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Independent component analysis (or blind source separation) is assumed
to be an essential component of sensory processing in the brain and
could provide a less redundant representation about the external world.
Another powerful processing strategy is the optimization of internal
representations according to the information bottleneck method. This
method would allow extracting preferentially those components from
high-dimensional sensory input streams that are related to other infor-
mation sources, such as internal predictions or proprioceptive feedback.
However, there exists a lack of models that could explain how spiking
neurons could learn to execute either of these two processing strategies.
We show in this article how stochastically spiking neurons with refrac-
toriness could in principle learn in an unsupervised manner to carry out
both information bottleneck optimization and the extraction of indepen-
dent components. We derive suitable learning rules, which extend the
well-known BCM rule, from abstract information optimization princi-
ples. These rules will simultaneously keep the firing rate of the neuron
within a biologically realistic range.

1 Introduction

The information bottleneck (IB) approach and independent component
analysis (ICA) have both attracted substantial interest as general principles
for unsupervised learning (Tishby, Pereira, & Bialek, 1999; Hyvärinen,
Karhunen, & Oja, 2001). A hope has been that they might also help us
to understand strategies for unsupervised learning in biological systems.
However, it has turned out to be quite difficult to establish links between
known learning algorithms that have been derived from these general prin-
ciples and learning rules that could possibly be implemented by synaptic
plasticity of a spiking neuron. Fortunately, in a simpler context, a direct
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Figure 1: Learning situations analyzed in this article. (A) In an information
bottleneck task, the learning neuron (neuron 1) wants to maximize the mutual
information between its output YK

1 and the activity of one or several target
neurons YK

2 , YK
3 , . . . (which can be functions of the inputs XK or other external

signals), while at the same time keeping the mutual information between the in-
puts XK and the output YK

1 as low as possible (and its firing rate within a desired
range). Thus, the neuron should learn to extract from its high-dimensional input
those aspects that are related to these target signals. This setup is discussed in
sections 3 to 5. (B) Two neurons receiving the same inputs XK from a common
set of presynaptic neurons both learn to maximize information transmission and
simultaneously keep their outputs YK

1 and YK
2 statistically independent. Such

extraction of independent components from the input is described in section 6.

link between an abstract information-theoretic optimization goal and a rule
for synaptic plasticity has recently been established (Toyoizumi, Pfister,
Aihara, & Gerstner, 2005). The resulting rule for the change of synaptic
weights in Toyoizumi et al. maximizes the mutual information between
pre- and postsynaptic spike trains, under the constraint that the postsynap-
tic firing rate stays close to some target firing rate. We show in this article
that this approach can be extended to situations where simultaneously, the
mutual information between the postsynaptic spike train of the neuron
and other signals (such as for example the spike trains of other neurons)
has to be minimized (see Figure 1). This opens the door to the exploration
of learning rules for IB analysis and independent component extraction
with spiking neurons that would be optimal from a theoretical perspective.

The IB method (Tishby et al., 1999) is a recently developed information-
theoretic approach that tries to compress information about a data variable
X, while at the same time preserving as much information as possible
about a relevant (target) variable Y; that is, it aims at selecting a compact
representation X̃ of the data X. Information that X provides about Y is
squeezed through a “bottleneck” of the compressed variable X̃. There is
a trade-off between compression (low mutual information between X̃ and
X) and preserving relevant information (high mutual information between
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X̃ and Y). That is, one usually maximizes −I (X̃; X) + β I (X̃; Y) with some
trade-off parameter β, where I (U; V) denotes the mutual information
between random variables U and V. In this approach, we interpret the
input spike trains XK to a neuron as the data X, the output spike train YK

1 as
the compact representation X̃ of X, and the relevant variable Y as a ‘target’
spike train YK

2 (or several target spike trains YK
2 , YK

3 , . . .) (see Figure 1A).
Independent component analysis (Hyvärinen et al., 2001) is another

well-known statistical technique for decomposing complex data into
statistically independent parts, thereby providing a less redundant repre-
sentation. In our approach, we minimize the mutual information between
the output spike trains YK

1 and YK
2 of two neurons receiving the same

input XK . Simultaneously we want both neurons to extract meaningful
information by maximizing the mutual information between the inputs
XK and the output spike train YK

i of both neurons i = 1, 2 (see Figure 1B).
We review in section 2 the neuron model and learning rule from

