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Abstract

We introduce total wire length as salient complexity measure for an anal-
ysis of the circuit complexity of sensory processing in biological neural
systems and neuromorphic engineering. Furthermore we introduce a set
of basic computational problems that apparently need to be solved by
circuits for translation- and scale-invariant sensory processing. Finally
we exhibit a number of circuit design strategies for these new benchmark
functions that can be implemented within realistic complexity bounds, in
particular with linear or almost linear total wire length.

1 Introduction

Circuit complexity theory is a classical area of theoretical computer science, that provides
estimates for the complexity of circuits for computing specific benchmark functions, such
a binary addition, multiplication and sorting (see, e.g. (Savage, 1998)). In recent years
interest has grown in understanding the complexity of circuits for early sensory process-
ing, both from the biological point of view and from the point of view of neuromorphic
engineering (see (Mead, 1989)). However classical circuit complexity theory has provided
little insight into these questions, both because its focus lies on a different set of computa-
tional problems, and because its traditional complexity measures are not tailored to those
resources that are of primary interest in neuromorphic engineering, especially analog VLSI,
and the analysis of neural circuits in biological organisms. This deficit is quite unfortunate
since there is growing demand for efficient hardware for sensory processing, and complex-
ity issues become very important since the number n of parallel inputs which such circuits
have to handle is typically quite large (for example n > 10° in the case of many visual
processing tasks).

We will follow traditional circuit complexity theory in assuming that the underlying graph
of each circuit is a directed graph without cycles.! The most frequently considered com-

INeural circuits in “wetware” as well as most circuits in analog VLSI contain in addition to
feedforward connections also lateral and recurrent connections. This fact presents a serious obstacle
for a direct mathematical analysis of such circuits. The standard mathematical approach is to model
such circuits by a larger feedforward circuit, where new “virtual gates” are introduced to represent
the state of existing gates at later points in time. In addition we will treat analog non-feedforward
circuit modules, such as subcircuits that carry out an efficient winner-take-all computation with the
help of “lateral inhibition”, as “black box modules” (i.e., as gates) in our complexity analysis.



plexity measures in traditional circuit complexity theory are the number (and types) of
gates, as well as the depth of a circuit. The latter is defined as the length of the longest
directed path in the underlying graph, and is also interpreted as the computation time of
the circuit. The focus lies in general on the classification of functions that can be com-
puted by circuits whose number of gates can be bounded by a polynomial in the number
n of input variables. This implicitly also provides a polynomial — although typically quite
large — bound on the number of “wires” (defined as the edges in the underlying graph of
the circuit). We proceed on the assumption that the area (or volume in the case of neural
circuits) occupied by wires is a severe bottleneck for physical implementations of circuits
for sensory processing. Therefore we will not just count the wires, but consider complexity
measures that provide estimates for the total area or volume occupied by wires. We assume
that all gates, input- and output-ports are placed on a 2-dimensional plane.? We evaluate
the required wire length of circuit designs in two closely related models:

(A) Gates, input- and output-ports are placed on different intersection points of a
2-dimensional grid (with unit distance 1 between adjacent intersection points).
These units can be connected by (unidirectional) wires that run through the plane
in any way that the designer wants, in particular wires may cross and need not run
rectilinearly (wires are thought of as running in the 3 dimensional space above the
plane, without charge for vertical wire segments)2. We refer to the minimal value
of the sum of all wire lengths as the total wire length of the circuit.

We would like to make this model also applicable to cases where for k& > 2 some
special functions of % inputs — such as the function computed by a threshold gate*
or a winner-take-all circuit® — are computed by neural microcircuits or in analog
VLSI by efficient subcircuits that employ a number of transistors, total wire length
and area that are all linear in &, with a setting time that is independent of % ©. In the
relatively abstract context of model (A) we model such computational modules as
“threshold gates” or “winner-take-all gates” of k inputs, that take one unit of time
for their computation like all the other gates, but which occupy each a set of k&
intersection points of the grid that are all connected by an undirected wire (whose
length contributes to the total wire length) in some arbitrary fashion”.

