 2. The actual learning performance of STDP is plotted for each trial in
terms of the weight error (x-axis) and 1 minus the spike correlation (y-axis).

that the theoretical prediction of learnability or nonlearnability for the case
of simpler neuron models and synapses from theorem 2 (which was in ad-
dition derived under some simplifying statistical assumptions) translates
in a biologically more realistic scenario into a quantitative grading of the
learning performance that can ultimately be achieved with STDP.

5.5 Experiment 5 (Time-Varying Input Rates). Good learning results
were also obtained using spike trains with time-varying correlated firing
rates as inputs. The algorithm we used to produce such inputs had been in-
troduced in Song et al., (2000). This algorithm generates time-varying firing
rates that have a cross-correlation function that decays exponentially with
a time constant τc and an amplitude given by parameters called correlation
parameters (see appendix A). Specifically, the correlation between the rates
of two inputs i and j is ci c j , where ci and c j are the correlation parame-
ters of these inputs. We assigned to the n = 90 excitatory inputs correlation
parameters that varied between 0.2 and 0.9 (specifically, ci of input i was
set to 0.2 + 0.7(i − 1)/(n − 1). The time constant τc was set to 20 ms. In 20
learning trials, spike correlation was 0.89 ± 0.07, angular error was 4.7 ± 3.2
degrees, and weight deviation was 2.7 ± 1% (after 100 minutes of training,
W+ = 0.24, W−/W+ = 1.022). No additional inhibitory input during learn-
ing was used for this experiment.
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Table 1: Comparison of Learning Performance Between the Usual STDP Rule
(“Basic”) and the Modification (“Modified”) Suggested by Froemke & Dan
(2002).

STDP Maximum Input Spike Angular Weight
Rule Correlation Correlation Error (◦) Deviation (%)

Basic 0.8 0.83 ± 0.08 6.8 ± 4.7 4.25 ± 2.2
Modified 0.8 0.73 ± 0.09 17.2 ± 6.1 8.4 ± 3.8
Basic 0.54 0.83 ± 0.11 4.5 ± 1.5 3.2 ± 0.6
Modified 0.54 0.91 ± 0.05 3.7 ± 1.6 2 ± 0.6
Basic 0 0.84 ± 0.08 3.2 ± 1.3 1.9 ± 0.4
Modified 0 0.9 ± 0.07 2.7 ± 2.4 0.93 ± 0.6

Notes: The last three columns show how well randomly drawn target transformations
F were learned in each case. The first two lines report learning results achieved for
the same input distribution as in experiment 3, with nine groups of inputs where
the correlation within group i is 0.1 (i − 1). Lines 3 and 4 report results for inputs
with slightly weaker correlations (0.07 · (i − 1) in group i , i = 1, . . . , 9). The last two
lines report results for uncorrelated inputs. Training time was 60 minutes for the
basic update and 90 for the modified update, with 20 repetitions for different target
transformations F and different initial parameters. Learning parameters used for the
modified update rule were W+ = 1.34, 1.34, 0.59, and W− = 0.66, 0.625, 0.265 for a
maximum correlation of 0.8, 0.54, 0 respectively.

6 Variations of STDP Rules for Modulation of Weights

6.1 Learning Rule for Spike Trains Suggested by Froemke and Dan.
In modeling studies for STDP, one usually applies the STDP rule uniformly
to all pairs of pre- and postsynaptic spikes. In one recent experimental study
(Froemke & Dan, 2002), plasticity was induced not by repeated parings of
isolated pre- and postsynaptic spikes, but by longer pre- and postsynaptic
spike trains of a type as they occur in vivo. It was found that a correction
term to the STDP rule that weakens the impact of pre- and postsynaptic
spikes that occur shortly after another spike within the same neuron (see
appendix A) fits these experimental data better. We examined the impact
of this modified STDP rule on teacher-induced learning and found that it
somewhat reduces the learning accuracy in the presence of highly corre-
lated inputs, but has no or even a slightly positive effect for other input
distributions (see Table 1).