Toyoizumi et al. (2005). We show in section 3 how this learning rule
can be extended so that it not only maximizes mutual information with
some given spike trains and keeps the output firing rate within a desired
range, but simultaneously minimizes mutual information with other spike
trains or other time-varying signals. In section 4 we analyze the learning
strategies of the resulting learning rules and relate them to the classical
(Bienenstock, Cooper, & Munro, 1982) and generalized (Toyoizumi et al.,
2005) Bienenstock-Cooper-Munro (BCM) rule. Applications to concrete
IB tasks are discussed in section 5. Because of the many different types
of target signals that might be relevant in a biological system, we do not
model the way that such target signals might affect the synapse or neuron
under consideration, but rather use it as an abstract signal in the learning
rule. In section 6, we show that a modification of this learning rule allows
a spiking neuron to extract information from its input spike trains that is
independent from the information extracted by another neuron. Moreover,
we present an approximation of the learning rule that indicates how the
rule might possibly be implemented in a biologically realistic circuit.

2 Neuron Model and a Basic Learning Rule

We use the neuron model from Toyoizumi et al. (2005), which is a stochas-
tically spiking neuron model with refractoriness, where the probability of
firing in each time step depends on the current membrane potential and the
time since the last output spike. It is convenient to formulate the model in
discrete time with step size �t. The total membrane potential of a neuron i
at time step tk = k�t is given by

ui (tk) = ur +
N∑

j=1

k∑
n=1

wi jε(tk − tn)xn
j , (2.1)
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Figure 2: Characteristic functions of the neuron model (see equation 2.2).
(A) Gain function g(u) (solid; see equation 2.4) and galt(u) (dashed; see equa-
tion 2.5) as a function of the membrane potential u (plotted for u0 = −65 mV,
�u = 2 mV, r0 = 11 Hz, gmax = 100 Hz). (B) Refractory variable R(t) as a func-
tion of the time t − t̂ since the last postsynaptic spike (plotted for t̂ = 0, and for
an absolute refractory period τabs = 3 ms, relative refractory time τre f r = 10 ms).

where ur = −70 mV is the resting potential and wi j is the weight of the
synapse from the presynaptic neuron j ( j = 1, . . . , N). An input spike
train at synapse j is described up to the kth time step by a sequence
Xk

j = (x1
j , x2

j , . . . , xk
j ) of zeros (no spike) and ones (spike). Each presynaptic

spike at time tn (xn
j = 1) evokes a postsynaptic potential (PSP) with ex-

ponential by decaying time course ε(t − tn) = UPSPe−(t−tn)/τm for t ≥ tn with
time constant τm = 10 ms and PSP amplitude UPSP = 1 mV. The probability
ρk

i of the firing of neuron i at time step tk is then given by

ρk
i = 1 − exp[−g(ui (tk))Ri (tk)�t] ≈ g(ui (tk))Ri (tk)�t, (2.2)

where the refractory variable,

Ri (t) = (t − t̂i − τabs)2

τ 2
refr + (t − t̂i − τabs)2

�(t − t̂i − τabs), (2.3)

assumes values in [0, 1] and depends on the last firing time t̂i of neuron i
(see Figure 2B). The absolute refractory period τabs = 3 ms is the time period
after a firing during which no spike can occur; in the relative refractory time
τre f r = 10 ms, it is hard, but not impossible, to emit an action potential. The
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Heaviside step function � takes a value of 1 for nonnegative arguments
and 0 otherwise. The gain function,

g(u) = r0 log
{

1 + exp
[

u − u0

�u

]}
, (2.4)

is a smooth increasing function of the membrane potential u (see Figure 2A;
u0 = −65 mV, �u = 2 mV, r0 = 11 Hz). The approximation in equation 2.2
is valid for sufficiently small �t (ρk

i � 1). The function g(u) implements
a stochastic threshold around u0; below u0, it goes to 0, and above u0, it
increases linearly with the membrane potential (with slope r0/�u). Note that
due to refractoriness, the output firing rate of the neuron cannot be made
arbitrarily high. For a neuron model without refractoriness (see section 3.2),
one has to formalize an upper bound on the firing rate of the neuron in a
different way. For that we choose, as in Toyoizumi et al. (2005) an alternative
gain function,

galt(u) =
[

1
gmax

+ 1
g(u)

