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Abstract 
Temporal integration of information and prediction of future sensory inputs are assumed to be 
important computational tasks of generic cortical microcircuits. However it has remained 
open how cortical microcircuits could possibly achieve this, especially since they consist – in 
contrast to most neural network models – of neurons and synapses with heterogeneous 
dynamic responses. However it turns out that the diversity of computational units increases 
the capability of microcircuit models for temporal integration. Furthermore the prediction of 
future input may be rather easy for such circuits since it suffices to train the readouts from 
such microcircuits. In this article we show that very simple readouts from a generic 
recurrently connected circuit of integrate-and-fire neurons with diverse dynamic synapses can 
be trained in an unsupervised manner to predict movements of different objects, that move 
within an unlimited number of combinations of speed, angle, and offset over a simulated 
sensor field. The autonomously trained microcircuit model is also able to compute the 
direction of motion, which is a computationally difficult problem ("aperture problem") since it 
requires disambiguation of local sensor readings through the context of other sensor readings 
at the current and preceding moments. Furthermore the same circuit can be trained 
simultaneously in a supervised manner to also report the shape and velocity of the moving 
object. Finally it is shown that the trained neural circuit supports novelty detection and the 
generation of "imagined movements". Altogether the results of this article suggest that it is 
not necessary to construct specific and biologically unrealistic neural circuit models for 
specific sensory processing tasks, since "found" generic cortical microcircuit models in 
combination with very simple perceptron-like readouts can easily be trained to solve such 
computational tasks. 
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1. Introduction 
Biological organisms are bombarded with a continuous stream of sensory input that delivers 
millions of bits per second. In order to survive, the organism needs to extract from this stream 
in real-time the most salient bits for higher-level processing and decision-making. For fast 
responses an organism also has to take into account transmission delays and the inertia of its 
actuators, and therefore needs to base its motor commands on the anticipated next state of the 
environment and itself, rather than on the current one. Incidentally, all these problems also 
arise in the control of mobile robots, and are largely unsolved. It has long been conjectured 
that unsupervised learning plays an important role for the way in which many organisms solve 
these problems. But it has remained difficult to explain how this could be achieved for 
realistically complex and diverse input streams, and how it could be implemented in generic 
neural microcircuits of the neocortex. 
 
Cortical neural circuits differ in several essential aspects from circuit models arising in the 
context of computer science or artificial neural networks. The computational units of cortical 
circuits (neurons and synapses) are quite heterogeneous, being endowed with a multitude of 
different dynamical processes on several time scales (see for example [Gupta et al., 2000] and 
[Markram et al., 1998]). Furthermore these units are highly recurrent ("loops within loops") 
but sparsely connected, with accidental features in the connectivity patterns. It appears to be 
virtually impossible to implement any previously suggested approach for real-time processing 
of dynamically changing visual inputs on such circuits. We show that nevertheless 
biologically realistic neural microcircuit models are perfectly suited for analyzing complex 
time-varying visual inputs. Instead of collecting information about preceding input frames in 
delay lines are other suitable datastructures, and then applying time consuming algorithms in 
order to extract the desired information, we demonstrate through computer simulations that a 
quite different strategy is in principle feasible, and may in fact be biologically more realistic. 
One can inject continuously time-varying visual stimuli )(⋅u  directly into a simulated generic 
neural microcircuit. The current spike output )(tx  of such circuit, which is an n-dimensional 
vector if the circuit consists of n  neurons, contains information about the trajectory of 
preceding inputs )(su  for ts < , although in a highly nonlinear encoding. In fact, the diversity 
of its components and its recurrent but sparse connectivity tend to increase its information 
about the past. Simple algorithms for static pattern classification and regression can be 
applied to extract at any time t  from the current circuit output )(tx  information about recent 
movements )(⋅u . The decoding of this information from the current circuit output )(tx  
presents a virtually unsolvable task for a human observer, or any explicit decoding algorithm, 
especially if this circuit output is high dimensional (for example about 100,000-dimensional 
in the case of a cortical column). But the nonlinearity and high dimensionality of the "code" 

)(tx  enhance the chances for being able to train simple linear readout devices to extract the 
desired information – without the danger of getting stuck in local minima of the error 
function. The reason is that the transformation of the time-varying inputs )(⋅u  into a 
subsequent high dimensional circuit state )(tx  tends to act like a kernel for support vector 
machines that facilitates linear readout. 
 
In order to demonstrate the possible contribution of generic cortical circuit structures for 
typical visual processing tasks, no attempt has been made in the simulations discussed in this 
article to endow the neural microcircuit model in addition with specialized feature detectors 
such as orientation- or direction selective neurons, or neurons with particular receptive fields, 
or a more specialized connectivity structure. These features are likely to enhance the 
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performance of such microcircuit models for a range of visual tasks. In fact, the generic 
recurrent sparse connectivity and heterogeneity of our microcircuit model may provide the 
previously missing organisational scheme for combining the outputs of such specialized 
feature detectors for a wide variety of tasks that require real-time processing of rapidly 
varying visual information, even tasks that are not well-matched to the sizes of receptive 
fields or other details of specialized feature detectors. Thus the approach discussed in this 
article may provide new concepts and ideas for investigating the role of neural circuits in the 
visual cortex: by viewing them as wetware implementations of kernels that are particularly 
useful for processing time-varying visual inputs (analogously to the kernels discussed in 
[Schölkopf and Smola, 2002], which are particularly useful for other types of tasks). 
 