6.2 Learning Intermediate Values of Weights. The STDP rule, equation
3.2, avoids the growth of weights beyond bounds 0 and wmax by simple clip-
ping. Alternatively one can also make the weight update dependent on the
actual weight value, as discussed in section 4.2. With the update rule given
in equation 4.7, intermediate values of weights between 0 and wmax become
stable (as long as the input distribution does not change). However, Gütig
et al. (2003) showed that this effect is highly sensitive with regard to the
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Figure 7: Learning with a multiplicative variation of STDP that is able to pro-
duce stable intermediate weight values. (A) Weight vector w∗ of the target
transformation. (B) Learned weight vector w(t) after 100 minutes of training.
(C) Temporal evolution of weights during training (each weight can vary be-
tween 0 and wmax = 216). The numbers on the right-hand side give the values
of these weights that were used to generate the target transformation F .

values of µ+ and µ− and that these parameters require different values for
different input distributions. In a parameter regime where stable interme-
diate weight values can be produced by STDP, more target transformations
F from input spike trains to output spike trains can be implemented by a
neuron in a stable manner, and hence can potentially be learned.

Our computer simulations show that this is in fact the case (at least for
uncorrelated Poisson inputs). A typical learning result is shown in Figure 7,
for a target transformation F with intermediate weights between 0 and
144 for 90 excitatory synapses, as shown in Figure 7A (wmax = 216). The
temporal evolution of nine selected weights during learning is shown in
Figure 7C, and the resulting weight vector w(t) after 100 minutes of learn-
ing in Figure 7B. In 20 trials of 100 minutes duration (each with different
initial weights drawn from a uniform distribution over [0,108], and 100
uncorrelated Poisson input spike trains at 20 Hz), a spike correlation of
0.77 ± 0.01, angular error of 20.2 ± 0.07 degrees, and a weight deviation
of 8.3 ± 0.07% was reached. In this experiment, learning parameters were
W+ = 0.12, W−/W+ = 1.03, µ+ = 0.01, and µ− = 0.03. Results are highly
sensitive to these parameters.

7 Modulation of Initial Release Probabilities by STDP

Experimental data from slice (Markram & Tsodyks, 1996) suggest that
synaptic plasticity may not change the uniform scaling of the amplitudes
of EPSPs resulting from a presynaptic spike train (i.e., the parameter w),
but rather redistribute the sum of their amplitudes in a different way to
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individual EPSPs. If one assumes that STDP changes the parameter U that
determines the synaptic release probability12 for the first spike in a spike
train, whereas the weight w remains unchanged (see the synapse model
discussed in section 2), then the same experimental data that support rule
2.2 for STDP support the following rule for changing U:

Unew =
{

min{Umax, Uold + U+ · e−�t/τ+}, if �t > 0
max{0, Uold − U− · e�t/τ−}, if �t ≤ 0,

(7.1)

with suitable nonnegative parameters Umax, U+, U−, τ+, τ−.
One can easily prove that the class of transformations F that a neuron

can implement for different vectors U of initial release probabilities (with
generic values of w) is a different one from the class of transformations it
can implement for different vectors w. Hence, not only the learning rule
changes from equation 3.2 to equation 7.1, but also the class of potential
targets F for learning changes. Analogously as before, we first assigned to
each excitatory synapse a value Umax drawn from a gaussian distribution
with mean 0.25 and SD 0.02 (bounded by 0.25 ± 3 SD), as well as a value w
drawn from a gamma distribution with mean 12 and standard deviation 8.4.
The synaptic parameters D and F were chosen from gaussian distributions
with mean 0.7, 0.021. The SD of each parameter was chosen to be 10% of
its mean (with negative values replaced by values from a uniform distri-
bution between zero and two times the mean). Then target transformations
F for learning were constructed by randomly choosing for each excitatory
synapse either 0 or Umax as the value for U (with randomly drawn w-values
from a gamma distribution with mean 12 and SD 8.4). Figure 8A compares
a typical target spike train used in this section to a typical target spike train
used in section 5. It shows that transformations F used here typically pro-
duce other output spike trains than the corresponding assignment of values
wmin = 0 and wmax to these synapses (with U-values chosen as described in
section 2: drawn from a gaussian distribution with mean 0.5 and SD 0.05;
wmax randomly chosen as in experiment 1). Subsequently learning according
to rule 7.1 was started with teacher-induced pulses according to F and ini-
tial values of U randomly chosen from a uniform distribution in the interval
[0, 0.1] (30 extra uncorrelated inhibitory inputs were added during training
as in experiment 3 to reduce undesired firing). Figure 8 shows results of
repeating experiment 1 (which was for uncorrelated Poisson inputs) in this
new setting. Twenty repetitions of this experiment (with different random
choices of learning targets F and different initial conditions) yielded after 42
minutes of training the following results: spike correlation 0.88 ± 0.036, an-
gular error 27.9 ± 3.7 degrees, U− deviation 14.6 ± 2.6%, for U+ = 0.0012,

