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• (which are  

The output of neurons consists of  

action potentials or „spikes“ in continuous time 

A spike of the presynaptic neuron causes 

(with a certain probability) a temporary 

change of the postsynaptic membrane 

potential  (EPSP or IPSP). 

A simple neuron model: 

 

The amplitude of EPSPs and 

IPSPs is scaled by synaptic 

weights w, and added linearly 

to model the membrane 

voltage.  

 

The neurons emits a spike 

whenever its membrane 

potential reaches its  

„firing threshold“.  



Different ways of encoding information with spikes are considered in theoretical 

models: 

• Rate coding 

• Firing time with regard to a reference signal (e.g. a background oscillation) 

• Simultaneous firing of several neurons as a token of information 

• Relative timing of spikes (the neuron that fires first conveys a more 

important signal) 

How can one encode information with spikes? 



What is the theoretical computational power of a 

network of spiking neurons (SNN)? 

One can construct a SNN that can simulate any Turing 

machine in real time, hence arguably any digital 

computation. This can be done with phase coding of 

spikes, where the time of a spike relative to a 

background oscillation encodes an analog (rational) 

number (e.g., the content of a Turing machine tape).  (M., 

1996) 

 

With the same methods one can also show that  

any artificial neural network (ANN) with piecewise  

linear activation functions can be simulated in real  

time by a SNN (M., 1997)  

 

 

These proofs assume that EPSPs and IPSPs contain 

some linear initial segment, and that there is no noise. 

 

 



What happens if one allows noise in the SNN? 

 

The computational power of SNNs drops to that of a deterministic finite 

automaton (M. and Orponen, 1997). 

 

 

 

 

 

 

Is there noise in BNNs? 



Recordings from BNNs show a large  

trial-to-trial variability 

Recording of a single neuron in area MT during  

repeated presentations of the same stimulus  
(randomly moving dots; data from Newsome Lab) 

 

 

 

Simultaneous recording of several  

neurons during several trials 
(static visual input patterns, data from Singer Lab) 

 

 

 

 

 

A theoretical computer scientist might suggest that noise is not really a problem for 
computations in BNNs, since the brain just has to duplicate neurons (they all need 
to get the same input) and take the sum of their outputs. 

 

But: Data on neural connectivity suggest that even „adjacent“ pyramidal cells have  quite 
different sets of neurons from which they receive synaptic inputs, see e.g. (Yoshimura, 
Dantzker, Callaway. Science 2004).  

In addition we have learnt that hardly any two neurons in the brain have the same 
inout/output behaviour. 

 



In fact, experimental data suggest that synapses in 

BNNs are designed to create noise 

Common estimates of the probability of 

vesicle release in response to a 

presynaptic spike  are around 0.5 for 

neocortex,  see e.g.  

(Branco, Staras, Nat. Rev. in Neurosci, 2009) 

 

 

In addition vesicles are frequently 

released without a presynaptic spike 

(Kavalali, Nat. Rev. in Neurosci., 2015). 

 

 



How can BNNs compute,  

given that they have a large trial-to-trial variability?  
 

It would be very difficult to emulate deterministic computational models by such 

networks. Are othert computing paradigms consistent with large trial-to-trial 

variability? 

 

A prominent example: Markov chains (MCs).  

A key property of MCs:  

Under some mild assumptions they have a  unique  

stationary distribution  of network states, to which they 

converge from any initial state. 

 

One can argue that MCs are superior to deterministic computing devices for 

computations such as 

• exploration for unsupervised and reward-based learning 

• probabilistic inference through sampling: Markov chain Monte Carlo (MCMC) 

sampling 

• solving constraint satisfaction problems 

 

 

 



A frequently studied MC in the context of ANNs: 

Boltzmann machines (BMs) 
 

• BMs are commonly used in machine learning (e.g. for „deep learning“) and for 
solving constraint satisfaction problems 

• BMs are stochastic artificial neural networks, whose units output 1 or 0, with 
stochastic switches according to some global schedule: 

                        When unit i is allowed to switch, it assumes the state   

                𝑥𝑖 = 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜎 (
1

𝑇
( 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖𝑗 )) ,    else   𝑥𝑖 = 0 

          with the sigmoid activation function     𝜎 𝑥 = 1/(1 + 𝑒−𝑥) 
 

• The state of a BM with N units is at any time point some bit vector of length N 

. 

• Every Boltzmann distribution (i.e., distribution over binary random variables with at 
most 2nd order dependencies) is the stationary distribution of some BM. 

 

• With „hidden units“ a BM can even represent distributions with higher order 
dependencies as marginal distributions. 