]−1

, (2.5)

with a maximum rate of gmax = 100 Hz (see Figure 2A).
This model from Toyoizumi et al. (2005) is a special case of the spike

response model, and with a refractory variable R(t) that depends on only
the time since the last postsynaptic event, it has renewal properties (Gerstner
& Kistler, 2002). The output of neuron i at the kth time step is denoted by
a variable yk

i , which assumes the value of 1 if a postsynaptic spike occurs
and 0 otherwise. A specific spike train up to the kth time step is written as
Yk

i = (y1
i , y2

i , . . . , yk
i ).

The information transmission between an ensemble of input spike trains
XK and the output spike train YK

i of total duration K�t can be quantified
by the mutual information1 (Cover & Thomas, 1991)

I
(
XK ; YK

i

) =
∑

XK ,YK
i

P
(
XK , YK

i

)
log

P
(
YK

i |XK
)

P
(
YK

i

) . (2.6)

The idea in Toyoizumi et al. (2005) was to maximize the quantity
I (XK ; YK

i ) − γ DK L (P(YK
i )||P̃(YK

i )), where

DK L
(
P
(
YK

i

)||P̃(YK
i

)) =
∑
YK

i

P
(
YK

i

)
log

P
(
YK

i

)
P̃
(
YK

i

) (2.7)

1We use boldface letters (Xk ) to distinguish random variables from specific realizations
(Xk ).
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denotes the Kullback-Leibler divergence (Cover & Thomas, 1991) between
the actual distribution P(YK

i ) and a given target distribution P̃(YK
i ). The in-

clusion of this second term imposes the additional constraint that the firing
statistics P(Yi ) of the neuron i should stay as close as possible to a target
distribution P̃(Yi ). This distribution was chosen in Toyoizumi et al. (2005)
to yield a constant target firing rate g̃. An online learning rule performing
gradient ascent on this quantity was derived in Toyoizumi et al. for the
weight wi j of neuron i ,

dwij(t)
dt

= αCi j (t)B post
i (t, γ ), (2.8)

which consists of the correlation term Ci j and the postsynaptic term B post
i

(Toyoizumi et al., 2005). The term Ci j measures coincidences between post-
synaptic spikes at neuron i and PSPs generated by presynaptic action po-
tentials arriving at synapse j ,

dCij(t)
dt

=−Ci j (t)
τC

+
∑

l

ε
(
t−t(l)

j

)g′(ui (t))
g(ui (t))

[δ(t− t̂i )−g(ui (t))Ri (t)], (2.9)

with time constant τC = 1 s, δ(t) being the Dirac-δ function and g′(ui (t))
denoting the derivative of g with respect to u. The term

B post
i (t, γ ) = δ(t − t̂i ) log

[
g(ui (t))

ḡi (t)

(
g̃

ḡi (t)

)γ ]

−Ri (t)[g(ui (t)) − (1 + γ )ḡi (t) + γ g̃] (2.10)

compares the current firing rate g(ui (t)) with its average firing rate2 ḡi (t), and
simultaneously the running average ḡi (t) with the constant target rate g̃. The
second argument indicates that this term also depends on the optimization
parameter γ .

3 Information-Theoretic Principles Provide Learning
Rules for More Complex Learning Goals

We extend the learning rule presented in the previous section to a more
complex scenario, where the mutual information between the output spike
train YK

1 of the learning neuron (neuron 1) and some target spike trains
YK

l (l > 1) has to be maximized, while simultaneously minimizing the

2The rate ḡi (t) = 〈g(ui (t))〉X|Yi denotes an expectation of the firing rate over the input
distribution given the postsynaptic history and is implemented as a running average with
an exponential time window (with a time constant of 10 s).



Information Bottleneck Optimization with Spiking Neurons 917

mutual information between the inputs XK and YK
1 . Obviously this is the

generic information bottleneck (IB) scenario applied to spiking neurons
(see Figure 1A). A learning rule for extracting independent components
with spiking neurons (see section 6) can be derived in a similar manner
by switching the signs of the first two terms in the objective function, 3.1.
In this section, we derive two online learning rules, a spike-based and a
simplified rate-based learning rule, for this IB task.