12 If one assumes that neurons are connected by a sufficiently large number of synaptic
release sites, release probability can be approximated in a deterministic model by the
amplitude of EPSPs.



2374 R. Legenstein, C. Naeger, and W. Maass

0 0.5 1 1.5 2
time [sec]

weight

utilization

A

0 1000 2000
0

0.2

0.4

0.6

0.8

1

time [sec]

B

angular error [rad]
weight deviation
spike correlation

5 10 15 20
0

0.1

0.2

Synapse

U

trainedD

5 10 15 20
0

0.1

0.2

Synapse

U

targetC

Figure 8: Results of modulation of initial release probabilities according to
STDP. (A) To demonstrate typical differences between target transformations
F resulting from synapse-specific values of U rather than synapse-specific val-
ues of w, we plotted the output of two such transformations F for the same
input (100 uncorrelated Poisson spike trains at 20 Hz). For the upper trace, Fw

was constructed by random assignments of minimal or maximal values of w to
individual synapses. For the lower trace, FU was constructed by choosing Umax

(Umin = 0) for a synapse whenever wmax (wmin = 0) was chosen for the same
synapse in the construction of Fw . (B) Performance of U-learning, analogous to
Figure 3B for experiment 1. (C, D) Same plots as in Figures 3C, and 3D but for
values of U (rather than w) of the target transformation F and after training
(with randomly chosen initial values).

U−/U+ = 1.055. The spike correlation produced by 20 U vectors drawn
from the same distribution as the target U vector (which corresponds to
some baseline value of correlation) was 0.55 ± 0.09 (mean ± SD). Again,
achieved spike correlations are far above chance level.

We also repeated experiment 3 with correlated Poisson inputs (more
precisely, 9 groups of 10 inputs with correlation 0.1 · (i − 1) among the in-
puts in group i) for the setting of U-learning. A typical result is plotted in
Figure 9. Although the deviation between the vector U∗ that was used to
generate F and the last vector U(t) (after 35 minutes of training) is rather
large (see Figures 9B and 9C), the output spike train produced by the trained
neuron matches that produced for the same input by the target transforma-
tion F quite well (see Figure 9A). Apparently the output spike train is less
sensitive to changes in the values of U than to changes in w. This was con-
firmed by testing spike correlations between output spike trains produced
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Figure 9: U-learning with correlated inputs (same input as in experiment 3; see
Figure 5). (A) Typically a good fit is achieved between the output produced by
the target transformation F (“target”) and the output (“trained”) produced by a
neuron whose U-values were modulated according to STDP rule 7.1. (B) Vector
U∗ used to generate the target F . (C) Vector U(t) produced after 35 minutes of
training.

by random U vectors and output spike trains produced by the target U
vector. Such U vectors, drawn from the same distribution as the target U
vectors, already achieved a spike correlation of 0.69 ± 0.6 (mean ±SD, 20
trials). Consequently, since only the “behavior of F ” but not the vector U∗ is
made available to the neuron during training, the resulting correlation be-
tween target and actual output spike trains is quite high, whereas angular
error between U∗ and U(t), as well as the average deviation in U, remain
rather large. This fact is supported by 20 repetitions of this experiment with
different targets F and different initial conditions, which yielded after 35
minutes of training the following results: spike correlation 0.75 ± 0.08, an-
gular error 39.3 ± 4.8 degrees, U− deviation 25.9 ± 4.9%, for U+ = 8 · 10−4,
U−/U+ = 1.09.