 

• The stochastic dynamics of BMs is equivalent to Gibbs sampling, which is 
frequently used for probabilistic inference via MCMC sampling in ML 

     

 

 



Relating spiking neurons to BM-units   

Assume that each spike of a neuron  

sets some bit to 1 for a short time window: 

 

Then the firing activity of a network of N 

spiking neurons can be encoded at any 

time point by a bit vector z of length N (like 

the state of a BM with N units). 

 

 

Such transformation from spikes to bits is 

also considered by experimentalists, e.g. 

(Berkes et al., Science 2011). They 

proposed to view neural activity as 

sampling from a distribution that is encoded 

by the network: 

 

Note: Tenenbaum and other cognitive scientists 

had already earlier proposed that the brain 

stores information in the form of probability 

distributions. 
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If networks of N spiking neurons can be viewed as MCs, whose 

states z are bit vectors of length N, the question arises:  

Which distributions over these states can be represented,  

or even learnt, by such SNNs? 

Known results: 

1. When the weights are symmetric,  SNNs (with an idealized neuron model) 

represent the same distribution as a BMs of the same size and with the 

same weights. Hence SNNs can represent all distributions with at most 2nd 

order dependencies.                                                          (Buesing et al., 2011) 

 

1. With asymmetric weights, there  is no a-priori limit for the type of distribution 

over discrete random variables which SNNs can represent. They also can 

learn quite arbitrary distribution from examples, using an idealized form of 

STDP (Pecevski et al., 2011, 2016). 

 

 

These theoretical results hold rigorously for stochastic spiking  

neurons with an instantaneous firing probability  

for a standard  definition of the membrane potential 

  

with simplified „rectangular“ EPSPs defined by step functions.  

 

 



Assumption:  Some external distribution p* generates  samples  y,  given to the 

SNN through population coding. 

Result:  The network learns through STDP an internal model of p*, from which  it 

can spontaneously produce samples through its stochastic dynamics. 

The network consists of 3-layer moduls, that 

each learn the probability table for one RV, 

conditioned on the RVs in its Markov blanket: 

 

 

 

 

 

 

 

Learning takes place through STDP on 

synapses to hidden layer neurons, that are 

partitioned into WTA (winner-take-all) circuits. 

 

Underlying theory: Expectation Maximization 

(EM), using stochastic sampling for the E-step. 

 

Method for unsupervised learning of an approximation to a 

given distribution over K binary variables  through STDP in 

stochastic SNNs             (Pecevski et al., 2016) 

 



 

This result makes use of an inherent unsupervised 

learning capability of  WTA circuits  (long known as 

„competitive Hebbian learning in ANNs),  

realized with STDP by SNNs 
 

Theory can explain this process as fitting a mixture distribution to incoming  

spike streams via stochastic online EM (E-step realized via sampling) 



Another possible functional role of stochastic computations of 

BNNs: Problem solving and planning, or abstractly:  

Solving Constraint Satisfaction Problems (CSPs) 

These experimental data from rodents are hypothesized to reflect planning of a path 

to a „home“ location: through trajectories of network states in area CA1 during brief 

periods of rest. They are represented in this figure as sequences of decoded 

„places“ within an open  2x2m arena. Average duration of the trajectory: 103 ms.  

Home location indicated by cyan circle. Cyan arrowhead indicates position and head direction at 

the time of the event 

 

 

 

 

 

 

B. E. Pfeiffer and D. J. Foster. Hippocampal place-cell sequences depict future paths to 

remembered goals. Nature, 2013. 

Actually, one can argue that the brain has to solve CSPs all the time, also 

just for sensory processing. 

Open problem:  How can BNNs solve CSPs? 

This problem is of particular interest for Computer Science, since many 

CSPs are computationally hard.  



Idealized SNNs can solve a hard CSP through 

sampling:  Traveling Salesman Problem 

One WTA is used for each step of the trip,  

where the spiking neurons in each WTA circuit  

represent all the different „cities“:  

 

 

 

 

 

 

 

Results shown are for an instance with 38 cities. 

A strange feature is that stochastic SNNs tend to solve this problem faster than BMs 

that have the same stationary distribution.  
(Zeno, Habenschuss, M., 2016) 

Statistics of solution qualities  

found within some time span: 

Number of state changes 

needed by SNNs and BMs  

to produce a solution of a  

given mox. cost: 



Experimental evidence for sampling in the cortex on the 

behavioural time scale of seconds (and in terms of firing 

rates):  Perception of ambiguous sensory stimuli 

 

Leopold, Logothetis, Trends in Cogn. Sci., 1999 

Both the perception of the stimulus and  

brain states (defined by neural firing rates) 

switch on a time scale of seconds. 