3.1 Spike-Based Learning Rule. For simplicity, we consider the case of
an IB optimization for only one target spike train YK

2 and derive an update
rule for the synaptic weights w1 j of neuron 1. The quantity to maximize is
therefore

L = −I
(
XK ; YK

1

)+ β I
(
YK

1 ; YK
2

)− γ DK L
(
P
(
YK

1

)‖P̃
(
YK

1

))
, (3.1)

where β and γ are optimization constants. To maximize this objective func-
tion, we derive the weight change �wk

1 j during the kth time step by gradient
ascent on equation 3.1, assuming that the weights w1 j can change between
some bounds 0 ≤ w1 j ≤ wmax (we assume wmax = 1 throughout this article).

Now we have to calculate the gradient of L with respect to the weights of
the learning neuron, w1 j . Note that all three terms of equation 3.1 implicitly
depend on w1 j because the output distribution P(YK

1 ) changes if we modify
the weights w1 j . Since the first and the last term of the equation have
already been considered (up to the sign) in Toyoizumi et al. (2005), we will
concentrate here on the middle term,

L12 := β I
(
YK

1 ; YK
2

) = β
∑

YK
1 ,YK

2

P
(
YK

1 , YK
2

)
log

P
(
YK

1 , YK
2

)
P
(
YK

1

)
P
(
YK

2

) , (3.2)

and denote the contribution of the gradient of L12 to the total weight
change �wk

1 j in the kth time step by �w̃k
1 j . One can proceed here also

similarly as in Toyoizumi et al. (2005), but some additional aspects have to
be taken into account.

Up to now, we have considered only spike trains of length K�t in equa-
tions 3.1 and 3.2. In order to get an expression for the weight change in a
specific time step k, �w̃k

1 j , we have to calculate the contribution of this time
bin to the objective function L12. According to the chain rule of information
theory (Cover & Thomas, 1991), we can write the probabilities P(YK

i ) and
P(YK

1 , YK
2 ) occurring in equation 3.2 as products over the probability distri-

butions of individual time bins given the corresponding postsynaptic histo-
ries: P(YK

i ) = ∏K
k=1 P(yk

i |Yk−1
i ) and P(YK

1 , YK
2 ) = ∏K

k=1 P(yk
1 , yk

2 |Yk−1
1 , Yk−1

2 ).
As a consequence, we can express the middle term L12 in equation 3.1 as
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a sum over the contributions of individual time bins, L12 = ∑K
k=1 �Lk

12,
with

�Lk
12 =

〈
β log

P
(
yk

1 , yk
2 |Yk−1

1 , Yk−1
2

)
P
(
yk

1 |Yk−1
1

)
P
(
yk

2 |Yk−1
2

)
〉

Xk ,Yk
1,Y

k
2

. (3.3)

Hence, �Lk
12 reflects the statistical dependence between the binary variables

yk
1 and yk

2 , given the postsynaptic histories Yk−1
1 and Yk−1

2 . An evaluation of
the probabilities used in equation 3.3 can be found in section A.1.

The weight change �w̃k
1 j in each time step k is then proportional to the

gradient of this expression �Lk
12 with respect to the weights w1 j ,

�w̃k
1 j = α

∂�Lk
12

∂w1 j
, (3.4)

where α > 0 denotes the learning rate. Under the assumption of small
�t (we choose �t = 1 ms throughout the simulations), evaluation of the
gradient 3.4 yields (for a detailed derivation, see section A.2)

�w̃k
1 j = α

〈
Ck

1 jβF k
12

〉
Xk ,Yk

1,Y
k
2

. (3.5)

The term in the angled brackets in equation 3.5 consists of two factors.
The first factor is a correlation term Ck

1 j as in Toyoizumi et al. (2005),

Ck
1 j = Ck−1

1 j

(
1 − �t

τC

)
+

k∑
n=1

ε(tk − tn)xn
j

g′(u1(tk))
g(u1(tk))

[
yk

1 − ρk
1

]
, (3.6)

which counts the coincidences between postsynaptic spikes (yk
1 = 1) and

the time course of PSPs generated by presynaptic spikes (xn
j = 1) in an

exponential time window with time constant τC = 1 s. The term g′(ui (t))
denotes the derivative of g(u) with respect to u and measures the sensitivity
of the neuron for changes in the membrane potential.

