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Abstract

One may argue that the simplest type of neural networks beyond a single perceptron is an array of several perceptrons in parallel. In spite of
their simplicity, such circuits can compute any Boolean function if one views the majority of the binary perceptron outputs as the binary output of
the parallel perceptron, and they are universal approximators for arbitrary continuous functions with values in [0, 1] if one views the fraction of
perceptrons that output 1 as the analog output of the parallel perceptron. Note that in contrast to the familiar model of a “multi-layer perceptron”
the parallel perceptron that we consider here has just binary values as outputs of gates on the hidden layer. For a long time one has thought that
there exists no competitive learning algorithm for these extremely simple neural networks, which also came to be known as committee machines.
It is commonly assumed that one has to replace the hard threshold gates on the hidden layer by sigmoidal gates (or RBF-gates) and that one
has to tune the weights on at least two successive layers in order to achieve satisfactory learning results for any class of neural networks that
yield universal approximators. We show that this assumption is not true, by exhibiting a simple learning algorithm for parallel perceptrons — the
parallel delta rule (p-delta rule). In contrast to backprop for multi-layer perceptrons, the p-delta rule only has to tune a single layer of weights,
and it does not require the computation and communication of analog values with high precision. Reduced communication also distinguishes our
new learning rule from other learning rules for parallel perceptrons such as MADALINE. Obviously these features make the p-delta rule attractive
as a biologically more realistic alternative to backprop in biological neural circuits, but also for implementations in special purpose hardware. We
show that the p-delta rule also implements gradient descent – with regard to a suitable error measure – although it does not require to compute
derivatives. Furthermore it is shown through experiments on common real-world benchmark datasets that its performance is competitive with that
of other learning approaches from neural networks and machine learning. It has recently been shown [Anthony, M. (2007). On the generalization
error of fixed combinations of classifiers. Journal of Computer and System Sciences 73(5), 725–734; Anthony, M. (2004). On learning a function
of perceptrons. In Proceedings of the 2004 IEEE international joint conference on neural networks (pp. 967–972): Vol. 2] that one can also prove
quite satisfactory bounds for the generalization error of this new learning rule.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In spite of its early successes, the perceptron along with
the perceptron learning algorithm – the delta rule – have
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been abandoned because of the limited expressive power
of a single perceptron. Instead, one has resorted to circuits
consisting of at least two layers of modified perceptrons with
a smooth activation function (sigmoidal neural nets, also called
MLP’s) and a gradient descent learning algorithm (backprop).
“However, the realization of large backpropagation networks in
analog hardware poses serious problems because of the need for
separate or bidirectional circuitry for the backward pass of the
algorithm. Other problems are the need of an accurate derivative
of the activation function and the cascading of multipliers in the
backward pass” (quoted from Moerland and Fiesler (1996)).
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For similar reasons it is quite dubious whether backprop is
applied by biological neural systems to adapt their input/output
behavior.

Backprop requires the computation and communication of
analog numbers (derivatives) with high bit precision, which is
difficult to achieve with noisy analog computing elements and
noisy communication channels, such as those that are available
in biological wetware. We will show in this article that there
exists an alternative solution: a simple distributed learning
algorithm for parallel perceptron that requires less than 2 bits
of global communication.

One gets already universal approximators for arbitrary
Boolean and continuous functions if one takes a single layer
of perceptrons in parallel, each with just binary output. One
can view such single layer of perceptrons as a group of voters,
where each vote (with value −1 or 1) carries the same weight.
Their majority vote can be viewed as a binary output of the
circuit. Alternatively one can apply a simple squashing function
to the percentage of votes with value 1 and thereby get universal
approximators for arbitrary given continuous functions with
values in [0, 1].

It is shown in this article that this very simple computational
model – to which we will refer as parallel perceptron in the
following – can be trained in an efficient manner. The learning
algorithm consists of a simple extension of the familiar delta
rule for a single perceptron, which we call the p-delta rule.

Parallel perceptrons and the p-delta rule are closely related
to computational models and learning algorithms that had
already been considered 40 years ago (under the name of
committee machine, or as a particularly simple MADALINE;
see Widrow and Lehr (1990) and chapter 6 of Nilsson
(1990) for an excellent survey). In fact, Rosenblatt’s classic
book (Rosenblatt, 1962) contains already an explicit algorithm
for feedforward networks composed of binary elements. A
major advantage of the p-delta rule over algorithms like
MADALINE (and backprop for multi-layer perceptrons) is the
fact that the p-delta rule requires only the transmission of
less than 2 bits of communication (one of the three possible
signals “up”, “down”, “neutral”) from the central control to
the local agents that control the weights of the individual
perceptrons. In spite of its simplicity, the p-delta rule introduces
a powerful new principle from machine learning into learning
algorithms for committee machines: maximization of the
margin of individual perceptrons. The superior generalization
capability of support vector machines is largely based on this
principle. We demonstrate that also in this new context (a
distributed network) it provides good generalization behavior.
We refer to Anthony (2007) for a rigorous analysis of this novel
application of the margin maximization principle. There it is
shown that the generalization error of the p-delta rule can be
bounded in terms of the margins achieved by the constituent
perceptrons.