Evidence for sampling in the hippocampus on the time 

scale of about 125ms per sample 

The rodent was uncertain whether it currently was in the „blue“ or „red“ 

environment. Its place-cell map switched abruptly between the maps for the 

two environments (each indicated by red or blue color) during transitions 

between cycles of the theta rhythm (about 8 Hz), rather than forming a 

temporally stable fusion of the two maps: 

 

 

 

 

                                                                                        

 

 Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I., & Moser, M. B. (2011). Theta-paced 

flickering between place-cell maps in the hippocampus. Nature, 478(7368), 246-249. 

 



Experimental evidence for sampling  

in the orbitrofrontal cortex (less than 100ms per “sample”) 
 

Rich, Wallis, Nature Neuroscience 2016  

Monkeys could choose 

between two different rewards. 

 

Neural networks in the orbitro- 

frontal cortex (OFC) switch 

during the choice period 

between different network 

states z that represent the two 

currently available options  

The network state z that corresponds to the subsequently 

chosen option usually occurs with higher probability, as  

predicted by the previously sketched model for  

problem solving in the brain through sampling. 



Further reading 

Links between models which propose that stochastic BNNs carry out 

probabilistic inference through sampling and experimental data: 

Orbán, G., Berkes, P., Fiser, J., & Lengyel, M. (2016). Neural variability and sampling-

based probabilistic representations in the visual cortex. Neuron, 92(2), 530-543. 

 

An alternative model for probabilistic inference through sampling in BNNs: 

Aitchison, L., & Lengyel, M. (2016). The Hamiltonian brain: efficient probabilistic inference 

with excitatory-inhibitory neural circuit dynamics. PLoS computational biology, 12(12), 

e1005186. 

 

Review of models for probabilistic inference in BNNs that do not rely on 

sampling: 

Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference. Current 

Opinion in Neurobiology, 21, 774-781. 

 

 



Open problems with regard to  

stochastic computations of BNNs 

• Have BNNs other methods besides stochastic sampling for solving CSPs? 

 

• Have BNNs other methods besides stochastic sampling for probabilistic inference? 

 

• How can the brain make use of potential solutions to a CSP that are produced 
through sampling? E.g., how can it recognize the relative quality of a stochastically 
produced solution, and return to a very good previously produced solution? 

 

• How can BNNs separate different samples in time?  One possibility: each sample 
is produced in a separate cycle of a background brain rhythm. 

 

• Current models for stochastic computations in NNs are based on homogeneous 
models for neurons and synapses. Are there also models for stochastic NN 
computations that are compatible with, or even benefit from, a diversity of neuron- 
and synapse-types? 

 

• Can we produce a theory of stochastic computation in BNNs where salient random 
variables are represented by assemblies of  neurons, rather than by single 
neurons? 

 



Large trial-to-trial variability is just one salient 

clue/constraint for modelling computations in BNNs 

I will now discuss 4 further features of BNNs: 

 

• diversity of neurons and synapses 

• generic firing patterns recorded in simultaneous recordings from 

many neurons 

• surprising aspects of synaptic plasticity 

• drifting neural codes 

 

I will show that these 4 features suggest that BNNs use strategies for 

computation and learning that are quite different from those which are familiar 

from ANNs or Computer Science. 

 

 

 

 

 

 

 

 



Data from the Allen Brain Atlas suggest a large diversity of 

parameters of neurons, especially in humans 

human 

Mouse 

 

 

 

 

 
Upstroke:Downstroke describes the form of spikes,  

Adaptation index describes descrease in firing rate for fixed input current 

Rheobase is the minimial current needed to make the neuron fire 



 

A standard model from 

[Markram, Wang, Tsodyks,   PNAS 1998] 

Models short-term plasticity with 3 parameters 

U, D, F: 

 

The amplitude Ak of the postsynaptic potential 

for the kth spike in a spike train with inter-spike 

intervals  ∆1, ∆2,…,∆k-1  is modeled by the 

equations 

 

  Ak = w · uk ·Rk 

  uk = U + uk-1 (1-U) exp(- ∆k-1 /F) 

  Rk = 1 + (Rk-1  - uk-1 Rk-1 -1) exp(- ∆k-1 /D) 

Another source of diversity in BNNs:  

Diversity of short-term plasticity of synapses 

 

UDF values for different  

types of synaptic  

connections 

(Gupta, Wang, Markram; 

Science, 2000): 

 

 

Every synapse has a complex inherent temporal dynamics and can NOT be  

modeled by a single parameter  w  like in artificial neural networks.   



 

 

one spike train, 

sent to two 

synapses 

output 

amplitudes of 

synapse 

output 

amplitudes of 

synapse 

Functional consequence of the inherent dynamics of synapses: 

A single neuron can send different messages 

to different target  neurons 

 

Shown are the amplitudes of synaptic responses of two common types of 

synapses to the same spike train  (F1 is facilitating and F2 is depressing): 



Implications of these data for modelling and theory of 

computations in BNNs 

Theoretical models for BNNs usually contain just one or two types of neurons, 

and short-term plasticity of synapses is ignored. 