Through online prediction of sensory input an automatic preprocessing of the high-volume 
sensory input stream is accomplished, that makes it possible to surpress during normal 
sensory processing most of the incoming bits. Reports from sensors which had already been 
autonomously predicted by the system need not be transmitted to higher-level areas, since 
they provide no new information to the organism. This allows the higher-level areas to focus 
on the most far-reaching predictions and abstractions, such as the direction and velocity of 
movement (that have been extracted by lower level neural microcircuits from the raw input 
stream), and to use this sparse and temporally more stable information for higher level 
processing. Our simulations show that the same autonomously trained lower level circuits 
may also provide optimal support for higher-level areas if an unusual event takes place. If at 
any moment the movement of the object deviates from its predicted "usual" trajectory, an 
instant analysis of this unexpected event can take place, without any loss of information from 
sensors, since at this moment the system can make use of the full high bit rate of the incoming 
sensory input stream, and evaluate the complete pattern of deviations between actual and 
predicted input at all local sensors. 
 
Since the recurrent "liquid" neural circuit has not been altered during this autonomous training 
of readout neurons, it can at the same time serve for completely different information 
processing tasks. To illustrate this point, we have simultaneously trained other readout 
neurons to extract from the same recurrent neural circuit information about the identity of the 
moving object. This simultaneous object classification can be carried out with high precision, 
thereby showing that it is no mystery how a generic neural microcircuit in a sensory cortical 
area can support completely different analyses of the sensory input (for example a "what 
stream" and a "where stream"). 
 
In view of the controversies about the actual biological implementation of synaptic plasticity, 
and in order to focus on general computational principles rather than implementation details, 
we have used in this article simple Hebbian local learning rules that appear to be in principle 
biologically plausible, without making assumptions about their precise biological 
implementation. But one could use here just as well the temporally asymmetric spike time 
dependent plasticity rule explored in [Rao and Sejnowski, 2000] in order to train the weights 
of the readout neurons (which should in this case receive additional synaptic input from those 
sensors which they are trained to predict). On a more abstract level, in the context of 
sigmoidal rather than spiking neurons, a corresponding temporally asymmetric learning rule 
had previously been explored in [Abbott and Blum, 1996] for sequence prediction tasks. The 
main difference between the computational models analyzed in [Abbott and Blum, 1996] and 
[Rao and Sejnowski, 2000], and the one investigated in this article, is that those earlier studies 
focused on neural circuits that had essentially "no hidden neurons", but rather consisted of 
arrays of neurons where each excitatory neuron in the network was directly targeted by 
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exactly one "sensory" input, with excitatory or inhibitory (mediated by point-to-point 
interneurons) lateral connections between these directly input-driven neurons. Consequently 
these articles focused on predictions of input movements of pointwise objects whose direction 
and speed was aligned with the specific pattern of connections and transmission delays of the 
lateral connections between the array of input-driven neurons. In contrast, we consider in this 
article generic randomly connected networks of integrate-and-fire neurons into which the 
input is mapped by random connections that favor a topographic map. Such circuit might for 
example represent a neural microcircuit in primary sensory cortex. We demonstrate that the 
computational advantage of this biologically more realistic architecture lies in its capability to 
support analyses of a much larger diversity of shapes, directions and speeds of moving objects 
that could possibly be anticipated in the pattern of connections and transmission delays of a 
circuit that has been explicitly constructed to support this family of tasks. For example, we 
show that the current activity of those 70 % "hidden" neurons in the randomly connected 
recurrent circuit that are not directly driven by sensory input, provides sufficient context 
information to disambiguate hundreds of different movements that all excite a very similar 
subset of sensors when they cross the mid-area of the sensory field. Since we show that it is 
not required that the architecture of a neural microcircuit is specialized for the specific spatial 
and temporal input patterns that it usually processes, we also provide a possible explanation 
for the large amount of common anatomical structure among neural microcircuits in different 
sensory areas, and also among microcircuits in sensory and higher cortical areas. 
 
The possible role of hidden neurons in randomly connected recurrent neural networks for 
sequence prediction and disambiguation had previously already been investigated by Levy 
and his collaborators in the context of computational models for hippocampus (see [Levy, 
1996] for a survey). Their recurrent neural networks consisted of McCulloch-Pitts neurons 
(with shunting inhibition), rather than integrate-and-fire neurons. It is not clear whether their 
results could also be achieved for biologically more realistic circuit models with integrate-
and-fire neurons and dynamic synapses. The learning approach which they explored is 
complementary to the one considered in this article: they adapted weights of synaptic 
connections within the recurrent network, rather than just the synapses of neurons that read 
out information for specific tasks. As a consequence, they were only able to predict and 
disambiguate a set of input movements that is substantially smaller and simpler than the one 
considered in this article, with a number of neurons in the recurrent circuit that is comparable 
to ours. The idea to train just the neurons that read out information from a recurrent neural 
circuit had apparently first been proposed by [Buonomano and Merzenich, 1995]. The 
computational power of the resulting model has previously been analyzed in [Maass et al., 
2002] and [Maass and Markram, 2002]. It was independently investigated for artificial neural 
networks by [Jaeger, 2002]. 
 