The p-delta rule provides a promising new hypothesis
regarding the organization of learning in biological networks
of neurons that overcomes deficiencies of previous approaches
that were based on backprop. Note that in contrast to backprop
the p-delta rule does not require a sophisticated “shadow-
network” for learning, that computes and transmits fairly
complex individual error signals to the neurons. The p-delta rule
can also be applied to biologically realistic integrate-and-fire
neuron models whose output is – on a short time scale – binary:
they either fire an action potential or they don’t. In fact, the p-
delta rule has already been applied successfully to the training
of a pool of spiking neurons (Maass, Natschlaeger, & Markram,
2002). The empirical results from Maass et al. (2002) also
demonstrate that the p-delta rule performs well not just for
classification but also for regression problems.

Learning algorithms for committee machines have also been
discussed in the physics literature, see e.g. Copelli and Caticha
(1995) and the references in that article. Copelli and Caticha
(1995) has analyzed online learning for a special case of the
parallel perceptron with 3 hidden units and non-overlapping
inputs of these 3 units. The emphasis is there on (in general
quite complex) learning rules that minimize the generalization
error for this particular architecture. In contrast to that, the p-
delta rule is an extremely simple learning rule that requires very
little communication within the network, but still generalizes
quite well.

We first show in Section 2 of this article that the parallel
perceptron is a surprisingly powerful computational model.
The p-delta learning rule for parallel perceptrons is presented
and motivated in Section 3. Further theoretical and empirical
analysis of the p-delta rule is presented in Section 5. In
particular, its performance on 8 common benchmark datasets
is analyzed and compared with that of MADALINE and
backprop, and with two state-of-the-art learning algorithms
from machine learning (decision trees and support vector
machines). It turns out that the performance of the p-delta rule
is, in spite of its simplicity and extremely low organizational
and communication requirement within the network, quite
competitive with these other approaches. Possible applications
to biological models and VLSI are discussed in Section 4.

Some results of this article were previously announced in
Auer, Burgsteiner, and Maass (2002).

2. Parallel perceptrons are universal approximators

A perceptron (also referred to as threshold gate or
McCulloch–Pitts neuron) with d inputs computes the following
function f from Rd into {−1, 1}:

f (z) =
{

1, if α · z ≥ 0
−1, otherwise,

where α ∈ Rd is the weight vector of the perceptron, and α · z
denotes the usual vector product. (We assume that one of the
inputs is a constant bias input.)

We define a parallel perceptron as a single layer
consisting of a finite number n of perceptrons (without lateral
connections). Let f1, . . . , fn be the functions from Rd into
{−1, 1} that are computed by these perceptrons. For input z
the output of the parallel perceptron is the value

∑n
i=1 fi (z) ∈

{−n, . . . , n}, more precisely the value s(
∑n

i=1 fi (z)), where
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s : Z → R is a squashing function that scales the output into
the desired range.1

In the case of binary classification the squashing function is
a simple threshold function

s(p) =

{
−1 if p < 0
+1 if p ≥ 0.

It is not difficult to prove that every Boolean function from
{−1, 1}d into {−1, 1} can be computed by such a parallel
perceptron. This type of parallel perceptrons is a special case
of the MADALINE architecture (Widrow & Lehr, 1990).

For regression problems the squashing function could be
piecewise linear,

sρ(p) =

−1 if p ≤ −ρ

p/ρ if − ρ < p < ρ

+1 if p ≥ ρ

where 1 ≤ ρ ≤ n denotes the resolution of the squashing
function.

We now show that parallel perceptrons are in fact universal
approximators: every continuous function g : Rd

→ [−1, 1]
can be approximated by a parallel perceptron within any given
error bound ε on any closed and bounded subset of Rd . This
follows as Corollary 2.2 from the following theorem, which
relates the (surprisingly large) computational power of soft-
winner-take-all circuits to that of parallel perceptrons. A soft-
winner-take-all gate g computes a function from Rn into R
defined by

g(x1, . . . , xn) = π

(
|{ j ∈ {1, . . . , n} : xn ≥ x j }| −

n
2

k

)
where π(x) = x for x ∈ [0, 1], π(x) = 1 for x > 1, π(x) = 0
for x < 0, and k ∈ {1, . . . , b n

2 c} (see Maass (2000)). Note that
the output value of this gate grows with the rank of xn in the
linear order of the numbers {x1, . . . , xn}.

Theorem 2.1. Let f̃ : Rd
→ [0, 1] be some arbitrary function

computed by a soft-winner-take-all gate (in the terminology of
Maass (2000)) applied to weighted sums of input components.
Then the closely related function f : Rd

→ [−1, 1] defined by
f (z) = 2 f̃ (z)− 1 can be computed by a parallel perceptron.

Proof. Assume that f̃ is computed by a circuit consisting of a
soft-winner-take-all gate applied to the ñ weighted sums

S̃ j =

d∑
i=1

α
j
i zi for j = 1, . . . , ñ.

Thus f̃ (z) = π

(
|{ j∈{1,...,ñ}:S̃ñ(z)≥S̃ j (z)}|− ñ

2
k

)
for some k ∈

{1, . . . b ñ
2 c}. In order to compute the closely related function

f (z) = 2 f̃ (z) − 1 (which simply rescales the output range
[0, 1] of f̃ into the output range [−1, 1] of a parallel perceptron;
this difference in range of the outputs is of course irrelevant)
1 This could be interpreted as a space-rate coding in a biological
interpretation.
by a parallel perceptron, we only need to define an array of
threshold gates which compare in parallel on the hidden layer
the relative sizes of the (linear) weighted sums S̃ j and S̃ñ . The
number of these threshold gates that output “1” can easily be
transformed into the natural number c(z) (see next paragraph),
that corresponds to the value of the nominator in the quotient
that appears in the preceding definition of f̃ (z). The activation
function π in the definition of f̃ (z) can be simulated by the
piecewise linear activation function S = Sk at the output of a
parallel perceptron.