These positive results for U-learning with STDP are somewhat surpris-
ing, since increasing U for a synapse from a neuron that fired at some time
t1 shortly before a desired firing at time t2 of the postsynaptic neuron in
general does not increase the probability that the postsynaptic neuron will
fire on its own at time t2 if the same input spike trains would be repeated.
The reason is that the presynaptic spike at time t1 may be preceded by other
spikes from the same presynaptic neuron, so that an increase of the ini-
tial release probability U of the corresponding synapse is likely to deplete
synaptic resources at a faster rate and may actually result in an EPSP of a
smaller amplitude in response to the presynaptic spike at time t1. The pos-
itive results for U-learning with STDP reported in this section point to a
possible benefit of relatively small values of the initial release probability
U, since in this case, the previously described adverse scenario is less likely
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to occur for realistic presynaptic firing rates (in our simulations, U was not
allowed to grow beyond a randomly chosen value Umax that had a mean of
0.25; increasing Umax reduced the effectivity of U-learning with STDP).

8 Discussion

We have examined in this letter the question, “What can a spiking neuron
learn with STDP?” The answer at which we have arrived is that a spik-
ing neuron can learn with STDP basically any map F from input to output
spike trains that it could possibly implement in a stable manner. This holds
at least for uncorrelated and correlated Poisson input spike trains. In other
words, the spiking neurons convergence conjecture (SNCC) for STDP is ap-
proximately satisfied for such inputs in an average case sense. One could
interpret this as saying that STDP endows spiking neurons with univer-
sal learning capabilities for Poisson inputs (since no neuron could possibly
learn a transformation that it cannot implement with any setting of its ad-
justable parameters). In particular, STDP enables spiking neurons to learn
to predict even very complex temporal patterns of input currents that are
provided to the neuron during training.

On the other hand, we have shown that this result is quite sensitive to the
distribution of inputs for which learning takes place, since we showed in
section 3 that the SNCC for STDP is provably false for some worst-case input
scenarios. We have highlighted in section 3 three structural differences be-
tween the perceptron learning rule for McCulloch-Pitts neurons and STDP
for spiking neurons. One of these differences (failure of common rules for
STDP to discourage firing for inputs for which firing is not desired) was
used in section 3 to explain why the perceptron learning rule is guaranteed
by the perceptron convergence theorem to converge from arbitrary initial
values to an error-free solution (provided that such solution exists), whereas
no corresponding guarantee can be given for STDP in the worst case. On
the other hand, our theoretical average case analysis in section 4 and our
computer simulations have shown that Poisson input spike trains provide
a sufficiently rich set of positive examples (i.e., of input spike patterns for
which the neuron is supposed to fire in order to approximate a given tar-
get map F from input spike trains to output spike trains) so that a lack of
adjustment of parameters in response to negative examples is less severe.
But our theoretical analysis shows that convergence of learning with STDP
requires a proper choice of the relationship between the parameters W+ and
W− (see, e.g., equation 3.1) which determine the balance between long-term
synaptic facilitation and long-term synaptic depression in STDP. In the al-
ternative interpretation of STDP where the initial release probability U is
adjusted (see section 7), a suitable balance of the parameters U+ and U− in
equation 7.1 is needed for convergence of learning. Nevertheless, our re-
sults suggest that it would be quite important to study more systematically
the changes of synaptic parameters resulting from presynaptic spikes that
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do not cause postsynaptic spikes. Some evidence for the existence of such
biological mechanisms has been provided in the previously cited work by
Yves Frégnac and his collaborators, as well as in Markram et al. (1997).