 
2. Models for Generic Cortical Microcircuits 
We employed circuit models that reflect empirical data from microcircuits in rat 
somatosensory cortex (see [Gupta et al., 2000] and [Markram et al., 1998]) with regard to the 
types of dynamic synapses and their relationship to the type of presynaptic and postsynaptic 
neuron (excitatory or inhibitory). The biological models for neurons and dynamic synapses 
that were used were rather realistic (in contrast to the neurons and synapses used in artificial 
neural network models). Connections between neurons were chosen randomly, but with a 
biologically realistic bias towards local connections. The resulting circuits, each consisting of 
768 leaky integrate-and-fire neurons (of which 20 % were randomly chosen to be inhibitory), 
were sparsely but highly recurrently connected. We refer to [Maass et al., 2002] for details. 
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If one excites such complex and highly dynamic recurrent circuit with a continuous input 
stream )(su , and looks at a later time st >  at the current output )(tx  of the circuit, then )(tx  
is likely to hold a substantial amount of information about recent inputs. We as human 
observers may not be able to understand the "code" by which this information about )(su  is 
encoded in )(tx , but that is obviously not essential. Essential is whether a readout neuron that 
has to extract such information at time t  for a specific task can accomplish this. But this 
amounts to a classical (static) pattern recognition or regression problem, since the temporal 
dynamics of the input stream )(su  has been transformed by the recurrent circuit into a single 
high dimensional spatial pattern )(tx . This pattern classification or regression task tends to be 
relatively easy to learn, even by a memoryless readout, provided the desired information is 
present in the circuit output )(tx . We demonstrate that a single readout can be trained to 
accomplish this task for many different time points t . 
 
If the recurrent neural circuit is sufficiently large, it may support this learning task by acting 
like a kernel for support vector machines (see [Vapnik, 1998]), which presents a large number 
of nonlinear combinations of components of the preceding input stream to the readout. Such 
nonlinear projection of the original input stream )(⋅u  into a high dimensional space tends to 
facilitate the extraction of information about this input stream at later times t , since it boosts 
the power of linear readouts for classification and regression tasks. Linear readouts are not 
only better models for the readout capabilities of a biological neuron than for example multi-
layer-perceptrons, but their training is much easier and robust because it cannot get stuck in 
local minima of the error function (see [Vapnik, 1998]). These considerations suggest new 
hypotheses regarding the computational function of generic neural circuits in the visual 
cortex: to serve as general-purpose temporal integrators, and simultaneously as kernels (i.e., 
nonlinear projections into a higher dimensional space) to facilitate subsequent linear readout 
of information whenever it is needed. Note that in all experiments described in this article 
only the readouts were trained for specific tasks, whereas always the same recurrent circuit 
(with a randomly chosen fixed setting of synaptic "weights" and other parameters) was used 
for generating )(tx . 
 
Neuron parameters were chosen as in [Tsodyks et al., 2000]: membrane time constant 30ms, 
absolute refractory period 3ms (excitatory neurons), 2ms (inhibitory neurons). The threshold 
of each neuron was chosen to be -55 mV, the resting membrane potential and the reset voltage 
had a value of -56.5 mV. A value of 1 MΩ was chosen for the input resistance. In addition, 
each neuron received a background current of 13.5 nA. The probability of a synaptic 
connection from neuron a to neuron b (as well as that of a synaptic connection from neuron b 
to neuron a) was defined as 

2)/),(( λbaDeC −⋅ , where λ  is a parameter which controls both the 
average number of connections and the average distance between neurons that are 
synaptically connected. We assumed that the 768 neurons were located on the integer points 
of a 16 × 16 × 3 cube in space, where ),( baD  is the Euclidean distance between neurons a 
and b. Depending on whether a and b were excitatory ( E ) or inhibitory ( I ), the value of C 
was 0.4 (EE), 0.2 (EI), 0.5 (IE), 0.1 (II). In the case of a synaptic connection from a  to b  we 
modeled the synaptic dynamics according to the model proposed in [Markram et al., 1998], 
with the synaptic parameters U  (use), D  (time constant for depression), F  (time constant 
for facilitation) randomly chosen from Gaussian distributions that were based on empirical  
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data reported for such connections in [Gupta et al., 2000] and [Markram et al., 1998].3 
Synaptic connections from sensors (inputs) to neurons in the liquid were static, with their 
amplitude randomly drawn from a Gaussian distribution, the mean for their maximal 
amplitude A had a value of 3 nA, and the SD was 60% of the mean. The temporal evolution of 
postsynaptic currents was modeled by an exponential decay exp(-t/τs) with τs=3ms (τs=6ms) 
for excitatory (inhibitory) synapses. The transmission delays between liquid neurons were 
chosen uniformly to be 1.5 ms (EE), 0.7 ms (EI), and 0.8 for the other connections. 
 