The second factor measures the momentary statistical dependence be-
tween the outputs yk

1 and yk
2 ,

F k
12 = yk

1 yk
2 log

ḡ12(tk)
ḡ1(tk)ḡ2(tk)

− yk
1

(
1 − yk

2

)
R2(tk)�t

[
ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
]

−

− (1 − yk
1

)
yk

2 R1(tk)�t
[

ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

+

+ (1 − yk
1

)(
1 − yk

2

)
R1(tk)R2(tk)(�t)2 [ḡ12(tk) − ḡ1(tk)ḡ2(tk)

]
. (3.7)

Here, ḡi (tk) = 〈g(ui (tk))〉Xk |Yk−1
i

denotes the average firing rate of neuron i ,
and ḡ12(tk) = 〈g(u1(tk))g(u2(tk))〉Xk |Yk−1

1 ,Yk−1
2

denotes the average product of
firing rates of both neurons. Both quantities are implemented online as
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running exponential averages with a time constant of 10 s. Note that F k
12

depends directly on the relationship between the joint probability of firing,
which is represented by ḡ12(tk), and the product of the individual firing
probabilities given by ḡ1(tk)ḡ2(tk).

Yet the weight change (see equation 3.5) is still given by an average over
the distributions of spike trains Xk , Yk

1 , Yk
2 up to time step k and cannot be

implemented as an online rule in this way. However, under the assumption
of a small learning rate α, we can approximate the expectation 〈·〉Xk ,Yk

1,Y
k
2

in
equation 3.3 by averaging over a single long trial. Considering now all three
terms in equation 3.1, we finally arrive at an online rule for maximizing L :

�wk
1 j

�t
= −αCk

1 j

[
Bk

1 (−γ ) − β�tBk
12

]
. (3.8)

The term Ck
1 j , equation 3.6, is sensitive to correlations between the output

of the neuron and its presynaptic input at synapse j (correlation term)
and the terms Bk

1 and Bk
12 characterize the postsynaptic state of the neuron

(postsynaptic terms). Typical time courses of these terms are shown in
Figure 3.

This learning rule is thus an extension to the generalized BCM rule for
spiking neurons (Toyoizumi et al., 2005). The term Bk

1 (−γ ) is given by

Bk
1 (−γ ) = yk

1

�t
log

[
g(u1(tk))

ḡ1(tk)

(
ḡ1(tk)

g̃

)γ ]

−(1 − yk
1

)
R1(tk)

[
g(u1(tk)) − (1 − γ )ḡ1(tk) − γ g̃

]
(3.9)

and has been described together with Ck
1 j in the previous section (these

terms are discrete time versions of C1 j (t) in equation 2.9 and B post
1 (t, γ )

in equation 2.10, respectively).3 Our learning rule contains an extra term
Bk

12 = F k
12/(�t)2 that is sensitive to the statistical dependence between the

output spike train of the neuron and the target signal. It is given by

Bk
12 = yk

1 yk
2

(�t)2 log
ḡ12(tk)

ḡ1(tk)ḡ2(tk)
− yk

1

�t

(
1 − yk

2

)
R2(tk)

[
ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
]

− yk
2

�t

(
1 − yk

1

)
R1(tk)

[
ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

+ (1 − yk
1

)(
1 − yk

2

)
R1(tk)R2(tk)

[
ḡ12(tk) − ḡ1(tk)ḡ2(tk)

]
. (3.10)

3The argument of Bk
1 , −γ , is different from the second argument in equation 2.8, γ ,

because the term I (XK ; YK
1 ) enters the objective function, equation 3.1, with a different

sign, whereas the constraint with the KL divergence enters with the same sign.
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Figure 3: Visualization of the impact of the three terms in learning rule 3.8.
From top to bottom: instances of an output spike train YK

1 and a target spike
train YK

2 of length 300 ms, the time course of the PSP
∑

n ε(tk − tn)xn
j during

that time at a single synapse j , of the correlation term Ck
1 j , equation 3.6, for

the input at this synapse j , and of the postsynaptic terms Bk
1 , equation 3.9, and

Bk
12, equation 3.10. While the term Bk

1 has peaks only for spikes in the output
spike train YK

1 , the term Bk
12 has additional peaks at times of action potentials in

the target spike train YK
2 . Their amplitude and sign depend on the momentary

statistical dependence of the recent histories of both spike trains.