(B) This is the common circuit model from VLSI-theory (see section 12.2 in (Savage,
1998)), slightly extended to cover also the case of analog VLSI-modules (that
internally may contain recurrent connections) with more than 2 inputs, such as
modules for winner-take-all. One assumes that gates, input- and output-ports and

2This assumption is not fully justified for neural circuits as for example in the cortex, where
neurons occupy an about 2 mm thick 3-dimensional sheet of “grey matter”. However even in the
cortex there exists a strikingly general upper bound of about 10° for the number of neurons under
any mm? of cortical surface (Koch, 1999). Hence if one ignores the contribution of vertical segments
to the total wire length and projects these neurons onto a 2-dimensional plane, our model provides
a reasonable basis for a rough estimate of the required total wire length even for implementations in
“wetware”. Note that the symbolic gates or inputs in our circuit analysis may correspond in biological
neural circuits to small populations or microcircuits consisting of hundreds of neurons, rather than to
single neurons.

3We will allow that a wire from a gate may branch and provide input to several other gates. For
reasonable bounds on the maximal fan-out (10* in the case of neural circuits) this is realistic both for
neural circuits and for VLSI.

“A threshold gate computes a Boolean function 7 : {0,1}* — {0,1} of the form

T(x1,...,0) =1 Zle w;T; > wo.
®A winner-take-all gate with weights w1, . .. ,w; computes a Boolean function W : {0,1}* —
{0, 1}* where for input &1, . . . , zy the 4th output is 1 if and only if w;z; > w;x; forall j # 4.

bsee (Lazzaro et al., 1989)
"Any one of these k nodes may be used to provide one of the k inputs or to extract one of the
outputs of the function.



wires cover rectilinear areas with a minimal width and separation A. Areas occu-
pied by different gates, input- and output-ports are not allowed to intersect with
one another. A computational module for winner-take-all with & inputs is repre-
sented by a rectilinear gate area of size k£ - A. A threshold gate with & inputs is
modeled by k& + 1 gates (k of them for multiplying a binary input with a weight)
that are connected by a wire. Areas occupied by wires may intersect with areas
occupied by gates, input- and output-ports and also with other wires, but there is
a constant bound » on the number of wire areas to which a point of the plane may
belong. The complexity measure induced by the model is the area of the smallest
rectangle that encloses the circuit.

The attractiveness of model (A) lies in its mathematical simplicity, and in its generality.
It provides a rough estimate for the cost of connectivity both in artificial (basically 2-
dimensional) circuits and in neural circuits, where 2-dimensional wire crossing problems
are apparently avoided (at least on a small scale) since dendritic and axonal branches are
routed through 3-dimensional cortical tissue. Model (B) is useful for testing whether some
specific circuit architecture can be ported from neural to artificial cirucits. In either model
we follow (Savage, 1998) in assuming that one unit of time is needed to transmit a bit
across a wire (of any length), and one unit of time for each gate switching. However in
contrast to (Savage, 1998) we always assume that all inputs are presented in parallel.

There exist quite reliable estimates for the order of magnitudes for the number n of inputs,
the number of neurons and the total wire length of biological neural circuits for sensory pro-
cessing, see (Abeles, 1998; Koch, 1999; Shepherd, 1998; Braitenberg and Schiiz, 1998).8
Collectively they suggest that only those circuit architectures for sensory processing are
biologically realistic that employ an almost linear number of gates and a quadratic or sub-
quadratic total wire length — provided that the constant factor in front of the asymptotic
complexity bound has a value close to 1. Since most asymptotic bounds in circuit com-
plexity theory have constant factors in front that are much larger than 1, one really has to
focus on circuit architectures with clearly subquadratic bounds for the total wire length.

8The number of neurons that transmit information from the retina (via the thalamus) to the cortex
is estimated to be around 10° (all estimates given are for primates, and they only reflect the order of
magnitude). The total number of neurons that transmit sensory (mostly somatosensory) information
to the cortex is estimated to be around 10%. In the subsequent sections we assume that these inputs
represent the outputs of various local feature detectors for n locations in some 1- or 2-dimensional
map. Thus, if one assumes for example that on average there are 10 different feature detectors for
each I07cation on this map, one arrives at biologically realistic estimates for » that lie between 10°
and 10°.