Input to this recurrent circuit was provided by 64 simulated sensors that were arranged in an  
8 × 8  2D array (see Figure 1). The receptive field of each sensor was modeled as a square of 
unit size. The sensor output (with range [0, 1]), sampled every 5 ms, reflected at any moment 
the fraction of the corresponding unit square that was currently covered by a simulated 
moving object. The outputs of the 64 sensors were projected as analog input to the circuit in a 
topographic manner.4 
 
Neural readouts from this randomly connected recurrent circuit of leaky integrate-and-fire 
neurons were simulated as in [Maass et al., 2002] by pools of 50 neurons (without lateral 
connections) that received postsynaptic currents from all neurons in the recurrent circuit, 
caused by their firing. The synapses of the neurons in each readout pool were adapted 
according to the p-delta rule of [Auer et al., 2002]. But in contrast to [Maass et al., 2002], this 
learning rule was used here in an unsupervised mode, where target output values provided by 
a supervisor were replaced by the actual later activations of the sensors which they predicted 
(with prediction spans of 25 and 50 ms into the future). Other readouts were trained in the 
same unsupervised manner to predict whether a sensor on the perimeter was going to be 
activated by more than 50 % when the moving object finally left the sensor field. These 
neurons needed to predict farer into the future (100 - 150 ms, depending on the speed of the 
moving object, since they were trained to produce their prediction while the object was still in 
the mid-area of the sensor field). The latter readouts only needed to predict a binary variable, 
and therefore the corresponding readout pools could be replaced by a single perceptron (or a 
single integrate-and-fire neuron), at a cost of about 5 % in prediction accuracy. 
 
We wanted to demonstrate that the same microcircuit model can support a large number of 
different vision tasks. Hence in our simulations 102 readout pools received their input from 
the same recurrent circuit consisting of 768 leaky integrate-and-fire neurons. 36 of them were 
trained to predict subsequent sensor activation 25 ms later in the interior 6 × 6 subarray of the 
8 × 8 sensor array, 36 other ones were trained for a 50 ms prediction of the same sensors (note 
that prediction for those sensors on the perimeter where the object enters the field is 
impossible, hence we have not tried to predict all 64 sensors). 28 readout pools were trained 
to predict which sensors on the perimeter of the 8 × 8 array were later going to be activated 
when the moving object left the sensor field. All these 100 readout pools were trained in an 
                                                           
3 Depending on whether a, b were excitatory ( E ) or inhibitory ( I ), the mean values of these three parameters 
(with D, F expressed in second, s) were chosen to be 0.5, 1.1, 0.05 (EE), 0.05, 0.125, 1.2 (EI), 0.25, 0.7, 0.02 
(IE), 0.32, 0.144, 0.06 (II). The maximal amplitude A (in nA) for postsynaptic currents was chosen to be 30 (EE), 
60 (EI), -19 (IE), -19 (II). The SD of each synaptic parameter was chosen to be 50 % of its mean (with negative 
values replaced by values chosen from an appropriate uniform distribution). 
4 The 16 × 16 × 3 neuronal sheet was divided into 64  2 × 2 × 3 input regions, and each sensor from the 8 × 8 
sensor array projected to one such input region in a topographic manner, i.e., neighboring sensors projected onto 
neighboring input regions. Each sensor output was injected into a randomly chosen subset of the neurons in the 
corresponding input region (selection probability 0.6) in the form of additional input current (added to their 
background input current). One could just as well provide this input in the form of Poisson spike trains with a 
corresponding time-varying firing rate, with a slight loss in performance of the system. 
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unsupervised manner by movements of two different objects, a ball and a bar, over the sensor 
field. In order to examine the claim that other readout pools could be trained simultaneously 
for completely different tasks, we trained one further readout pool in a supervised manner by 
the p-delta rule to classify the object that moved (ball or bar), and another readout pool to 
estimate the speed of the moving object. 
 
 
3. Results 
The general setup of the prediction task is illustrated in Figure 1. Moving objects, a ball or a 
bar, are presented to an 8 × 8 array of sensors (panel a), where the current activation of each 
sensor is proportional to the percentage of the corresponding unit square (the "receptive field" 
of that sensor) that is currently covered by the object. The time course of activations of 8 
randomly selected sensors, resulting from a typical movement of the ball, is shown in panel b. 
Corresponding functions of time, but for all 64 sensors, are projected as 64 dimensional input 
by a topographic map into a generic recurrent circuit of spiking neurons (see Section 2). The 
resulting firing activity of all 768 integrate-and-fire neurons in the recurrent circuit is shown 
in panel c (firing times of inhibitory neurons are indicated as +). Panel d of Figure 1 shows 
the target output for 8 of the 102 readout pools. These 8 readout pools have the task to predict 
the output that the 8 sensors shown in panel b will produce 25 ms later. Hence their target 
output (dashed line) is formally the same function as shown in panel b, but shifted by 50 ms 
to the left. The solid lines in panel d show the actual output of the corresponding readout 
pools after unsupervised learning. Thus in each row of panel d the difference between the 
dashed and predicted line is the prediction error of the corresponding readout pool. 
 
The diversity of object movements that are presented to the 64 sensors is indicated in Figure 
2. Any straight line that crosses the marked horizontal or vertical line segments of length 4 in 
the middle of the 8x8 field may occur as trajectory for the center of an object. Training 
examples are drawn randomly from this – in principle infinite – set of trajectories, each with a 
movement speed that was drawn independently from a uniform distribution over the interval 
from 30 to 50 units per second (unit = side length of a unit square). Shown in Figure 2 are 20 
trajectories that were randomly drawn from this distribution. Any such movement is carried 
out by an independently drawn object type (ball or bar), where bars were assumed to be 
oriented vertically to their direction of movement. 
 