Formally we proceed as follows. Define ρ := k, n :=
ñ + k, S j := S̃ñ − S̃ j for j = 1, . . . , ñ, and S j ≡ −1 for
j = ñ + 1, . . . , n . Then we have

S j ≥ 0⇔ S̃ñ ≥ S̃ j for j = 1, . . . , ñ,

and S j < 0 for j = ñ + 1, . . . , n . Define c(z) := |{ j ∈
{1, . . . , n} : S j (z) ≥ 0}|. Then c(z) = |{ j ∈ {1, . . . , ñ} :
S̃ñ(z) ≥ S̃ j (z)}| for all z ∈ Rd . Furthermore the function
f (z) := s(2c(z) − n) from Rd into [−1, 1] (where s is the
activation function with ρ := k defined at the beginning of
this section) can be computed by a parallel perceptron. We will
show that f (z) = 2 f̃ (z)− 1 for all z ∈ Rd .

The preceding definitions of ρ and n imply that

c(z)− ñ
2

k
=

c(z)− n
2 +

k
2

k

=
2c(z)− n + k

2k
=

2c(z)− n

2ρ
+

1
2

(1)

and

2c(z)− n

ρ
= 2

(
c(z)− ñ

2

k

)
− 1. (2)

Case 1:
c(z)− ñ

2
k ∈ (0, 1).

Then 2c(z)−n
ρ
∈ (−1, 1) and we have

f (z) =
2c(z)− n

ρ
= 2

(
c(z)− ñ

2

k

)
− 1 = 2 f̃ (z)− 1.

Case 2:
c(z)− ñ

2
k ≥ 1

Then 2c(z)−n
ρ
≥ 1 and f (z) = 1 = 2 · 1− 1 = 2 f̃ (z)− 1.

Case 3:
c(z)− n

2
ρ
≤ −1

Then 2c(z)−n
ρ
≤ −1 and f (z) = −1 = 2 ·0−1 = 2 f̃ (z)−1.

�

Corollary 2.2 (Universal Approximation Theorem for Parallel
Perceptrons). Assume that h : D → [−1, 1] is some arbitrary
continuous function with a compact domain D ⊆ Rd (for
example D = [−1, 1]d ), and ε > 0 is some given parameter.
Then there exists a parallel perceptron that computes a function
f := Rd

→ [−1, 1] such that

| f (z)− h(z)| < ε for all z ∈ D.

Furthermore any Boolean function can be computed by
rounding the output of a parallel perceptron (i.e., output 1 if the
number p of positive weighted sums is above some threshold,
else output 0).
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2 The implication “(b)⇒ (c)” was already shown in Boyd and Chua (1985).
Proof. Define h̃ : D → [0, 1] by h̃(z) := 1
2 (h(z) + 1). Then

h̃ is a continuous function from D into [0, 1]. According to
Theorem 4.1 in Maass (2000) one can compute a function f̃ :
Rd
→ [0, 1] by a soft-winner-take-all gate applied to weighted

sums so that |h̃(z) − f̃ (z)| < ε
2 for all z ∈ D. According to

Theorem 2.1 one can compute the function f : Rd
→ [−1, 1]

defined by f (z) = 2 f̃ (z)− 1 by a parallel perceptron. We have
for all z ∈ D : |h(z)− f (z)| = |(2h̃(z)− 1)− (2 f̃ (z)− 1)| =

2|h̃(z) − f̃ (z)| < ε. Since any Boolean function from {0, 1}d

into {0, 1} can be interpolated by a continuous function, the
preceding result implies the last sentence of the claim. �

Remark 2.3. (a) The result of Corollary 2.2 is less obvious
than it may appear at first sight. For 2-layer feedforward
neural networks with sigmoidal gates on the hidden layer
(which are usually referred to “multi-layer perceptrons”,
although this notion is misleading) the corresponding
Universal Approximation Theorem is well known (Haykin,
1999). But the parallel perceptrons that we consider in
this article (in particular in Corollary 2.2) have instead
threshold gates on the hidden layer, which provide only
binary outputs.

(b) The number of perceptrons of the parallel perceptron that
is constructed in Corollary 2.2 is equal to the number ñ
of weighted sums that provide input to the soft-winner-
take-all gate which computes an approximation f̃ to the
given continuous function h̃ with precision ε

2 . According
to Remark 4.2 in Maass (2000) this number ñ can be
bounded in terms of the number of hidden units in a
2-layer circuit C of sigmoidal gates that approximates
h̃ within ε

2 , the maximal size of weights (expressed as
multiple of the smallest nonzero weight) of the gate in the
second layer of C , and on 1

ε
. Hence the required number

of perceptrons (with binary output) in the approximating
parallel perceptron of Corollary 2.2 is likely to be larger
than the number of gates in C (which give analog outputs),
but not astronomically larger.

(c) Circuits with a soft-winner-take-all gate have an obvious
biological interpretation via lateral inhibition between
pools of spiking neurons. Parallel perceptrons support a
somewhat different biological interpretation on the level
of individual spiking neurons, rather than pools of spiking
neurons, without lateral inhibition: One may assume that
each weighted sum αi ·z represents the input current to some
spiking neuron that fires (at time 0) if and only if αi · z ≥ 0.
Hence p := #{1 ≤ i ≤ n : αi · z ≥ 0} can be interpreted as
the number of spikes that are sent out at time 0 by an array
consisting of n spiking neurons.