Does this affect the computational paradigms that are supported by 

these models in a significant manner? 

Yes:  it becomes close to impossible to simulate ANNs or other popular 

network architectures from Computer Science by a model whose synapses 

are subject to short-term plasticity (because the output of a synapse depends 

in a complicated way on the history of its spike inputs). 

 

 

 

Note that differences in the firing dynamics of excitatory and (various types of) 

inhibitory neurons also make it difficult, if not impossible, to implement 

subtraction by combining outputs of an excitatory and an inhibitory 

neuron. 



Diversity of neurons and synapses  

in recurrent BNNs 
 

 



 

 

Earlier computational models for BNNs as dynamical  

systems had focused on attractors.  

 

 

But experimental data suggest that longer lasting  

attractor states are rare in BNNs, and most  

computations have to take place on trajectories  

of network states. 

 

 

 I will discuss models for computations of BNNs 

with diverse components on time series 

These are the first 3 principal components of 

the firing activity of 87 neurons in the locust 

olfactory lobe for 2 different odors, numbers 

indicate time in seconds since stimulus onset   
(Broome, Jayaraman, Laurent, 2006) 

 



 
A nice class of computational operations (filters)  

on time series:  
 
 
Filters F that are time-invariant (i.e, input driven) and only require a fading memory.  
 
These are exactly those that can be represented by Volterra series: 
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This is one of very few theoretical results which show that diversity of 

units may increase the computational capability of a network  

 (for computations on time series u(t)) 

B1

Bk

.

.

.

filter output
(t)x

y(t)

memoryless readout
y(t) = f ( (t))x

u(s)

for s  t£

Theorem (Boyd and Chua, 1985) 

Any time-invariant filter with fading memory  can be 

approximated with any degree of precision by this 

simple computational model, which only requires 

• that  there is a rich enough pool B of basis filters (time 

invariant, with fading memory) from which the basis 

filters B1,…,Bk in the filterbank can be chosen 

(B  needs to have the pointwise separation property)       

and 

• that any continuous bounded function can be 

approximated by the memoryless readout. 

 

 
 

 

Def:   A class B  of basis filters has the pointwise separation property if there exists for any 

two input functions  u(•), v(•)  with  u(s)  v(s)  for some  s £ t  a basis filter B  B  with    

(Bu)(t)  (Bv)(t). 

 

Open problem: Can theory provide further insight into computational benefits of 

having diverse computational units within some network? 

E.g., how well can one approximate with a fixed set of randomly chosen basis filters all filters 

that a BNN needs to compute? 



 Abstract version of this computational model:  Liquid State Machine 

(“liquid” because the state of the dynamical system is allowed to be “liquid” rather 

than discrete and static, like in a finite state machine).  

 

This model generalizes finite state machines to continuous input values u(s),  

continuous output values y(t), and continuous time t. 



Resulting computational model for a cortical column 

Neurons on layers 2/3 and  

layers 5/6 (whose axons  

transmit information to other  

circuits and brain areas) 

learn to read out information  

from the state trajectory of  

a cortical column 

This model proposes that a cortical column is designed to carry out two generic  

computational operations on sequences (filters): To integrate information over time  

(fading memory), and to project information nonlinearly into a high-D state space. 



The computational power of linear readouts gets boosted through 

a generic nonlinear projection into a high-D space 

This principle is well-known from Machine  

Learning: kernels of Support Vector Machines  

 

Example:  If a circuit precomputes all products xi · xj of  n  input variables x1,...,xn, 

then  a subsequent linear readout can compute any quadratic function of the 

original input variables x1,...,xn. 

However this projection into high-D does not have to compute any concrete 

nonlinear operation: It suffices if saliently different inputs are mapped onto linearly 

independent outputs. 

 

This principle also supports separation of  

time series by linear readouts after a nonlinear  

projection into a high-D space: 

 

Echo state networks (G. Jäger) use the same principle for ANNs. But for recurrent 

ANNs without noise one does not need diverse network units, randomly constructed 

recurrent connectivity and weights provides there enough diversity.  



Randomly connected 

network of 135 

spiking neurons 

whose synapses have 

diverse short-term 

plasticity: 

 

7 linear readouts, 

trained for 7 different 

tasks  by linear 

regression ( blue 

traces) receive 

EPSPs from the 135 

network neurons 

 

 

 

 

 

This models suggests that computations can be 

multiplexed in BNNs     (M., Natschlaeger, Markram, 2002) 

Network  input:  

4 Poisson spike trains with time-varying 

firing rates f1(t) for spike trains 1 and 2 and 

firing rates f2(t) for spike trains 3 and 4 



Theorem: Adding feedback from trained readout neurons drastically 
increases the computational power of this model (M., Joshi, Sontag, 2007):  

There exists a large class Sn of analog circuits C with fading memory (described by 
systems of n first order differential equations) that acquire through feedback 
universal computational capabilities for analog computing in the following sense:  

This holds in particular for continuous 
functions K, h and  neural circuits C 
defined by DEs of the form 

 Any Turing machine can be simulated by 

such dynamical system (Branicky, 1995). 