36 readout pools were trained to predict for any such object movement the sensor activations 
of the 6 × 6 sensors in the interior of the 8 × 8 array 25 ms into the future. Further 36 readout 
pools were independently trained to predict their activation 50 ms into the future, showing 
that the prediction span can basically be chosen arbitrarily. One could just as well also train 
corresponding predictions for the 28 sensors on the perimeter of the 8 × 8 array, but for these 
sensors we investigated instead a more difficult and far reaching prediction task: a prediction 
for the moment when the object leaves the sensory field, hence with a varying prediction span 

T∆  that depends on the speed of the moving object, and which is substantially larger (100 to 
150 ms) (see Figure 4 and discussion below). At any time t  (sampled every 25 ms from 0 to 
400 ms) one uses for each of the 72 readout pools that predict sensory input T∆  into the 
future the actual activation of the corresponding sensor at time Tt ∆+  as target value 
("correction") for the learning rule. An illustration is provided in Figure 3. The current sensor 
activation at time 200=t ms during one particular movement is shown in panel a. The 
prediction targets for 72 readout pools are shown in panel d. 36 of them are trained to predict 
the sensor activations of the inner 6 × 6 array of sensors 25=∆ T ms later at time t = 225 ms 
(shown on the l.h.s. of panel d), and 36 their activations 50=∆ T ms later at time 250=t ms 
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(shown on the r.h.s. of panel d). The normalized synaptic input to the neurons in these 72 
readout pools (assuming all their synaptic weights had value 1) at time 200=t ms is indicated 
by the horizontal bars on the right hand side of panel b. Each line indicates for this particular 
time t the contribution of one of the neurons in the recurrent circuit to the membrane potential 
of the readout neurons (modeled with a membrane time constant of 30 ms), with contributions 
of inhibitory neurons shown as bars going to the left. Technically, these bars simply represent 
the current output of a low pass filter that is applied to the spike train of the corresponding 
neuron shown on the same row in the raster plot to the left, with the most relevant time 
interval (due to the 30 ms membrane time constant of the simulated readout neurons) from 

30−t  to t  marked at the end. The array of these 768 bars represents the liquid state of the 
recurrent circuit at time 200=t ms in the terminology of [Maass et al., 2002], and this is the 
common input at time t to all neurons in the 102 readout pools. Since after training the 
synapses to the neurons in the readout pools have all different weights, the actual contribution 
of the neurons in the "liquid" to the membrane potential of the readout neurons at time t is 
after training for each readout neuron a different weighted sum of the values indicated on the 
right hand side in panel b. The 72 readout pools for short-term movement prediction were 
trained by 1500 randomly drawn examples of object movements. More precisely, they were 
trained to predict future sensor activation at any time (sampled every 25 ms) during the 400 
ms time interval while the object (ball or bar) moved over the sensory field, each with another 
trajectory and speed. 
 
Panel c of Figure 3 shows after training the output of the 72 readout pools at time 200=t ms , 
where 36 readout pools were trained for the 25=∆T ms prediction, and 36 for the 

50=∆T ms prediction. Perfect prediction would yield a perfect match to the corresponding 
sensor activation plots in panel d. Among the predictions of the 72 different readout pools on 
300 novel test inputs there were for the 25 ms prediction 8.5 % false alarms (sensory activity 
erroneously predicted) and 4.8 % missed predictions of subsequent sensor activity. For those 
cases where a readout pool correctly predicted that a sensor will become active, the mean of 
the time period of its activation was predicted with an average error of 10.1 ms. For the 50 ms 
prediction there were for 300 novel test inputs 16.5 % false alarms, 4.6 % missed predictions 
of sensory activations, and an average 14.5 ms error in the prediction of the mean of the time 
interval of sensory activity. 
 