In the subsequent theorem we extend our computational
analysis to computations on time series, which are
represented by continuous functions u1, . . . , um from R
into R. We analyze the computational power of circuits
consisting of a parallel perceptron applied to some finite set
of delayed versions Dτ ui of inputs for i = 1, . . . , m and
τ > 0, where Dτ ui is the function from R into R defined
by (Dτ ui )(t) = ui (t − τ). We will refer to these very
simple circuits as parallel perceptrons with delay-lines.
The following result shows that basically any interesting
nonlinear filter can be uniformly approximated by such
circuits. We refer to Maass and Sontag (2000) for the
definition of the notions that are used.

Theorem 2.4. Assume that U is the class of functions from R
into [B0, B1]) which satisfy |u(t) − u(s)| ≤ B2 · |t − s| for all
t, s ∈ R, where B0, B1, B2 are arbitrary real-valued constants
with B0 < B1 and 0 < B2. Let F be an arbitrary filter that
maps vectors u = 〈u1, . . . , un〉 ∈ U n into functions from R
into R .

Then the following are equivalent2:
(a) F can be approximated by parallel perceptrons with delay

lines
(i.e., for any ε > 0 there exists such circuit C such that

|Fu(t)− Cu(t)| < ε for all u ∈ U n and all t ∈ R)
(b) F is time invariant and has fading memory
(c) F can be approximated by a sequence of (finite or infinite)

Volterra series.

Proof. The proof is a simple variation of the proof of the
corresponding Theorem 3.1 in Maass and Sontag (2000), which
in turn relies on earlier arguments from Boyd and Chua (1985).
Apart from Corollary 2.2 one uses the fact that any two different
functions v1, v2 : (−∞, 0] → R can be separated via a
suitable delay line, i.e., there exists some τ > 0 such that
(Dτv1)(0) 6= (Dτv2)(0). �

3. The p-delta learning rule

In this section we develop a learning rule for parallel
perceptrons. We call this learning rule the p-deltarule. It
consists of two ingredients. The first ingredient is the classical
delta rule, which is applied to some of the individual
perceptrons that make up the parallel perceptron. The second
ingredient is a rule which decides whether the classical delta
rule should be applied to a given individual perceptron. This
rule takes inspiration from support vector machines (Guyon,
Boser, & Vapnik, 1993). Support vector machines learn
classifiers which maximize the margin of the classification: An
input z ∈ Rd is classified by sign (α · z), and α is calculated
such that for all training examples zk the dot product |α · zk | is
large. In a somewhat related fashion we apply the delta rule
to those individual perceptrons that give the wrong output,
and also to those that give the right output but with a too
small margin. This ensures that the outputs of the individual
perceptrons become stable against perturbations of the inputs,
which improves both the stability of the learning process as well
the performance – with respect to generalization – of the trained
parallel perceptron. The idea of training a single perceptron
with a sufficiently large margin dates back to Mays’ “increment
adaptation rule” (Mays, 1963; Block, Boyd, & Chua, 1962).

In the following we discuss the basic options regarding the
application of the classical delta rule in the context of parallel
perceptrons, and we show how to incorporate the large margin
idea. We first discuss the more general rule for regression and
then state the simplified version for binary classification.
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3 There exists substantial evidence that biological neurons are also
genetically programmed to keep their incoming weights normalized,
see Turrigiano (2004) for a recent review.
3.1. Getting the outputs right

Let (z, o) ∈ Rd
× [−1,+1] be the current training example

and let α1, . . . ,αn ∈ Rd be the current weight vectors of
the n individual perceptrons in the parallel perceptron. Thus
the current output of the parallel perceptron is calculated
as

ô = sρ(p), where p = #{i : αi · z ≥ 0} − #{i : αi · z < 0}.

If |ô − o| ≤ ε where ε is the desired accuracy, then the output
of the parallel perceptron is correct up to this accuracy and the
weights need not be modified.

Consider now the case

ô > o+ ε,

where the output of the parallel perceptron is too large. To
lower the output of the parallel perceptron we need to reduce
the number of weight vectors with αi · z ≥ 0. Applying
the classical delta rule to such a weight vector yields the
update

αi ← αi + η∆i

where η > 0 is the learning rate and

∆i = −z.

However it is not obvious which weight vectors with αi · z ≥
0 should be modified by this update rule. There are several
plausible options:

1. Update only one of the weight vectors with αi · z ≥ 0. For
example choose the weight vector with minimal αi · z.

2. Update N of the weight vectors with αi · z ≥ 0, where
N is the minimal number of sign changes of individual
perceptrons that are necessary to get the output ô of the
parallel perceptron right. This approach was taken in Nilsson
(1990, Section 6.3).

3. Update all weight vectors with αi · z ≥ 0.

For our p-delta rule we choose the third option. We proceed
analogously in the case where ô < o− ε. Thus we arrive at the
rule αi ← αi + η∆i for all i , where

∆i =

−z if ô > o+ ε and αi · z ≥ 0
+z if ô < o− ε and αi · z < 0
0 otherwise.

Although by our choice of the update option too many
weight vectors might be modified, this negative effect can
be counteracted by the “clear margin” approach, which is
discussed in the next section. Note that the third option is the
one which requires the least communications between a central
control and agents that control the individual weight vectors αi :
each agent can determine on its own whether αi · z ≥ 0, and
hence no further communication is needed to determine which
agents have to update their weight vector once they are told
to which class the global error of the output ô of the parallel
perceptron belongs.
Fig. 1. The p-delta rule.