It had already been shown in previous modeling studies (see, e.g.,
Kempter et al., 1999; Song et al., 2000) that STDP enables the most dom-
inating one among several input sources to control the output of a neuron.
In one sense, this result is closely related to the experimental results by
Frégnac et al. and to the modeling results of this article, since the extra in-
put currents induced by a “teacher” represent the dominant input source.
But there is one essential difference: the control of the output spike train
by the dominant input source is achieved in the latter two cases not by
strengthening the synapses from this dominant input source; in fact this
dominant input source disappears after training, and the neuron still fires
at times when the dominant input source would have been very high.

We have shown in section 4 that a mathematical average case analysis
can be carried out for supervised learning with STDP. This theoretical anal-
ysis also supports (under some simplifying assumptions) the validity of the
SNCC for Poisson inputs. In addition, this theoretical analysis produces the
first criterion that allows us to predict whether supervised learning with
STDP will succeed (or equivalently, whether a weight vector is stable under
STDP) in spite of correlations among Poisson input spike trains. For the
special case of “sharp correlations” (i.e., when the cross correlations can be
approximated by a δ-function), this criterion can be formulated in terms of
linear separability of the rows of the correlation matrix for the input, and
its mathematical form is therefore reminiscent of the well-known condition
for learnability in the case of perceptron learning. In this sense, corollary
1 can be viewed as an analogon of the perceptron convergence theorem
for spiking neurons with STDP. Our computer simulations show that the
analytically derived criteria predict quite well whether STDP converges for
correlated Poisson input spike trains even for the case of more realistic mod-
els of neurons and synapses and for the case where a number of simplifying
statistical assumptions regarding the input statistics are not satisfied.

In contrast to previous modeling studies for STDP, we have based all
computer simulations discussed in this article on biologically realistic mod-
els for dynamic synapses. Furthermore, we have shown in section 7 that an
alternative interpretation of STDP where one assumes that it modulates the
initial release probabilities U of dynamic synapses, rather than their scaling
factors w, gives rise to very satisfactory convergence results for learning.
This alternative interpretation of STDP is strongly suggested by data from
experiments where the effect of STDP was tested with more than a single
test spike (Markram & Tsodyks, 1996), but its possible impact on learning
has so far been studied very little. The simulation results for modulations
of initial release probabilities U by STDP (with relatively small values of
U) are surprisingly positive if one takes into account that an increase of U
has a quite different impact on the amplitude of an EPSP caused by a spike
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within a longer spike train than a corresponding increase of the synaptic ef-
ficacy w. Those positive learning results may point to functional benefits of
small release probabilities for synapses that are relevant for precise timing
of firing in neural circuits.

Appendix A: Details to Computer Simulations

A.1 Neuron Parameters. Membrane time constant τm = 30 ms, abso-
lute refractory period Trefract = 3 ms, resting potential Vresting = 0 V, reset
voltage Vreset = 14.2 mV, membrane resistance Rm = 1 M
, constant back-
ground current Ibackground randomly chosen for each trial from the interval
[13.5 nA, 14.5 nA]. Threshold voltage was set such that each neuron spiked
at a rate of about 25 Hz. This resulted in threshold voltages slightly above
15 mV.

A.2 Synaptic Parameters. The synaptic current x(t) of a synapse is in-
creased by Ak · q

τS
each time a presynaptic spike arrives, with x(0) = 0. Here,

q = 3pC (q = 6pC) is the total charge that is injected into the postsynap-
tic neuron by the excitatory (inhibitory) synapse by a single spike with
amplitude A = 1. Otherwise, the synaptic current decreases exponentially,
τS

dx
dt = −x with τS = 3 ms (τS = 6 ms) for excitatory (inhibitory) synapses

(see Gerstner & Kistler, 2002).

A.3 Correlated Spike Trains. To produce n spike trains with correlation
factor cc and frequency f , we proceeded, as in Gütig et al. (2003), with a time
bin of size �t = 0.2 ms bins. We constructed a Poisson spike train Sr with
frequency f by assigning a spike to each bin with probability f �t. The spike
train Sr was used as a template for the construction of the input spike trains.
Let θ = f �t(1 − √

cc) + √
cc and φ = f �t(1 − √

cc). Each input spike train
was generated by assigning a spike to a bin not in Sr with probability φ and
assigning a spike to a bin in Sr with probability θ (see Gütig et al., 2003). To
model an exponential decay with time constant τcc in the cross-correlation
function, we added timing jitter drawn from a Laplacian distribution with
time constant τcc/2 to all spikes in these spike trains.