In particular, the model acquires non-

fading memory through feedback. (under some conditions on the i, aij, bi). 



Open problem: Is there a variation of this theoretical result 

for networks of spiking neurons with noise? 

Simulations suggest that feedback from readouts also significantly enhances the 
computational capability of networks of spiking neurons with noise   (M. Joshi, Sontag, 
2007):  

 

A generic 4-D input trajectory 

(rate based): 

 

Readout neurons with feedback 

were trained (with teacher forcing) 

to fire when the last input burst  

occurred in channel 4 

(this requires a non-fading memory): 

                                                                        solid traces show firing rates of linear readouts 

Other readouts (with feedback)  

were trained to switch the network  

computation in dependence of  

these 2 non-fading internal states: 



Subsequent results on practically successful  

training methods for readouts with feedback 

Sussillo & Abbott  (Neuron, 2009) showed that teacher-forcing of the network 

can be avoided for ANNs while training the readouts with feedback (through 

the FORCE algorithm). 

 

Nicola and Clopath (Nature Comm., 2017) showed that FORCE can also be 

applied to networks of spiking neurons. 

 

Hoerzer, Legenstein, M. (Cerebral Cortex, 2012) showed that the biologically 

unrealistic FORCE algorithm can be replaced in ANNs for the same tasks by 

reward-modulated Hebbian learning. 

 

Open problem: Can one replace also for spiking neural networks the FORCE 

algorithm by biologically more realistic learning learning methods? 

 

Alemi, Machens, Denève, Slotine  (arXiv, 2017) showed that methods from 

adaptive control theory imply that an (idealized) spiking neural network can 

learn (through suitable local learning rules within the recurrent network) any 

„well-behaved“ dynamics. 

 

 



BNNs apply a fading memory and enable nonlinear computations 

with linear readouts:  
D. Nikolic, S. Haeusler, W. Singer, and W. M.. Distributed fading memory  

      for stimulus properties in the primary visual cortex. PLoS Biology, 2009 

 
S. Klampfl, S. V. David, P. Yin, S. A. Shamma, and W. M.. A quantitative  

      analysis of information about past and present stimuli encoded by spikes of  

      A1 neurons. J. of Neurophys., 2012 

 

Multiplexing of “neural codes” in the network for different tasks: 
Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D., Miller, E. K., & 

Fusi, S. The importance of mixed selectivity in complex cognitive tasks. 

Nature, 2013 

 

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T.. Context-dependent 

computation by recurrent dynamics in prefrontal cortex. Nature, 2013 

 

Diversity of neural readouts from the same cortical column: 
Chen, J. L., Carta, S., Soldado-Magraner, J., Schneider, B. L., & Helmchen, F.. 

Behaviour-dependent recruitment of long-range projection neurons in 

somatosensory cortex. Nature 2013. 

 

Experimental data have confirmed many predictions of 

the liquid computing model 



Hence also realistic models for BNNs can carry out some  

form of probabilistic Inference: They can estimate  

(via MCMC sampling) posterior marginals, conditioned  

on the external input e which they receive: 

 

 

 

Note: This estimation is in general NP-complete. 

Also SNNs with a diversity of neurons and synapses have a stationary distribution  

of network states z  (Habenschuss, Jonke, M., PLOS CB 2013) 

  

 

   
A quick look back at the problem whether models for stochastic 

computations in BNNs can be made compatible with having a 

diversity of neurons and synapses 

Open problem:  

Are BNNs designed to 

support fast convergence to 

the stationary distribution  

(from a selected range of 

initial states)?  

 
Some quick initial simulations 

seem to support that (shown are 

curves are from Gelman-Rubin 

analysis): 

 
 

.  

 

 

 

 

Inputs  e                   network states  z a network state  z 



Both spontaneous and stimulus-evoked activity differ strongly from the asynchronous irregular regime 
that is commonly postulated by theoreticians as the most suitable regime for computations in BNNs: 

 

 

 

 

 

Experimental data show that firing activity in BNNs is dominated by group- 

firing patterns, referred to as assemblies or assembly sequences, 

 

 

 

 

 

 
Each patch of cortical tissue produces only a rather small repertoire  
of such stereotypical firing patterns. The shown data are from area A1 in  
rodents  (Luczak, Bartho, Harris, Neuron 2009). 
 