3.2. Stabilizing the outputs

For any of the 3 options discussed in the previous
section, weight vectors are updated only if the output of the
parallel perceptron is incorrect. Hence weight vectors remain
unmodified as soon as the sign of αi ·z is “correct” with respect
to the target output o and the output of the parallel perceptron ô.
Thus at the end of training there are usually quite a few weight
vectors for which αi · z is very close to zero (for some training
input z). Hence a small perturbation of the input z might change
the sign of αi · z, and the output of the parallel perceptron is
rather unstable. This reduces the generalization capabilities of
the parallel perceptron. To stabilize the output of the parallel
perceptron we modify the update rule of the previous section in
order to keep αi · z away from zero. In fact, we try to keep a
margin γ around zero clear from any dot products αi · z. The
margin γ > 0 is a parameter of our algorithm.

Assume that αi ·z ≥ 0 has the correct sign but that αi ·z < γ .
In this case we increase αi · z by updating αi as

αi ← αi + ηµz (3)

for an appropriate parameter µ > 0. The parameter µ measures
the importance of a clear margin: if µ ≈ 0 then this update
has little influence, if µ is large then a clear margin is strongly
enforced. A typical value of µ is µ = 1.

Observe that a margin γ is effective only if the weights αi
remain bounded: to satisfy condition |αi · z| ≥ γ , scaling up αi
by a factor C > 1 or reducing γ by a factor 1/C is equivalent.
Thus we keep the weights αi normalized, ‖αi‖ = 1.3 In
conclusion, the p-delta rule is summarized in Fig. 1. Note that
αi · z is always pushed away from 0 according to the 3rd or 4th
line, unless it is pushed towards 0 according to one of the first
two lines of the update rule in Fig. 1.

4. Possible applications to biological models and analog
VLSI

We have shown in Corollary 2.2 that parallel perceptrons
have the “universal approximation property”, i.e., they can ap-
proximate any given continuous function uniformly on any
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compact domain. This approximation result has an interest-
ing interpretation in the context of computational neuroscience,
since one can view a parallel perceptron as a model for a
population of biological neurons. One can model the decision
whether a biological neuron will fire within a given time inter-
val (e.g., of length 5 ms) quite well with the help of a single
perceptron (see Gerstner (1998) and Maass (1997)). Hence a
parallel perceptron can be used to predict how many of these
neurons will fire within such short time interval. Thus the uni-
versal approximation property of parallel perceptrons implies
that a single population P of biological neurons (without lateral
connections) can in principle approximate any given continuous
function f . One just has to assume that the components of the
input vector x are given in the form of synaptic input currents
to the neurons in the population P , and that the fraction of neu-
rons in P that fire within a given short time interval represents
the approximation to the target output value f (x).

The p-delta learning rule for parallel perceptrons that we dis-
cuss in this article, has already been tested in this biological
context (Maass et al., 2002). The results of these simulations
show that the p-delta learning rule is very successful in training
populations of readout neurons to adopt a given population re-
sponse. We are not aware of any other learning algorithm that
could be used for that purpose. In particular we are exploiting
here that, in contrast to backprop, the p-delta learning rule can
be applied to neuron models that do not have a smooth acti-
vation function. The computer simulations discussed in Maass
et al. (2002) also show that the p-delta rule can be used to train
models for circuits of biological neurons to adopt a given tem-
poral response, i. e., to approximate a given nonlinear filter.

One may argue that the p-delta rule has a larger chance
of being biologically realistic than other learning algorithms,
such as backprop, that have been developed for artificial neural
networks. Most of these other learning algorithms require the
transmission of analog error signals (typically involving the
values of derivatives) with high bit precision between a global
control and local mechanisms that carry out the actual synaptic
modifications. These communication requirements would be
difficult to satisfy in a noisy analog system. In contrast to that,
the p-delta rule just requires to broadcast to all local agents
whether the current population response ô was close to the
desired target output o, or way too large, or way too small. Thus
in contrast to backprop, the same information can be sent to all
local agents, the message requires just 2 bits, and no complex
computations (such as taking derivatives and multiplication of
analog values) are needed to compute these 2 bits.

For the same reason the p-delta rule is more suitable than
backprop for implementation in analog VLSI, for example
in order to build adaptive “universal approximator chips” in
analog VLSI with on-chip learning facilities.

5. Further analysis of the p-delta rule

5.1. The p-delta rule performs gradient descent for some error
function

In this section we construct an error function Err (α1,

. . . , αn; z, o) for input z and target output o with respect to the
Fig. 2. Plot of the error function Err (α; z, o) for a single weight vector α versus
the dot product α · z, assuming that ‖α‖ = 1 and ô > o+ ε for all displayed α

(µ = 1/2).

weights αi of the parallel perceptron, such that the p-delta rule
performs gradient descent with respect to this error function.

Let α1, . . . ,αn be the current weight vectors of the parallel
perceptron and let z be an input vector for the parallel
perceptron. Then the output of the parallel perceptron is
calculated as ô = sρ

(∑n
i=1 fi (z)

)
, where fi (z) = +1 if

αi · z ≥ 0 and fi (z) = −1 if αi · z < 0. An error function
with respect to the target output o can now be defined as

Err (α1, . . . ,αn; z, o)

=



∑
i :αi ·z≥0

(µγ + αi · z)+
∑

i :−γ<αi ·z<0

(µγ

+µαi · z) if ô > o+ ε∑
i :αi ·z<0

(µγ − αi · z)+
∑

i :0≤αi ·z<+γ

(µγ

−µαi · z) if ô < o− ε∑
i :−γ<αi ·z<0

(µγ + µαi · z)+
∑

i :0≤αi ·z<γ

(µγ

−µαi · z) if |ô− o| ≤ ε.