To generate correlated rates in experiment 5, we used an algorithm that
has been introduced in Song et al. (2000). The rates of two different inputs
i and j with correlation parameters ci and c j have the cross-correlation
function 〈ri (t)r j (t′)〉t = r̄2(1 + ci c j exp(−|t − t′|/τc)), where 〈 〉t represents an
average over the ensemble of rates, and the average firing rate r̄ is chosen
to be 20 Hz. The cross-correlation function of the rate of a given input is
〈r (t)r (t′)〉t = r̄2(1 + exp(−|t − t′|/τc)). To generate such rates for n inputs, we
chose intervals of time from an exponential distribution with mean interval
τc . For every interval, we generated n + 1 random numbers, y and xa for
a = 1, 2, . . . , n, from gaussian distributions with zero mean and standard
deviation one and σa respectively, where σ 2

a = 1 − c2
a . At the start of each
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interval, the firing rate for input a was set to ra = r̄ (1 + xa + ca y) and held
at this value until the start of the next interval.

A.4 Modified Synaptic Update Rule. The modified update rule used
in section 6 was suggested in Froemke and Dan (2002) and assigns to each
pre- and postsynaptic spike an efficacy that depends on the time difference
to the preceding spike in the same neuron. The efficacy of the ith spike is
given by εi = 1 − exp(−(ti − ti−1)/τs) , where ti and ti−1 are the timings of the
ith and (i − 1)th spike, respectively, and τs is the suppression time constant.
The actual change in the amplitude of the EPSP for prespike i and postspike
j is ε

pre
i · ε

post
j · �A, where �A is given by equation 2.2 for �t = t post

j − t pre
i .

The contributions of different spike pairs were combined additively. The
parameters were chosen as in Froemke & Dan (2002): τ

pre
s = 28 ms, τ

post
s =

88 ms, τ+ = 14.8 ms, τ− = 33.8 ms.

Appendix B: Details to the Counterexample in Section 3

The two panels of Figure 2 denote two different input scenarios with input
spike trains 〈S1, S2, S3〉: one where the neuron is supposed to fire at time t3
(A) and one where the neuron is not supposed to fire at all (B). The maximal
weight wmax of the three synapses (which is here assumed to be the same for
all three synapses) should be scaled in such a way that a single spike cannot
bring the neuron to its firing threshold, but two spikes at time t2 with synap-
tic weights wmax will make it fire at time t3 in the scenario of Figure 2A and
a spike at time t′

1 with weight wmax/4 together with a spike at t′
2 with weight

wmax will make it fire at time t′
3 in the scenario of Figure 2B (but no single

spike on its own). Furthermore the second spike of S2 in scenario A should
be timed in such a way that postsynaptic firing at time t3 cannot cause an in-
crease of w2 (because W+ · e−(t3−t1)/τ+ = W− · e (t3−t4)/τ− in rule 3.2). Then initial
values w1 = w3 = wmax and w2 = 0 provide a solution to both constraints of
Figure 2, which is stable with regard to STDP. But if learning starts, for exam-
ple, with initial values w1 = w3 = wmax and w2 = wmax/4, then the neuron
will fire initially in both scenarios A and B. Furthermore, no application of
STDP for any sequence of scenarios A and/or B (even with teacher-induced
firing at time t3 in scenario A or even with teacher-induced prevention of fir-
ing in scenario B) can decrease any of the weights. Learning with STDP also
fails if one starts with small initial weights (e.g., w1 = w3 = 0, w2 = wmax/4)
and teacher-induced hyperpolarization prevents all undesired firing (i.e.,
all firing except at time t3 in scenario A). If sufficiently many instances of
scenario A occur during training (in addition to an arbitrary number of sce-
narios B), then learning will in this case also converge to w1 = w3 = wmax

and w2 = wmax/4, so that the neuron will also fire in scenario B. Hence, learn-
ing with STDP does not converge from these initial weights to a solution
of this learning problem, although a stable solution exists. Note that such
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counterexamples can be constructed for any given positive values of the
parameters W+, W−.