This term basically compares the average product of firing rates ḡ12 (which
corresponds to the joint probability of spiking) with the product of average
firing rates ḡ1ḡ2 (representing the probability of independent spiking). In
this way, it measures the momentary mutual information between the out-
put of the neuron and the target spike train. Bk

12 consists of four terms—one
for each firing state of the two neurons. The first term produces a peak
when both neurons fire in the same time step (see the positive peak in the
bottom trace of Figure 3). The second and third terms result in peaks when
only one neuron is active (see the negative peaks in Figure 3). Note that
these terms additionally depend on the refractory state of the other neuron:
in case of almost coincident spikes, the second event has no influence due
to the refractoriness of the other neuron, which has spiked just before. In
other words, the learning rule distinguishes between the two cases whether
a neuron does not spike because of refractoriness or because of a low firing
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rate; only in the latter case does this have an influence. Finally, the fourth
term of equation 3.10 results in small fluctuations of Bk

12 in between firing
events and depends on the refractoriness of both neurons and the difference
between ḡ12 and ḡ1ḡ2. Note, however, that the actual sign of Bk

12 depends on
the recent firing histories of the two neurons; for example, if the two spike
trains have recently been correlated, ḡ12 is larger than ḡ1ḡ2 (as is the case
in Figure 3). Furthermore, the actual weight change depends according to
equation 3.8 on an interplay between both the postsynaptic terms Bk

1 and
Bk

12 and the correlation term Ck
1 j .

Note that during the duration of an excitatory postsynaptic potential
(EPSP) caused by an input spike there is an increased probability of gen-
erating an output spike (Kempter, Gerstner, & van Hemmen, 1999). If two
neurons share the same input, they will then have a correlated spiking
probability. This effect of the EPSP is captured by the correlation term Ck

ij,
equation 3.6, which is sensitive to correlations between input and output
spikes. It is increased if an input spike is accompanied by an output spike
during the duration of the EPSP caused by that input spike. Note that the
term Bk

12 in equation C.3 is multiplied with the term Ck
ij in the actual learning

rule, 3.8. The term Bk
12 on its own is sensitive only to the mutual informa-

tion between the binary variables yk
1 and yk

2 given their histories (estimated
by the running averages of firing rates), regardless of how they have been
generated.

In equation 3.8, in order to compensate the effect of a small �t, the
constant β has to be large enough for the term Bk

12 to have an influence on the
weight change. In the limit �t → 0, the value of β approaches infinity. One
can overcome this problem by using instead of equation 3.1 an alternative
objective function that includes the information rate I (YK

1 ; YK
2 )/�t instead

of the mutual information I (YK
1 ; YK

2 ). In this case, the �t on the right-hand
side of equation 3.1 would cancel out, and the trade-off parameter β would
become a constant of dimension s (time). However, in the following, we use
our original objective function, equation 3.1, and analyze weight changes
in discrete time with a fixed �t.

3.2 Simplified Rate-Based Learning Rule. To gain more insight into the
learning rule, equation 3.8, we consider a simplified neuron model without
refractoriness. The dynamics of this model are governed by equations 2.1
and 2.2 with Ri (t) = 1 (i.e., τabs = τre f r = 0 ms). As in Toyoizumi et al. (2005),
we use galt(u), equation 2.5, for the gain function in order to pose an upper
limit on the postsynaptic firing rate in the absence of refractoriness. In this
rate model, the probability of spiking is independent of the postsynaptic
history. Since there is no refractoriness, the postsynaptic rate νk

1 at time tk

is given directly by the current value of galt(u1(tk)). Toyoizumi et al. (2005)
showed that the update rule, equation 3.8, resembles the BCM rule (Bienen-
stock et al., 1982). Since we want to maximize here a different objective
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function, equation 3.1, we expect an “anti-Hebbian BCM” rule with an ad-
ditional term accounting for statistical dependencies between YK

1 and YK
2 .