(4)

Lines 1 and 2 cover the case where the output of the parallel
perceptron is too far from the target output, i.e. |o− ô| > ε. The
sums

∑
i :αi ·z≥0(µγ +αi ·z) and

∑
i :αi ·z<0(µγ −αi ·z) measure

how far the dot products αi · z are on the wrong side (from 0),
e.g. if ô > o+ ε then there are too many αi with αi · z ≥ 0 and
each such weight is penalized with µγ + αi · z. The term µγ

ensures compatibility with the other sums,
∑

i :−γ<αi ·z<0(µγ +

µαi · z) and
∑

i :0≤αi ·z<+γ (µγ −µαi · z). These sums penalize
weights for which αi ·z is within a margin γ around 0. Consider
for example

∑
i :0≤αi ·z<+γ (µγ − µαi · z). If 0 ≤ αi · z < γ

then the distance to the margin γ is γ − αi · z. Weighting this
distance by µ gives the error term µγ − µαi · z.

The fact that the error terms – either for being on the wrong
side or for being within the margin – are compatible is depicted
in Fig. 2. As long as the dot product is on the wrong side,
the error grows with the distance from 0. If the dot product
is on the right side the error grows with the distance from the
margin γ , scaled by µ. Thus the error function is continuous
as long as |ô − o| 6= ε. If the weights change such that the
output of the parallel perceptron moves from |ô − o| > ε to
|ô − o| < ε then the error function jumps downwards since the



792 P. Auer et al. / Neural Networks 21 (2008) 786–795
Table 1
The results for the empirical comparison show the average accuracy on the test set for 10 times 10-fold CV (MADALINE: n = 3, MLP: 3 hidden units, SVM: 2nd
degree polynomial kernel) and the corresponding standard error

Dataset p-delta MADA LINE WEKA WEKA WEKA
(n = 3) MLP+ BP C4.5 SVM

BC 96.94%± 0.20 96.28%± 0.44 96.50%± 0.19 95.46%± 0.53 96.87%± 0.16
CH 97.25%± 0.23 97.96%± 0.18 99.27%± 0.10 99.40%± 0.07 99.43%± 0.08
CR 71.73%± 0.82 70.51%± 0.99 73.12%± 0.76 72.72%± 0.89 75.45%± 0.75
DI 73.66%± 1.03 73.37%± 1.38 76.77%± 0.60 73.74%± 0.79 77.32%± 0.55
HD 80.02%± 1.19 78.82%± 1.25 82.09%± 1.08 76.25%± 2.22 80.78%± 1.19
IO 84.78%± 1.57 86.52%± 1.23 89.37%± 0.80 89.74%± 0.74 91.20%± 0.53
SI 95.72%± 0.21 95.73%± 0.33 96.23%± 0.27 98.67%± 0.21 93.92%± 0.16
SN 74.04%± 2.96 78.85%± 3.16 81.63%± 1.24 73.32%± 1.90 84.52%± 1.08
4 A complete set of Java Programs for Machine Learning, including datasets
from UCI, available at http://www.cs.waikato.ac.nz/˜ml/weka/.
sum
∑

i :αi ·z≥0(µγ +αi ·z) (assuming ô > o+ε) is replaced by
the smaller sum

∑
i :0≤αi ·z<γ (µγ − µαi · z) (third line of (4)).

It is easy to see that the error function is non-negative and
that it is equal to zero if and only if |ô − o| ≤ ε and all weight
vectors αi satisfy |αi · z| ≥ γ . Taking derivatives of the error
function with respect to αi we find that the first part of the p-
delta rule performs gradient descent with respect to this error
function.

5.2. Generalization capability and relationship to support
vector machines

The idea having a clear margin around the origin is not
new and is heavily used by support vector machines (Guyon
et al., 1993). In our setting we use the clear margin to stabilize
the output of the parallel perceptron. As is known from the
analysis of support vector machines such a stable predictor
also gives good generalization performance on new examples.
Since our parallel perceptron is an aggregation of many simple
perceptrons with large margins (see also Freund and Schapire
(1999)), one expects that parallel perceptrons also exhibit
good generalization. This is indeed confirmed by our empirical
results reported in the next section. Further justification for our
approach is provided by the theoretical analysis in Anthony
(2007, 2004). There it is shown that the generalization error
of a parallel perceptron can indeed be bounded in terms of the
margins of the simple perceptrons, such that the bound on the
generalization error decreases with increasing margins.

5.3. Empirical results on machine learning datasets

For an empirical evaluation of the p-delta rule we have
chosen eight datasets with binary classification tasks from
the UCI machine learning repository (Blake & Merz, 1998):
Wisconsin breast-cancer (BC), King–Rook vs. King–Pawn
Chess Endgames (CH), German Numerical Credit Data (CR),
Pima Indian Diabetes (DI), Cleveland heart disease (HD),
Ionosphere (IO), Thyroid disease records (Sick) (SI) and Sonar
(SN). For a more detailed description of the datasets see
Appendix B. Our criteria were binary classification tasks and
few missing values in the data.
We compared our results with the implementations in
WEKA4 of multi-layer perceptrons with backpropagation
(MLP + BP), the decision tree Algorithm C4.5, and support
vector machines (with SMO). We also compared our results
with MADALINE. We added a constant bias to the data and
initialized the weights of the parallel perceptron randomly.