 

Similar data arise from Ca-imaging in  
area V1  (Miller, ..., Yuste; PNAS 2014);  
„core neurons“ of assemblies  
are colored in red: 

 

 

 

 

 

 Data from simultaneous recordings of many neurons 

contradict the theoretically predicted asynchronous 

irregular (AI) firing regime for computations of BNNs 

Brunel , J. Of Comp.  

Neurosc.,, 2000. 

SNN in the AI regime 



Open problem: How do BNNs encode information and 

compute with assemblies of neurons? 

Reviews of hypotheses about the computational role of assemblies, and of 
related experimental data: 

 
G, Buzsaki: Neural syntax: cell assemblies, synapsembles, and readers. 
Neuron 2010 

 

Luczak, A., & MacLean, J. N. (2012). Default activity patterns at the neocortical 
microcircuit level. Frontiers in integrative neuroscience, 6. 

 

Dasgupta, S., Stevens, C. F., & Navlakha, S. (2017). A neural algorithm for a 
fundamental computing problem. Science, 358(6364), 793-796. 

 

Ison, M. J., Quiroga, R. Q., & Fried, I. (2015). Rapid encoding of new memories 
by individual neurons in the human brain. Neuron, 87(1), 220-230. 

 

Quiroga, R. Q. (2016). Neuronal codes for visual perception and memory. 
Neuropsychologia, 83, 227-241. 

 



Unexpected properties of synaptic plasticity  

and neural codes 

• Networks in the brain appear to rewire themselves for specific 

computational tasks: 

 

 

 

 

 

• This rewiring does not require neural activity: 

 

• Other data suggest that deterministic rules for synaptic plasticity that are 

commonly used in modelling and theory, such as STDP orHebbian learning, 

capture at most 50% of the actual synaptic plasticity: 

 

(Dvorkin, Ziv, 2016), using 

their data from cultures, 

and ex-in-vivo data from 

(Kasthuri et al., 2015) 

Svoboda Lab 

Lichtman Lab 

estimated correlation 

of weights of synapses 

between the same 

axon and same 

dendrite:  r = 0.23  

Kasai Lab 



The weak correlation of 0.23 for weights of synapses that have the 

same axon and the same dendrite could potentially be explained by 

differences in their initial size, or different learning rates, but... 

Data shown are  from a re-analysis of the data from (Dvorkin and Ziv, 2016), carried out by Jian Liu in Graz. 

Normalzation to the size of weights at 

the beginning of experiment still shows 

divergent evolution of weight sizes  
(shown are two sample pairs of traces for 

synapses with the same axon and the same 

dendrite; time in h): 
 

 

 

 

 

In addition, weight changes for 

synapses with the same pre- and 

postsynaptic neuron (even the same 

dendrite) have frequently different 

signs: 



Consistent with the strong „spontaneous synapse-

autonomous component“ of synaptic plasticity,  neural codes 

are found to drift on the time-scale of weeks and months 

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., 

Ghosh, K. K., Kitch, L. J., ... & Schnitzer, M. J.. 

Long-term dynamics of CA1 hippocampal place 

codes. Nature Neuroscience, 2013  

 

 

 

 

 

Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, 

S. N., & Harvey, C. D. (2017). Dynamic 

reorganization of neuronal activity patterns in 

parietal cortex. Cell, 170(5), 986-999. 

 

 
 

 

 

 



These experimental data motivate a few  

important open problems for modelling and theory 

• How do BNNs attain and maintain stable computational function in spite of 

continuously ongoing synaptic plasticity and drifting neural codes? 

 

• How can BNNs maintain stable computational function even in the presence 

of changes in the network or task? 

 

• Is there anything that remains invariant in spite of all these ongoing changes 

in synaptic connections? 



• Formulate synaptic plasticity rules as stochastic differential  

equations (SDEs)  for parameters 𝜃𝑖 that control both synaptic  

connectivity (functioning synaptic connection if 𝜃𝑖 > 0), and the synaptic  

weight 𝑤𝑖 = 𝑒𝑥𝑝(𝜃𝑖 −𝜃0 ) for a functioning connection:   

𝑑𝜃𝑖 = 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖           𝑑𝒲𝑖  denotes an infinitesimal step of a random walk  

                                                                                         b = learning rate,  T = temperature           

                       drift                       diffusion 

• The Fokker-Planck equation implies that  
𝟏

𝒁
𝒑∗(𝜽)

𝟏

𝑻  is a unique invariant  stationary 

distribution of the network parameters 𝜽   (this does not imply that any particular network configuration 

𝜽 is an attractor!). 

• The drift term can „program“ a desired stationary distribution 
𝟏

𝒁
𝒑∗(𝜽)

𝟏

𝑻 into the network.  