With these simplifying assumptions above, the learning rule, equa-
tion 3.8, reduces to the following learning rule for a rate model (see sec-
tion A.4 for a detailed derivation):

�wk
1 j

�t
= −αν

pre,k
j f (νk

1 )

{
log

[
νk

1

ν̄k
1

(
ν̄k

1

g̃

)γ
]

−β�t
(

νk
2 log

[
ν̄k

12

ν̄k
1 ν̄k

2

]
− ν̄k

2

[
ν̄k

12

ν̄k
1 ν̄k

2

− 1
])}

, (3.11)

where the presynaptic rate at synapse j at time tk is denoted by ν
pre,k
j =

a
∑k

n=1 ε(tk − tn)xn
j with a in units (Vs)−1. The values ν̄k

1 , ν̄k
2 , and ν̄k

12 are
running averages of the output rate νk

1 , the rate of the target signal
νk

2 , and of the product of these values, νk
1νk

2 , respectively. The function
f (νk

1 ) = g′
alt(g

−1
alt (νk

1 ))/a is proportional to the derivative of galt with respect
to u, evaluated at the current membrane potential. It measures the momen-
tary sensitivity of the output rate for changes of the membrane potential
(see Figure 4A). This weight change approximates a gradient ascent for the
objective function 3.1. The approximation is valid for small �t (we choose
�t = 1 ms in the simulations). Note that the factor β has to compensate a
small �t so that the second term has influence on the weight change. A
detailed discussion of this rule is given in section 4.

4 Analysis of the Resulting Learning Rules

In the previous section, we derived learning rules that minimize the infor-
mation transmission of a neuron while simultaneously keeping the mutual
information between the output and target spike trains as high as possi-
ble. Additionally we have imposed the constraint that the firing rate of the
learning neuron should stay close to a constant target firing rate. These
rules are summarized in Tables 1 and 2. The spike-based rule has been de-
rived for a stochastically spiking neuron model with refractoriness; for the
rate-based rule, we considered a simplified neuron model without refrac-
toriness, as in Toyoizumi et al. (2005). In this section, we interpret these rules
and show how they relate to the classical BCM rule and to the generalized
rule presented in Toyoizumi et al.

4.1 Comparison of the Simplified Rule with the Spike-Based Rule.
Comparing the spike-based and rate-based learning rules (respectively,
equations 3.8 and 3.11), we find that for both rules, the weight change de-
pends on the correlation of pre- and postsynaptic activity, via either the cor-
relation term Ck

i j or the Hebbian term ν
pre,k
j f (νk

1 ). In both cases, the influence
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Figure 4: Influence of specific terms of the rate-based rule, equation 3.11.
(A) Sensitivity function f (νk

1 ) = g′
alt(g

−1
alt (νk

1 ))/a as a function of the postsynaptic
firing rate νk

1 with a = 103 (Vs)−1. (B) The influence of correlations between νk
1

and νk
2 (measured by φ = ν̄k

12/(ν̄k
1 ν̄

k
2 ). See equation 4.1 on the simplified rule for

different ratios ζ = νk
2/ν̄

k
2 . The plotted function captures the weight changes in-

duced by the second line of equation 3.11. This function is zero for uncorrelated
signals (φ = 1). For correlated signals (φ > 1), firing rates νk

2 sufficiently above
mean induce LTP. For anticorrelated signals (φ < 1), firing rates νk

2 sufficiently
below mean induce LTP.

of the postsynaptic activity on the weight change depends also on the cur-
rent sensitivity of the neuron, which is expressed through the derivative of
g with respect to u (see the plot of f (νk

1 ) in Figure 4A). Furthermore, the first
term in the curly brackets of equation 3.11 corresponds to the first term of
Bk

1 (−γ ), equation 2.10. This classical BCM term is responsible for regulating
the information transmission of the neuron and for the homeostatic process
that tries to maintain a constant target firing rate via a sliding threshold of
the postsynaptic activity, ν̄k

1 (Toyoizumi et al., 2005). However, this term is
augmented by an expression sensitive to the statistical dependence between
the output of the neuron and the target signal—second line in equation 3.11
and Bk

12 (equation 3.10). Here, the second line in equation 3.11 corresponds
to the first two terms in equation 3.10. All the other terms in Bk

1 and Bk
12

can be neglected in the rate-based rule for small �t (see the derivation in
section A.4 and analogous derivation in Toyoizumi et al., 2005).