This counterexample shows that no convergence theorem can exist for
STDP that holds, like the perceptron convergence theorem, for any given
set of inputs. But this counterexample does not yet demonstrate failure of
convergence of STDP for realistic conditions with noise, since the assump-
tion W+ · e−(t3−t1)/τ+ = W− · e−(t3−t4)/τ− will no longer remain valid if there is
jitter on the firing times.

Appendix C: A Simple Result on Linear Separability (Needed for the
Proof of Proposition 1)

Consider the vectors c1, . . . , cm ∈ R
n where ci = (ci1, . . . , cin) and labels

y1, . . . , ym ∈ {0, 1}. Furthermore consider vectors c′
1, . . . , c′

m ∈ R
n where c′

i =
(c ′

i1, . . . , c ′
in) with c ′

i j = a + bci j for arbitrary constants a ∈ R and b > 0. We
show that a vector w ∈ R

n linearly separates the list 〈〈c1, y1〉, . . . , 〈cm, ym〉〉
if and only if w ∈ R

n linearly separates the list 〈〈c′
1, y1〉, . . . , 〈c′

m, ym〉〉.
Since ci j = c′

i j

b − a
b = a ′ + b ′c ′

i j with a ′ ∈ R and b ′ > 0, we need to
show only one direction. Suppose that w ∈ R

n linearly separates the list
〈〈c1, y1〉, . . . , 〈cm, ym〉〉. From Definition 2, it follows that there exists a thresh-
old � ∈ R such that yi = sign(

∑n
j=1 ci j w j − �) for i = 1, . . . , m. Therefore,

for the threshold �′ = � + a
b

∑n
j=1 w j , we have

yi = sign

(
n∑

j=1

(
a
b

+ ci j )w j − �′
)

for all i = 1, . . . , m.

Since for every x ∈ R and γ > 0, it holds that sign(x) = sign(γ x), we have

yi = sign

(
n∑

j=1

(a + bci j )w j − b �′
)

for all i = 1, . . . , m.

Hence, there exists a threshold �′′ such that

yi = sign

(
n∑

j=1

c ′
i j w j − �′′

)
for all i = 1, . . . , m.

This shows that w ∈ R
n linearly separates the list 〈〈c′

1, y1〉, . . . , 〈c′
m, ym〉〉.
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Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.

Markram, H., & Tsodyks, M. (1996). Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature, 382, 807–810.

Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same
axon of neocortical pyramidal neurons. PNAS, 95, 5323–5328.

Mehta, M. R. (2001). Neuronal dynamics of predictive coding. Neuroscientist, 7, 490–
495.

Rao, R. P. N., & Sejnowski, T. J. (2002). Predictive coding, cortical feedback, and spike-
timing dependent plasticity. In R. P. N. Rao, B. A. Olshauser, & M. S. Lewicki,
(Eds.), Probabilistic models of the brain (pp. 297–315). Cambridge, MA: MIT Press.

Rosenblatt, J. F. (1962). Principles of neurodynamics. New York: Spartan Books.
Rubin, J., Lee, D., & Sompolinsky, H. (2001). Equilibrium properties of temporal

asymmetric Hebbian plasticity. Physical Review Letters, 86, 364–367.
Senn, W., & Fusi, S. (in press). Learning only when necessary: Better memories of

correlated patterns in networks with bounded synapses. Neural Computation.
Senn, W., Schneider, M., & Ruf, B. (2002). Activity-dependent selection of axonal

and dendritic delays or, why synaptic transmission should be unreliable. Neural
Computation, 14(3), 503–619.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through
spike-timing dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.

van Rossum, M. C. W., Bi, G., & Turrigiano, G. G. (2000). Stable Hebbian learning
through spike-timing-dependent plasticity. Journal of Neuroscience, 20, 8812–8821.

Received April 26, 2004; accepted March 22, 2005.