• Consider  the case of reinforcement learning, where one sets    

                                    𝒑∗ 𝜽 ∝ 𝒑𝐒 𝜽 ∙ 𝑬 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 𝛉]    

 with a prior 𝑝𝑆 𝜽  that could express for example structural constraints (such as sparse 

connectivity), but also innate or previously learnt knowledge.  

•  With a Gaussian prior one reproduces standard models for spontaneous spine dynamics. 

• The deterministic drift term  𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽)   is approximated by a commonly used local 

rule for reward-gated STDP,  generalized to include rewiring, with an eligibility trace („tag“)  e(t) for 

STSP-events:                                                                 

Theoretical physics provides a convenient mathematical framework  
(Kappel et al., 2015, 2017) 

𝑑𝜃𝑖 = 𝑏  
1

𝜎2
𝜇 − 𝜃𝑖 𝑑𝑡 + 𝑟(𝑡)𝑒𝑖(𝑡) + 2𝑏𝑇𝑑𝒲𝑖      

 



Dopamine is the most frequently considered internal brain signal 

for reward, and it is known to modulate synaptic plasticity 

Dopamine (DA) neurons can be found in the 

 

– Substantia Nigra pars compacta (SNc): 
projects to basal ganglia 

 

– Ventral Tegmental Area (VTA): projects 
to PFC (prefrontal cortex) 

 
 

 

 

 
When rats are given the opportunity  

to press a lever that causes stimulation  

of neurons that emit DA, they will do nothing else,  

until they starve. 

The simple account of DA as a global reward signal  in the brain has been questioned in 

recent years on the basis of more refined expermental data, e.g. from the work of Okihide 

Hikosaka (NIH) and Ilana Witten (Princeton).  It is not clear how theory can cope with these 

newer data. 



Experimental data on DA-gated self-configuration of 

recurrent neural networks in the motor cortex  

Emergence of reproducible spatiotemporal activity during motor learning; 

Andrew J. Peters, Simon X. Chen & Takaki Komiyama;  Nature(510) 2014 



One can reproduce such reward-gated self-configuration of 

BNNs in the previously sketched model 

D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh and W. M. 

Reward-based self-conguration of neural circuits. Arxiv 2017. 

 

Stereotypical assembly sequences 

ermerge in the SNN during learning 



Resulting dynamics of the parameter vector 𝜃 

The parameter vector keeps moving even after good performance has been reached  

(after 4h of learning), causing a drift of the neural code for movement control. 

Functional benefit of ongoing parameter  

dynamics:   

Immediate and automatic compensation for  

a drastic network perturbation: Switch of  

Function of the populations U and D after 24h  

This switch gives rise to a reorganization of network  

connections, and of the assembly dynamics 



Remarks on this simulated emergence of 

computational function 

• The simulated model is compatible with experimental data on a strong synapse-

autonomous component of synaptic plasticity.  

 

• In fact, this component appears to be functionally  

important for this model: it worked best with a  

temperature T that reproduced a similar amount  

of synapse-autonomous dynamics as found in the  

data from the Lichtman Lab and Ziv Lab. 

 

• The temperature T that worked best, also reproduced a weak correlation of synaptic 

weights for multiple connections between neurons, as found in the data from these 

Labs  

 

 

 

 

• The learning time in the model was quite long. To scale it up to larger  

networks, one may need a given „connectome“ that decreases the time  

required to find a good network configuration. 



Is there a deeper link between stochastic network 

plasticity of BNNs and optimization theory? 

 

 • Common optimization methods, such as Simulated Annealing, modify the 

temperature of a stochastic process 

• Theory promises (in principle) convergence to a globally optimal solution 

for a suitable cooling schedule. 

• If one decreases the temperature 𝑇 in the model, 
1

𝑍
𝑝∗(𝜽)

1

𝑇 is more focused 

on high-reward regions. This increases the search time, but also in the long 

run the expected reward: 
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General remarks on the role of reinforcement learning 

(RL) on our understanding of computations in BNNs 

• RL provides one of the most attractive frameworks for modelling the 

emergence of concrete computational capabilities in BNNs 

 

• STDP with eligibility traces provides on the network level an approximation 

of one of the most powerful known RL-methods: Policy gradient 

 

• Stochasticity is needed in RL in order to allow exploration 

 

• Several recent successes of Google DeepMind are based on RL for ANNs. 

Hence RL provides an inspiring link between state-of-the-art Machine 

Learning and research on BNNs. 

 

 



Work from the Roelfsema-Lab suggests another possible 

link between RL-theory and learning in BNNs: 

A possible implementation of Q-learning in BNNs 

Rombouts, J. O., Bohte, S. M., & Roelfsema, P. R. (2015). How attention can 

create synaptic tags for the learning of working memories in sequential tasks. 

PLoS computational biology, 11(3), e1004060. 