The total number of neurons in the primary visual cortex of primates is estimated to be around 10°,
occupying an area of roughly 10* mm? of cortical surface. There are up to 10° neurons under one
mm? of cortical surface, which yields a value of 10~°/2 mm for the distance between adjacent grid
points in our model (A). The total length of axonal and dendritic branches below one mm? of cortical
surface is estimated to be between 1 and 10 km, yielding up to 10** mm total wire length for primary
visual cortex. Thus if one assumes that 100 separate circuits are implemented in primary visual
cortex, each of them can use 107 neurons and a total wire length of 10° mm. Hence realistic bounds
for the complexity of a single one of these circuits for visual pattern recognition are 107 = n"/?
neurons (for n = 10°), and a total wire length of at most 10!1:5 = »>? in the framework of model
(A).

The whole cortex receives sensory input from about 10® neurons. It processes this input with
about 10'° neurons and less than 102 mm total wire length. If one assumes that 10 separate
circuits process this sensory information in parallel, each of them processing about 1/10th of the
input (where again 10 different local feature detectors report about every location in a map), one
arrives at n = 10° for each circuit, and each circuit can use on average n"/® neurons and a total
wire length of 10''® < n? in the sense of model (A). The actual resources available for sensory
processing are likely to be substantially smaller, since cortical neurons and circuits have many other
functions.



The complexity bounds for circuits that can realistically be implemented in VVLSI are typi-
cally even more severe than for “wetware”, and linear or almost linear bounds for the total
wire length are desirable for that purpose. In this article we begin the investigation of al-
gorithms for basic sensory pattern recognition tasks that can be implemented within this
low-level complexity regime. The architecture of such circuits has to differ strongly from
most previously proposed circuits for sensory processing, since already complete connec-
tivity between just two linear size 2-dimensional layers of a feedforward neural net requires
a total wire length of Q(n°/2). Furthermore a circuit which first selects a salient input seg-
ment consisting of a block of up to m adjacent inputs in some 2-dimensional map, and
then sends this block of < m inputs in parallel to some central “pattern template matcher”,
typically requires a total wire length of Q(n?/? - m) — even without taking the circuitry for
the “selection” or the template matching into account.

2 Global Pattern Detection in 1-Dimensional M aps

Assume that local feature detectors are arranged in a 1-dimensional map, and the com-
putational task is to detect global patterns in the form of specific spatial arrangements of
local features in a translation- and scale-invariant manner. The 1-dimensional map could
for example represent time and the local feature detectors could be detectors for certain
phonemes, or the 1-dimensional map could represent frequency-bands in a (static) spectro-
gram and the local feature detectors might for example detect specific intensity changes in
certain frequency bands, or the 1-dimensional map could represent one spatial dimension
in visual space (for example left-right or up-down).

We employ the following framework for analyzing the circuit complexity of 1-dimensional
pattern detection problems. Assume that one has arrays ay, ... ,an;b1,... ,bn;... of bi-
nary variables, where a; = 1 signals that the local feature a has been detected at location i,
and b; = 1 signals that the local feature b has been detected at location 4, etc. An interesting
prototype for a global pattern detecting problem is whether feature a occurs at a location i
that lies to the left of a location j where feature b occurs:

1, if Ji,jli<janda; =b; =1)
PfR(al,... ,an,bl,... ,bn) =
0, else.

We assume in the layout-analysis of all circuits for P;'5 that its 2n inputs are provided on
one row of the grid, possibly with space in between. One can easily construct a feedforward
circuit based on AND/OR gates of fan-in 2, that computes P}*;, with O(n) gates in depth
O(logn) with total wire length and area O(nlogn). The following lower bound result
shows that any circuit for P}, that is based on a balanced binary tree has a superlinear
total wire length of Q2(n logn).