One should keep in mind that movement prediction is actually a computationally quite 
difficult task, especially for a moving ball, that requires context-dependent integration of 
information from past inputs over time and space. This computational problem is often 
referred to as the "aperture problem" [Mead, 1989]: from the perspective of a single sensor (or 
a small group of sensors) that is currently becoming partially activated because the moving 
ball is covering part of its associated unit square (i.e., its "receptive field") it is impossible to 
predict whether this sensor will become more or less activated at the next movement. In order 
to decide that question, one has to know whether the center of the ball is moving towards its 
receptive field, or is just passing it tangentially. To predict whether a sensor that is currently 
not even activated will be activated 25 or 50 ms later, poses an even more difficult problem 
that requires not only information about the direction of the moving object, but also about its 
speed and shape. Since there exists in this experiment no preprocessor that extracts these 
features, which are vital for a successful prediction, each readout pool that carries out 
predictions for a particular sensor has to extract on its own these relevant pieces of 
information from the raw and unfiltered information about the recent history of sensor 
activities, which are still reverberating in the recurrent circuit (the "liquid") and leave a trace 
in its current "liquid state". 
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28 further readout pools were trained in a similar unsupervised manner (with 1000 training 
examples) to predict where the moving object is going to leave the sensor field. More 
precisely, they predict which of the 28 sensors on the perimeter are going to be activated by 
more than 50 % when the moving object leaves the 8 × 8 sensor field. This requires a 
prediction for a context-dependent time span into the future that varies by 66 % between 
instances of the task, due to the varying speeds of moving objects. We arranged that this 
prediction had to be made while the object crossed the central region of the 8 × 8 field, hence 
at a time when the current position of the moving object provided hardly any information 
about the location where it will leave the field, since all movements go through the mid area 
of the field. Therefore the tasks of these 28 readout neurons require the computation of the 
direction of movement of the object, and hence a computationally difficult disambiguation of 
the current sensory input. We refer to the discussion of the disambiguation problem of 
sequence prediction in [Levy, 1996] and [Abbott and Blum, 1996]. The latter article discusses 
difficulties of disambiguation of movement prediction that arise already if one has just 
pointwise objects moving at a fixed speed, and just 2 of their possible trajectories cross. 
Obviously the disambiguation problem is substantially more severe in our case, since a 
virtually unlimited number of trajectories of different extended objects (see Figure 2), moving 
at different speeds, crosses in the mid area of the sensor field. The disambiguation is provided 
in our case simply through the "context" established inside the recurrent circuit through the 
traces (or "reverberations") left by preceding sensor activations. Figure 4 shows in panel a a 
typical current position of the moving ball, as well as the sensors on the perimeter that are 
going to be active by ≥ 50 % when the object will finally leave the sensory field. In panel b 
the predictions of the corresponding 28 readout neurons (at the time when the object crosses 
the mid-area of the sensory field) is also indicated (striped squares). The prediction 
performance of these 28 readout neurons was evaluated as follows. We considered for each 
movement the line from that point on the opposite part of the perimeter, where the center of 
the ball had entered the sensory field, to the midpoint of the group of those sensors on the 
perimeter that were activated when the ball left the sensory field (dashed line). We compared 
this line with the line that started at the same point, but went to the midpoint of those sensor 
positions which were predicted by the 28 readout neurons to be activated when the ball left 
the sensory field (solid line). The angle between these two lines had an average value of 4.9 
degrees for 100 randomly drawn novel test movements of the ball (each with an 
independently drawn trajectory and speed)5. 
 
The readout pool that was independently trained in a supervised manner to classify the 
moving object (ball or bar) had an error of 0 % on 300 test examples of moving objects. The 
other readout pool that was trained in a supervised manner to estimate the speed of the 
moving bars and balls, which ranged from 30 to 50 units per second, made an average error of 
1.48 units per second on 300 test examples. This shows that the same recurrent circuit that 
provides the input for the movement prediction can be used simultaneously by a basically 
unlimited number of other readouts, that are trained to extract completely different, or more 
abstract, information from the current "liquid state" of the recurrent circuit. 
 
We also evaluated the 72 readout pools that had been trained in an unsupervised fashion (see 
Figure 1-3) to predict future sensor activity for completely different tasks, that were unrelated 
                                                           
5 One can show that even more information about the precise movement direction is contained in the liquid state 
of the recurrent circuit when the moving ball crosses the mid area of the sensor field. Using the algorithm from 
section 10.2 in [Vapnik, 1998] to compute optimal hyperplanes for predicting which sensors on the perimeter 
were going to be activated reduced the average error from 4.9° to 1.5°. 
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to those shown during training. We first considered the response to object movements when 
the object changed its direction of movement while crossing the sensor field. Figure 5 shows 
the prediction error of the 36 neurons that predict sensor activation 50=∆T ms later when the 
object changes its direction of movement at time t = 250 ms. The weights of these readout 
neurons resulted from a training procedure described before (see Figure 2), where only linear 
movement paths were shown. Panel b indicates that at time t = 300 ms, thus 50 ms after the 
object has changed its direction of movement, the prediction error is very high, much higher 
than during any straight movement. Hence another neural circuit that compares in an online 
manner predictions of sensor activation with their actual later activation can easily discern 
that something unusual has happened. Furthermore the spatial distribution of prediction errors 
(r.h.s. of panel b in Figure 5) provides the most relevant input for analyzing this event. Note 
that the time point t  = 250 ms where the moving object changed its direction had been picked 
arbitrarily in this experiment. Hence any-time novelty detection and analysis is supported by 
our neural circuit that had been trained in an unsupervised manner, although it had never been 
trained for novelty detection. 
 
Finally, we show in Figure 6 what happens if from some arbitrarily chosen time point on 
(here 125=t ms) the sensor input to the recurrent circuit is removed, and replaced by 
predictions of future inputs by the readout pools. More precisely, the time series of inputs 
(sampled every 5 ms) was replaced for each sensor after 125=t ms by the preceding 
prediction of the corresponding readout pool (that had been trained for this prediction in an 
unsupervised manner as described before). Hence further predictions after time 125=t ms are 
made based on an increasing portion of imagined rather than real inputs to the recurrent 
circuit. We found that such imagined continuations of movements require very small errors 
for short term predictions. Therefore the result shown in Figure 6 is from an experiment 
where the readouts were only trained to predict upwards movements for 25=∆T ms, resulting 
in a substantially lower error for that prediction. The resulting autonomously "imagined" 
continuation of the object movement is shown in panels b – d. It turned out that this imagined 
movement proceeded by 87.5 % faster than the initial "real" part of the movement. Panel e 
shows the firing activity of 100 neurons in the recurrent circuit for the case where the input 
arises from the "real" object movement, and panel f shows the firing activity of the same 
neurons when the "real" input is replaced after 125=t ms by imagined (predicted) inputs. One 
sees from these raster plots that our model neural circuit may provide an explanation for the 
observed speed-up of spike-patterns in rat hippocampus from periods of sensory exploration 
to subsequent periods of sleep with presumed internal replay of preceding exploration phases 
(see [Nadasdy et al., 1999]). 
 
