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Abstract. This paper provides references for my invited talk on the
computational power of neural microcircuit models.

Biological neural microcircuits are highly recurrent and consist of heteroge-
neous types of neurons and synapses, which are each endowed with an individual
complex dynamics [4], [6], [3], [7], [8], [23], [20]. Hence neural microcircuits are
as different as one can imagine from the familiar boolean circuits in our current
generation of computers, but also very different from common artificial neural
network models. This has given rise to the question how neural microcircuits
can be used for purposeful computations.

There are two quite different ways of approaching this question. One way is
to construct circuits consisting of biologically realistic components that can sim-
ulate other models for general-purpose computers such as Turing machines [13]
or general-purpose artificial neural network models [14], [16], or to construct cir-
cuits that carry out specific computations such as for example simpified speech
recognition [10]. Another way, which is discussed in my talk, is to recruit –
with the help of suitable adaptive mechanisms – biologically realistic “found”
or emerging models for neural microcircuits for purposeful computations. An
inspiring first example for this approach is given in [2]. It became the basis of
our new approach towards real-time computing in neural systems in [17]. The
underlying computational theory is presented in [15], and discussed from a bio-
logical point of view in [19]. Particular computational consequences of the high
dimensionality of neural microcircuits are discussed in [9]. It turns out that this
approach yields superior performance in terms of noise robustness, computing
speed, and size compared with special-purpose neural circuits that have been
constructed by hand for a specific computational task [18]. Publicly available
software for generating and simulating generic neural microcircuit models, and
for evaluating their computational power, is discussed in [21].

Herbert Jaeger discovered independently quite similar phenomena of tempo-
ral integration in recurrent circuits in the context of artificial neural network
models [11].

Current work addresses the application of the resulting new principles for
neural computation to online processing of real-world time-varying inputs, such
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as movement prediction for visual inputs [12], speech recognition in real-time,
and real-time processing of sensory inputs on a robot. Another line of current
research explores the computational role of specific details of biological neural
microcircuits, and the role of learning principles in this context.
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