Theorem 2.1 Any circuit that implements a balanced binary tree with n leafs that lie on
one row of a grid has total wire length > ™1°&%

Idea of the proof: Show by induction on m that any circuit that implements a balanced
binary tree for n = 2™ leafs lying on one row has total wire length at least ”l‘jlﬁ + z,
where z denotes the horizontal distance of the location of the root of the tree from the
midpoint of the leafs. n

In view of this lower bound result it comes as a pleasant surprise that many basic global
pattern detection problems can nevertheless be solved in time O(logn) by circuits with
linear total wire length — as we will show in this article.

The following result shows that by using threshold gates one can drastically improve the
computation time in comparison with the circuit based on AND/OR gates of fan-in 2, with-
out increasing the total wire length.



Theorem 2.2 P;'5 can be computed by a feedforward circuit of depth 2, consisting of
2logn + 1 threshold gates with total wire length O(nlogn) in model (A) and area
O(nlogn) in model (B).

The following lower bound result shows that the number of threshold gates used by the
circuit of Theorem 2.2 is almost optimal:

Theorem 2.3 Any feedforward circuit consisting of threshold gates needs to have at least
Q(logn) gates for computing P}*,.

In analog VLSI the area occupied by a subcircuit that implements a winner-take-all gate
is comparable to that for a threshold gate. Hence the next theorem demonstrates a drastic
gain in efficiency if one employs modules for computing winner-take-all in addition to
threshold gates. It combines the minimal possible computation time of 2 with a linear total
wire length.

Theorem 2.4 P}, can be computed by a feedforward circuit of depth 2, consisting of two
winner-take-all gates and one threshold gate, with total wire length and area O(n).

In contrast to the threshold circuit of Theorem 2.2 just linear size integer weights are needed
for this circuit.

3 Global Pattern Detection in 2-Dimensional M aps

For many important sensory processing tasks — such as for visual or somatosensory input
— the input variables are arranged in a 2-dimensional map whose structure reflects spatial
relationship in the outside world. We assume that local feature detectors are able to detect
the presence of salient local features in their specific “receptive field”, such as for example
a center which emits higher (or lower) intensity than its immediate surrounding, or a high-
intensity line segment in a certain direction, the end of a line, a junction of line segments, or
even more complex local visual patterns like an eye or a nose. The ultimate computational
goal is to detect specific global spatial arrangements of such local patterns, such as the
letter “T”, or in the end also a human face, in a translation- and scale-invariant manner.

We formalize 2-dimensional global pattern detection problems by assuming that the input
consists of arrays a = (ay,... ,a,),b = {b1,...,by,), etc. of binary variables that are
arranged on a 2-dimensional square grid®. Each index 4 can be thought of as representing
a location within some /i x +/n-square in the outside world. In our formal model a sub-
square within the 2-dimensional grid is reserved for each index i, where the input variables
a;, b;, etc. are given on adjacent nodes of this grid’°. Since we assume that this spatial ar-
rangement of input variables reflects spatial relations in the outside world, salient examples
for global pattern detection problems require the computation of functions such as

1, ifthereexist and j so that a; = b; = 1 and input location j
Pj(a,b) = is above and to the right of input location i
0, else

SWhenever needed we assume for simplicity that 7 is such that v/n, log 7 etc. are natural num-
bers. The square grid for the input variables may leave some nodes empty, which can be occupied by
gates in model (A).

19To make this more formal one can assume that indices i and j represent pairs (i1, 4s), {j1, ja) of
coordinates. Then “input location 5 is above and to the right of input location :” means: i1 < 71 and
12 < ja. The circuit complexity of variations of the function P55 where one or both of the “<” are
replaced by “<” is the same.



Theorem 3.1 The function P75 can be computed — and witnesses ¢z and j with a; = b; =1
can be exhibited if they exist — by a circuit with total wire length O(n) and area O(n),
consisting of O(n) Boolean gates of fan-in 2 (and fan-out 2) in depth O(logn - loglog n).
The depth of the circuit can be reduced to O(logn) if one employs threshold gates with
fan-in logn. This can also be done with total wire length and area O(n).