 
4. Discussion 
We have demonstrated that generic neural microcircuits are in principle capable of learning in 
an autonomous manner to augment and structure the complex high volume input stream that 
they receive: They can learn to predict individual components of the subsequent frames of 
typical "input movies", thereby allowing the system to focus both on more abstract and on 
surprising aspects of the input. For example, they can autonomously learn to extract the 
direction of movement of an object, which requires integration of information from many 
sensors ("pixels") and many frames of the input movie. Because of the diversity of moving 
objects, movement speeds, movement angles, and spatial offsets that occurred, it appears to 
be very difficult to construct explicitly any circuit of the same size that could achieve the 
same performance. Furthermore the prediction errors of our approach can be reduced by 
simply employing a larger generic recurrent circuit as liquid. On the other hand, given the 
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complexity of this prediction task (for two different objects and a large diversity in movement 
directions and movement speeds), the recurrent circuit consisting of 768 neurons that we 
employed – which had not been constructed for this type of task – was doing already quite 
well. Its performance provides an interesting comparison to the analog VLSI circuit for 
motion analysis on a 7 × 7 array of sensors discussed in [Stocker and Douglas, 1999]. 
 
Whereas a circuit that would have been constructed for this particular task is likely to be 
specialized to a particular range of moving objects and movement speeds, the circuit that we 
have employed in our simulations is a completely generic circuit, consisting of randomly 
connected integrate-and-fire neurons, that has not at all been specialized for this task. This has 
the advantage that the circuit can at the same time be used by other readout neurons for 
completely different tasks, such as for example object classification. In our simulations 102 
pools of readout neurons were trained to extract and recombine diverse pieces of information 
in real-time. In the cortex substantially more neurons in diverse areas that are dedicated to 
different tasks may receive projections from the same microcircuit, for example from a 
microcircuit in V1. Our model shows that this computational strategy is meaningful, as long 
as the microcircuit has not been optimized for a particular task. However, a cortical 
microcircuit is likely to be adapted to the particular statistics of its input (extracting for 
example independent components from its input stream), thereby providing improved support 
for a whole array of readout neurons and tasks. This has not yet been pursued in the 
simulations discussed in this article, where we kept for simplicity all synaptic parameters 
within the generic cortical microcircuit model fixed. Another aspect that should be 
implemented in more realistic models is that different readout neurons receive inputs from 
different subsets of neurons in the microcircuits (rather than from all neurons in the 
microcircuit as in our simplified model). It would also be desirable to replace the supervised 
training of readouts that extract shape and velocity of the moving object by readouts that are 
trained in an unsupervised manner to extract invariant properties of the moving object.  
 
As a functional consequence we have shown that a generic neural circuit that has been trained 
in an unsupervised manner to predict future inputs automatically supports novelty detection 
when being exposed to new types of input movements. We also have demonstrated that if 
from some point on the circuit input is replaced by input predictions that are fed back from 
neural readouts, the emerging sequence of further predictions on the basis of preceding 
predictions generates an imagined continuation of a moving stimulus, triggered by the initial 
sequence of inputs from the beginning of that movement. 
 
If such circuit would be a neural microcircuit in a particular sensory area of the neocortex, its 
task might become supported by more specialized neurons (such as for example simple or 
complex cells in visual cortex) that have been trained by evolution and/or individual 
experience to extract particular features from the types of input streams that usually arrive in 
that cortical area. In the very simple generic neural circuit that we have simulated, such 
specialization of the neural circuit would already occur if the output of some trained readout 
pools would contribute to the input of other readouts, or would be fed back as additional input 
into the recurrent circuit. This would improve the performance of the system for a whole 
category of tasks and inputs, but would also degrade – although not destroy – its flexibility 
and readiness to process completely different inputs (for example if the environment changes 
drastically, or if sensors are damaged). It would also degrade the capability of the liquid to 
serve as unbiased "universal" analog memory for readouts that might be trained later for a 
completely new task, from whose perspective the feedback from previously trained readout 
neurons may just amplify special types of noise in the input stream. 
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The results that we have demonstrated in this article are very stable, and they work for a large 
variety of recurrent neural circuits. In particular they can be implemented on the most realistic 
computer models for neural microcircuits that are currently known. Since we now can 
perform complex computations on computer models of biologically realistic neural circuitry, 
these computer simulations can be employed as test platform for investigating the 
computational role of specific anatomic and physiological details of biological neural 
microcircuits, such as specific combinations of neuron- and synapse type, as well as specific 
details of their dynamic profile. 
 
The only adaptive component in the simulated neural circuit that we have employed for 
prediction are the synaptic weights of readout neurons that are autonomously trained in an 
online manner to predict specific input components, and which will automatically adapt and 
optimize their prediction when the statistics of the input dynamics changes. One may 
hypothesize that similar predictive mechanisms take place simultaneously in all the millions 
of neural microcircuits of which a complex neural system is composed, thereby providing a 
powerful mechanism for filtering information in real-time in order to report only the most 
salient and unexpected aspects of their input stream to other parts of the system. In fact, if all 
correctly predicted components of the input stream are surpressed before they can enter 
"higher" neural systems, the sensory input stream is recoded by such circuit into a neural code 
that is closer to a theoretically optimal code which reserves the shortest "words" – in this case 
the fewest spikes – for reporting the most frequently occurring events (comparable with the 
Huffman code, see e.g. [Cover and Thomas, 1991]). Our simulations demonstrate that 
simultaneously the same neural microcircuits that facilitate an efficient recoding of the input 
stream can also be used to augment the input stream by extrapolating it into the future, 
thereby allowing faster responses. 
 