 

 

 

 

Brosch, T., Neumann, H., & Roelfsema, P. R. (2015). Reinforcement learning of 

linking and tracing contours in recurrent neural networks. PLoS computational 

biology, 11(10), e1004489. 

 

Diamond-shaped units: memory units. 

 

One assumes that some mechanism tags  

synapses that were active when the  

current action was chosen (WTA on output level). 

Weights of tagged synapses are modified according to  

a TD-signal (implemented through a neuromodulator). 

 

They model learning of the same tasks for which they  

had previously trained animals in reward-based  

learning experiments. 



Recent review papers that discuss links between 

Machine Learning and research on BNNs 

 

• Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an 

integration of deep learning and neuroscience. Frontiers in Computational 

Neuroscience, 10. 

 

• Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). 

Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258. 

 

• Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). 

Building machines that learn and think like people. Behavioral and Brain 

Sciences, 40. 

 



A key issue in current discussions between Machine 

Learning and Neuroscience  

• Many successes in Deep Learning rely on backprop (BP) for feedforward 
ANNs.   

Is BP a learning algorithm that is available to BNNs? 

• See the work of Geoff Hinton, Yoshua Bengio, Timothy Lillicrap for attempts to 
provide a positive answer. 

 

If the answer is negative, what is used by BNNs instead of BP? 

 

 

• A closely related issue: Applications of Deep Learning for language processing 
typically use backprop through time (BPTT) for training recurrent ANNs, that 
are often enhanced through LSTM (long short term memory) units. These 
results raise the questions:  

Is BPTT also available to BNNs?   

Are some sort of LSTM units available to BNNs? 

 

 



3.  Methodological issues:  
How should models for computations in BNNs be chosen?  

In order to show for example that BNNs can integrate information over time, should 
one use the simplest possible model, or integrate data on BNNs that are likely to be 
relevant for this computation? 

 

Occam‘s razor suggests that some form of model regularization should be used 

 

 

 

 

 

From the theoretical perspective, the only relevant function of regularization is a 
reduction in the number of possible models, in order to avoid overfitting. 

There are many options for regularizing models of BNNs: 

• Use the  mathematically simplest neuron- and synapse models 

• Use models that do not require super-fine tuning of parameters 

• Use models that are consistent with more experimental data on BNNs 

• Use models that produce network activity similar as observed in BNNs 

• Use models that exhibit a similar robustness to network perturbations as BNNs 

• Use models that can learn from few examples (like brains can).  

 

 

 

 

 

 

Numquam ponenda est pluralitas sine necessitate 

 [Plurality must never be posited without necessity] 

William of Ockham (circa 1287–1347)  



What do the 3 levels of Marr imply for modelling 

computations in BNNs? 

(Marr and Poggio, 1976) suggested to  model computation in BNNs on 3 different 

levels: 

• computational (behavioural) level:   What needs to be computed? 

• algorithmic level :                               By what computational strategy? 

• implementation level:                         How can BNNs implement that strategy? 

 

 

Theoreticians often use these Marr-levels as justification for ignoring the biological 

implementation level in their analysis. 

 

But we have seen that experimental data on the biological implementation  

level often make us rethink how computations are organized in BNNs, and what their 

computational goal is. 

 

 

 



Further references to these methodological questions,  

and also to more open problems 

 

• W. M., C. H. Papadimitriou, S. Vempala, and R. Legenstein. Brain 

computation: A computer science perspective. Springer Lecture Notes in 

Computer Science, vol. 10000, 2018 

 

 

• W. M.. Searching for principles of brain computation. Current Opinion in 

Behavioral Sciences (Special Issue on Computational Modelling), 11:81-92, 

2016. 

 

 

 

 

The slides of these lectures will be posted by tomorrow on my homepage 

http://www.igi.tugraz.at/maass/publications.html 
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 4. Summary 

 • The organization of computations in BNNs is likely to be very different from 
schemes that are familiar from Computer Science and ANNs 

 

• I discussed the impact of a few specific types of experimental data on model 
selection: 

--large trial-to-trial variability  (suggest stochastic computations, MCMC sampling) 

--diversity of neurons and synapses (suggests computational models that benefit 
from having diverse units) 

--characteristic firing patterns of simultaneously recorded neuron (suggests 
that we need to understand models for stochastic computation with assemblies and 
assembly sequences) 

--unexpected properties of synaptic plasticity and neural codes (suggests to 
consider stochastic rules for synaptic plasticity and rewiring, and analyze the 
stationary distribution of network configurations) 

 

• Other candidates for experimental data that provide important clues/constraints 
for understanding computation and learning in BNNs  

--clustering of synapses on selected dendrites 

--dendritic spikes that impact neural computation and synaptic plasticity 

--inhibition and disinhibition through networks of specific types of inhibitory neurons 

 

• We should probably spend more effort on the selection and justification of our 
models for computation and learning in BNNs.  

 

 