The results are shown in Table 1. Results are the errors of the
algorithms on the test sets averaged over 10 independent runs
of 10-fold crossvalidation. The learning was stopped, when the
error function of the p-delta rule did not improve by at least
1% during the second-half of the trials so far. Typically this
occurred after a few hundred epochs, sometimes it took a few
thousand epochs. For all datasets we used γ = 0.05, µ = 1,
and a decreasing learning rate η = 1

4
√

t
where t is the number

of epochs so far. The parameters η and γ could also be tuned
automatically. This would result in partially faster convergence
of learning but yields no significantly better results than with
fixed parameters. Details for this automatic tuning are given in
Appendix A.

The results show that the performance of the p-delta rule
is comparable with that of other classification algorithms. We
also found that for the tested datasets small parallel perceptrons
(n = 3) suffice for good classification accuracy.

The performance of the p-delta rule scales similarly to
the performance of the perceptron rule. In particular, the
performance of the p-delta rule does not depend on the input
dimension but scales with the squares of the margins of the
individual perceptrons (Anthony, 2007, 2004).

6. Discussion

Moerland and Fiesler (1996) state that “the design
of a compact digital neural network can be simplified
considerably when Heaviside functions are used as activation
functions instead of a differentiable sigmoidal activation
function”. While training algorithms for perceptrons with
Heaviside functions abound, training multi-layer networks with
nondifferentiable Heaviside functions requires the development
of new algorithms. We have presented in this article a new

http://www.cs.waikato.ac.nz/~ml/weka/
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learning algorithm – the p-delta rule – for parallel perceptrons,
i.e., for neural networks consisting of a single layer of
perceptrons (which use the Heaviside function as the activation
function). This learning algorithm employs (implicitly) the
method of maximizing the margin between examples from
different classes, which is used very successfully for support
vector machines. To the best of our knowledge, the p-delta
rule is the first application of this strategy to hidden units in a
multi-layer network. In contrast to other learning algorithms for
parallel perceptrons, such as MADALINE-3 (Widrow & Lehr,
1990) and weight perturbation (Jabri & Flower, 1992) (see the
survey in Moerland and Fiesler (1996)), the p-delta rule can
be executed in parallel, with one global 2 bit error signal as
the only communication between local agents. In comparison
with backprop for multi-layer perceptrons this new learning
algorithm – which only requires to tune weights on a single
layer – provides an alternative solution to the credit assignment
problem that neither requires smooth activation functions nor
the computation and communication of derivatives. The recent
results of Anthony (2004, 2007) provide attractive bounds for
the generalization error of the p-delta rule. The p-delta rule
involves besides the learning rate µ (which appears in virtual
all learning algorithms) an additional parameter γ that regulates
the sensitivity of the parallel perceptrons to small variations in
the input values. Our computer simulations in Section 5.3 have
shown that fixed default settings of both of these parameters
perform well for a large variety of benchmark classification
tasks.

Owing to the small amount of communication between
perceptrons which the p-delta rule requires, one may argue
that it provides a more compelling paradigm for distributed
learning in biological neural circuits than the familiar backprop
algorithm. It has already been used in computer simulations
of biological neural circuits for training pools of neurons
to approximate an analog target function via space-rate
coding (Maass et al., 2002). Alternative approaches for
training models for biological neural circuits, based on
reinforcement learning, have recently been proposed in Fiete
and Seung (2006), Xie and Seung (2004) and Izhikevich
(2007). These reinforcement learning algorithms also require
little communication between neurons, but more complex local
computations of “eligibility” (i.e., credit assignment). It will
be interesting to see a comparison of the performance of these
quite different approaches. So far no results of applications of
algorithms based on reinforcement learning to complex real-
world classification problems (such as the benchmark problems
considered in Section 5.3 of this paper) have been documented
in the literature.

We have shown in Theorem 2.1 that the parallel perceptron
model is closely related to the previously studied Winner-Take-
All circuits (in particular it shares their universal approximation
capability for arbitrary continuous functions, as we have shown
in Corollary 2.2). Hence the p-delta rule also provides a new
learning algorithm for Winner-Take-All circuits. The relevance
of Winner-Take-All circuits for modelling computation in
cortical microcircuits has recently been re-emphasized in
Douglas and Martin (2004).
Appendix A. Practical considerations for the implementa-
tion of the p-delta rule on a digital computer

To check the validity of the parallel perceptron and of the p-
delta rule we ran several experiments with benchmark machine
learning datasets. When the p-delta rule is run on a digital
computer and is applied to a specific learning task, a particular
instantiation of the p-delta rule (and its parameters) has to be
chosen. Thoughts about reasonable choices are discussed in this
section.