The linear total wire length and area of this circuit —which is up to a constant factor optimal
for any circuit whose output depends on all of its n inputs — is achieved with the help of a
suitable modification of an H-tree. The square where the inputs are received is iteratively
divided into 4 subsquares. For each subsquare one computes recursively the locations of
the highest, lowest, leftmost, and rightmost occurrences of the two features a and b. |

The next theorem shows that one can compute P faster if one can afford a somewhat larger
total wire length. This circuit construction, that is based on AND/OR gates of limited fan-
in A, has the additional advantage that it can not just exhibit some pair (i, j) as witness
for Pj(a,b) = 1 (provided such witness exists), but it can exhibit in addition all j that
can be used as witness together with some i. This property allows us to “chain” the global
pattern detection problem formalized through the function P73, and to decide within the
same complexity bound whether for any fixed number & of input vectors a*), ..., a®
from {0, 1} there exist locations i("), ... ,i(¥) so that aEZfL)) =1form=1,...,kand
location :(™*1) lies to the right and above location (™) form = 1,... ,k — 1. In fact, one
can also compute a k-tuple of witnesses ("), . .. ,i(*) within the same complexity bounds,
provided it exists. This circuit design is based on an efficient layout for prefix computations.

Theorem 3.2 For any givenn and A € {2, ... ,+/n} one can compute the function P} in
depth O(I%Ogg%) by a feedforward circuit consisting of O(n) AND/OR gates of fan-in < A,

with total wire length O(n - A - {%6%) and area O(n - (A - {25%)). [

Another essential ingredient of translation- and scale-invariant global pattern recognition
is the capability to detect whether a local feature ¢ occurs (roughly) in the middle between
locations 7 and j where the local features a and b occur. This global pattern detection
problem is formalized through the following function P;*:

IfY a=>b=1then

1, ifthere exist i, j, k so that input location & lies on the

middle of the line between locations ¢ and j, and
Pr'(a,b,¢c) =
a; = bj =C = 1

0, else

This function P can be computed very fast by circuits with the least possible total wire
length and area (up to constant factors), using threshold gates of fan-in up to /n:

Theorem 3.3 The function P;* can be computed — and witnesses can be exhibited — by a
circuit with total wire length and area O(n), consisting of O(n) Boolean gates of fan-in 2
and O(y/n) threshold gates of fan-in \/n in depth 5.

The design of the circuit exploits that the computation of P;* can be reduced to the solution
of two closely related 1-dimensional problems. |



4 Discussion

There exists a very large literature on neural circuits for translation-invariant pattern
recognition see http://www.cnl.salk.edu/"wiskott/Bibliographies/Invariances.html. How-
ever there exists substantial disagreement regarding the interpretation of existing ap-
proaches see http://www.ph.tn.tudelft.nl/PRInfo/shift/maillist.html. Virtually all positive
results are based on computer simulations of small circuits, or of learning algorithms for
concrete neural networks with a fixed input size n on the order of 20 or 30, without an
analysis how the required number of gates and the area or volume occupied by wires scale
up with the input size. The computational performance of these networks is often reported
in an anecdotical manner.

The goal of this article is to show that circuit complexity theory may become a useful in-
gredient for understanding the computational strategies of biological neural circuits, and
for extracting from them portable principles that can be applied to novel artificial circuits.
Therefore we have introduced in model (A) the total wire length as an abstract complex-
ity measure that appears to be among the most salient ones in this context, and which
can in principle be applied both to neural circuits in the cortex and to artificial circuitry.
We would like to argue that only those computational strategies that can be implemented
with subquadratic total wire length have a chance to reflect aspects of cortical informa-
tion processing, and only those with almost linear total wire length are implementable in
special purpose VLSI-chips for real-world sensory processing tasks.** We have formal-
ized some basic computational problems, that appear to underly various translation- and
scale-invariant sensory processing tasks, as a first set of benchmark functions for a circuit
complexity theory of sensory processing. We have presented designs for circuits that com-
pute these benchmark functions with small — in most cases linear or almost linear — total
wire length. The computational strategies of these circuits differ strongly from those that
have been considered in previous approaches, which failed to take the limitations imposed
by the realistically available amount of total wire length into account??,

Complete proofs of the Theorems in this extended abstract are available for the referees on
http://www.tu-graz.ac.at/igi/maass/al .
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