The autonomous adaptive mechanisms applied to an analog fading memory that were 
investigated in this article also provide new ideas for processing complex input streams in 
artificial behaving systems, such as mobile robots, in order to generate a drastically reduced 
and task-optimal state set for higher level reinforcement learning, and in order to achieve real-
time responses in spite of the inertia of actuators by anticipating their subsequently required 
activation. 
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Figure Captions 
 
Figure 1: The prediction task. 
a) Typical movements of objects over a 8 x 8 sensor field. 
b) Time course of activation of 8 randomly selected sensors caused by the movement of the 

ball indicated on the l.h.s. of panel a. 
c) Resulting firing times of 768 integrate-and-fire neurons in the recurrent circuit of 

integrate-and-fire neurons (firing of inhibitory neurons marked by +). The neurons in the 
16 x 16 x 3 array were numbered layer by layer. Hence the 3 clusters in the spike raster 
result from concurrent activity in the 3 layers of the circuit. 

d) Prediction targets (dashed lines) and actual predictions (solid lines) for the 8 sensors from 
panel b by 8 neural readouts, which were trained for this 50 ms prediction task by 
unsupervised learning. (Predictions were sampled every 25 ms, solid curves result from 
linear interpolation.) 

 
Figure 2:  20 typical trajectories of movements of the center of an object (ball or bar). 
 
Figure 3: Predictions by the autonomously trained neural circuit for a novel test example. 
a) Current sensor activation at time t = 200 for this novel test movement of a ball. 
b) Shown on the left hand side is the protocol of the firing activity in the recurrent circuit up 

to that time point. The resulting 768-dimensional "liquid state" at time 200=t ms, 
consisting of the contributions of the 768 neurons in the recurrent circuit to the membrane 
potential of a hypothetical readout neuron with unit weights, is shown on the right (with 
contributions of excitatory neurons indicated by bars going to the right, contributions of 
inhibitory neurons by bars going to the left). Since we assumed a membrane time constant 
of 30 ms for neurons in the readout pools (see section 2), their current membrane potential 
depends primarily on the firing activity in the recurrent circuit during the preceding 30 ms 
time interval marked by vertical lines on the left hand side. 

c) Outputs of the 72 readout pools, trained for 25 ms and 50 ms prediction, at time t = 200 
for the input shown on the r.h.s. of panel b. 

d) Prediction targets at time 200=t ms for the 25 ms and the 50 ms predictions. The 
differences between panels c and d represent the prediction error for this novel test 
example. 

 
Figure 4: Computation of movement direction. Dashed line is the trajectory of a moving ball. 
Sensors on the perimeter that will be activated by ≥ 50 % when the moving ball leaves the 
sensor field are marked in panel a. During unsupervised learning they are used for training the 
28 readout pools that predict sensor activity on the perimeter. Sensors marked by stripes in 
panel b indicate a typical prediction by the trained circuit of the location of sensors on the 
perimeter that are going to be activated by ≥  50 %, when the ball will leave the sensor field 
(time span into the future varies for this prediction between 100 and 150 ms, depending on the 
speed and angle of the object movement). Solid line in panel b represents the estimated 
direction of ball movement resulting from this prediction (its right end point is the average of 
sensors positions on the perimeter that are predicted to become ≥ 50 % activated). The angle 
between the dashed and solid line (average value 4.9° for test movements) is the error of this 
particular computation of movement direction by the simulated neural circuit. The best 
possible angular resolution that could be achieved in this way is about 3°. 
 
Figure 5: Novelty detection. Shown in panel a is the 50 ms prediction of future sensor 
activity made at time 200=t ms, the actual sensor activation at time 250=t ms, and for each 
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sensor the absolute value of the prediction error. The ball changed its direction of movement 
at time 250=t ms, resulting in a large error of the 50 ms prediction made at time 250 ms, 
which is shown on the l.h.s. of panel b. The comparison of this prediction with the actual 
sensor activation at time 300=t ms (difference shown on the r.h.s. of panel b) provides all 
salient input needed for an analysis of this surprising event. 
 
Figure 6: Imagined movement generated by the neural circuit. Panels a-d show the 
predictions of object positions at times 130=t ms, 155 ms, 180 ms, 205 ms. Only the first 
prediction, shown in panel a, is based on sensor input. The predictions in panels b-d are 
primarily based on preceding input predictions, that were fed back as input into the recurrent 
neural circuit. This imagined movement happens to proceed faster than the actual movement 
which it continues, demonstrating that it is not constrained to have the same speed. Panel f 
shows the firing activity of a subset of 100 neurons in the recurrent neural circuit during this 
"imagined movement". Compared with the firing pattern of these neurons during a 
continuation of sensory input from the actual object movement after 125=t ms (if it would 
continue on the same trajectory, with the same speed as at the beginning), shown in panel e, 
the firing pattern is very similar, but contracted in time. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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