The first thing to mention is that we did batch updates of
the weights instead of updating the weights for each individual
training example. We accumulated the updates for all training
examples and updated the weights once for each epoch. Doing
batch updates also allows another modification of the update
rule: instead of normalizing the weights implicitly by the update
rule

αi ← αi − η
(
‖αi‖

2
− 1

)
αi

we explicitly normalized the weights by

αi ← αi/‖αi‖

after each update.
Now it remains to choose the parameters of the p-delta rule,

η, γ , and µ. It turns out that the choice of µ is rather
insignificant and we set µ = 1. With η and γ the situation is
more complicated. In particular the choice of γ is important
for a good performance of the p-delta rule. Therefore we
included a mechanism which automatically tunes γ . For this
we constructed an update rule for γ . This update rule increases
γ if for a training example (z, o) only few dot products αi · z
are in the margin (−γ,+γ ), and the update rule decreases γ if
there are many dot products within this margin. The number of
dot products within the margin is calculated as

M+ = #{i : 0 ≤ αi · z < +γ and ô ≤ o+ ε}

M− = #{i : −γ < αi · z < 0 and ô ≥ o− ε}

(we count only dot products which have the correct sign with
respect to o and ô). Now the update rule is given by

γ ← γ + η(Mmin −min{Mmax, M+ + M−})

where Mmin, Mmax > 0 are suitable parameters. This means
that at most Mmax of the dot products within the margin are
considered, and that γ is increased if the number of dot products
is smaller than Mmin and that γ is decreased if there are more
than Mmin dot products within the margin. Good values for
Mmin and Mmax are Mmin = ερ and Mmax = 4Mmin.

For the last remaining parameter, the learning rate η, we used
an adaptive learning-rate schedule. If an update of the weights
reduces the value of the error function, then the learning rate is
increased (say, by a factor 1.1), if an update increases the value
of the error function, then the learning rate is decreased (say, by
a factor 0.5). Such an adaptive learning-rate schedule yields a
relatively fast but still stable convergence of the p-delta rule.

It has to be remarked, that getting the magnitudes of the
parameters γ and η right is crucial for the performance of the



794 P. Auer et al. / Neural Networks 21 (2008) 786–795
Table 2
Numerical description of the datasets used for empirical evaluation

BC CH CR DI HD IO SI SN

Examples 683 (699) 3196 1000 768 296 (303) 351 2643 (3772) 208
Classes 2 2 2 2 2 2 2 2
Majority Class 65.5% 52.2% 70% 65.1% 54.1% 64.1% 92.0% 53.4%
Ex. with missing 16 0 0 0 7 0 1129 0
#Attributes 9 36 24 8 13 34 27 60

# numeric 9 0 24 8 6 34 6 60
# binary 0 34 0 0 3 0 20 0
# nominal ≥ 3 0 2 0 0 4 0 1 0
p-delta rule, although the p-delta rule is quite robust against
small changes of the parameters. Setting these parameters by
hand can be – depending on the complexity of the training
data – quite difficult. The considerations in this section provide
a good way of tuning these parameters automatically, though
this method is harder to implement in hardware (e.g. in analog
VLSI) through the increased need of communication to the
perceptrons. We found that the choice of the meta-parameters
for the adaptation of γ and η is far less sensitive than the choice
of the original parameters, which makes the automatic tuning
of γ and η an effective approach.

Appendix B. Datasets used for empirical evaluation

For an empirical evaluation of the p-delta rule we
have chosen eight datasets from the UCI machine learning
repository (Blake & Merz, 1998). Our criteria were binary
classification tasks, few missing values in the data, and
published learning results for multi-layer perceptrons trained
by backprop (MLP + BP). All examples containing missing
values have been removed from the data. Nominal attributes
were transformed into corresponding binary vectors. Table 2
gives an overview about the datasets being used. The numbers
of the examples in brackets show the original size of the dataset
before examples containing missing values had been removed.
The rest of the values in the table are for the dataset without
the examples containing missing values. The datasets we have
chosen are:

• Breast-cancer (BC): We used the original Winconsin breast-
cancer dataset, consisting of 699 examples of breast-cancer
medical data out of two classes. Each of the nine attributes is
an integer value between 1 and 10. 16 examples containing
missing values have been removed. 65.5% of the examples
form the majority class.
• King–Rook vs. King–Pawn chess endgames (CH): This

database consists of examples from chess endgame positions
with king and rook on one side against only king and pawn
as the opponents. The attributes describe various positions
on the chessboard. The class is which side won in the
corresponding game. None of the 3196 examples contains
missing values. The majority class is 52.2%.
• German credit data (CR): The German credit database

consists of 1000 examples of credit approvements. Two
versions are available: one with and one without nominal
and categorical attributes. We used the numerical version
of this database that had also been used in Statlog. This
database does not contain examples with missing values and
the majority class is 70%.
• Pima Indian Diabetes (DI): This dataset contains 768

instances with 8 attributes each plus a binary class label.
There are no missing values in this dataset. All eight
attributes are real values. The baseline accuracy is 65.1%.
• Heart Disease (HD): We used the Cleveland heart disease

database. From the 13 attributes describing the two classes
(healthy or diseased heart) there are 6 real valued attributes
and 7 nominal attributes. 7 examples out of 303 contained
missing values. These examples were removed from the
dataset for the experiments. The majority class is 54.1%
without those examples.
• Ionosphere (IO): This database contains 351 examples of

radar return signals from the ionosphere. Each example
consists of 34 real valued attributes plus binary class
information. There are no missing values.
• Sick (SI): This is the thyroid disease database from the

Garavan Institute and Ross Quinlan. The original database
contained 3772 examples of which 1129 contain missing
values. These examples together with the original attributes
27 and 28 have been removed from the database. The
majority class in the resulting dataset is 92%.
• Sonar (SN): The sonar database is a high-dimensional

dataset describing sonar signals in 60 real-valued attributes.
The two classes are “rock” (97 examples) and “metal”
(111 examples). The dataset contains 208 instances and no
missing values.
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