4.2 Interpretation of the Simplified Rule. To gain a better under-
standing of the derived learning rule, we analyze the rate-based rule,
equation 3.11, in more detail. The prefactor of this rule, ν

pre,k
j f (νk

1 ), is a
nonlinear Hebbian term because the weight change does not depend on the
postsynaptic activity νk

1 directly, but only via the nonlinear function f . It is
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Table 1: Summary of the Spike-Based Learning Rule for the Information Bottle-
neck Task Derived in Section 3.1.

Performing gradient ascent on L , equation 3.1, yields an online learning rule for the
weights of neuron 1, w1 j . The weight change �wk

1 j at time tk = k�t is given by

�wk
1 j

�t
= −αCk

1 j
[
Bk

1 (−γ ) − β�tBk
12
]

(3.8)

with a learning rate α > 0 and optimization parameters β and γ with values > 0.

The correlation term Ck
1 j measures coincidences between postsynaptic spikes at neuron

1 and PSPs generated by presynaptic action potentials arriving at synapse j :

Ck
1 j = Ck−1

1 j

(
1 − �t

τC

)
+

k∑
n=1

ε(tk − tn)xn
j

g′(u1(tk ))
g(u1(tk ))

[
yk

1 − ρk
1
]

(3.6)

τC time constant of exponential correlation window

xn
j binary variable indicating a presynaptic spike at synapse j in the nth time step

yk
1 binary variable indicating an output spike of neuron 1 in the kth time step

ρk
1 firing probability of neuron 1 in the kth time step, equation 2.2

ε(s) time course of PSP in response to a presynaptic spike at time s = 0

g(u1(t)) gain function 2.4 evaluated at the value of the membrane potential u1(t) of
neuron 1

g′(u) derivative of g(u) with respect to u

The term Bk
1 is responsible for regulating the mutual information between input and

output and maintaining the constant target firing rate for neuron 1:

Bk
1 (γ ) = yk

1
�t

log
[

g(u1(tk ))
ḡ1(tk )

(
g̃

ḡ1(tk )

)γ ]

−(1 − yk
1 )R1(tk )

[
g(u1(tk )) − (1 + γ )ḡ1(tk ) + γ g̃

]
. (3.9)

R1(tk ) refractory variable 2.3 of neuron 1 at time tk

ḡ1(tk ) running average of the postsynaptic firing rate g(u1(tk )) of neuron 1

g̃ constant target firing rate

(Continued on next page)
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Table 1: Continued

The term Bk
12 measures the mutual information between the output spike train Yk

1 of
neuron 1 and and the target spike train Yk

2 :

Bk
12 = yk

1 yk
2

(�t)2 log
ḡ12(tk )

ḡ1(tk )ḡ2(tk )
− yk

1
�t

(1 − yk
2 )R2(tk )

[
ḡ12(tk )
ḡ1(tk )

− ḡ2(tk )
]

− yk
2

�t
(1 − yk

1 )R1(tk )
[

ḡ12(tk )
ḡ2(tk )

− ḡ1(tk )
]

+ (1 − yk
1 )(1 − yk

2 )R1(tk )R2(tk )
[
ḡ12(tk ) − ḡ1(tk )ḡ2(tk )

]
. (3.10)

yk
2 binary variable indicating a spike in the target spike train in the kth time step

R2(tk ) refractory state of target spike train

ḡ2(tk ) running average of firing rate of target spike train

ḡ12(tk ) running average of the product between firing rates of the output and target
spike train

Table 2: Summary of the Simplified (Rate-Based) Learning Rule for the Infor-
mation Bottleneck Task Derived in Section 3.2.

For a simplified neuron model without refractoriness the spike-based rule, equa-
tion 3.8, reduces to the following rate-based rule:

�wk
1 j

�t
=−αν

pre,k
j f (νk

1 )

{
log

[
νk

1

ν̄k
1

(
ν̄k

1
g̃

)γ]

−β�t

(
νk

2 log

[
ν̄k

12

ν̄k
1 ν̄k

2

]
− ν̄k

2

[
ν̄k

12

ν̄k
1 ν̄k

2
− 1

])}
. (3.11)

α learning rate

β, γ optimization parameters

ν
pre,k
j presynaptic firing rate at synapse j at time tk

f (νk
1 ) sensitivity of neuron 1 at its current firing state νk

1

νk
1 output firing rate of neuron 1 at time tk

νk
2 firing rate of the target signal at time tk

ν̄k
1 , ν̄k

2 running averages of νk
1 and νk

2

ν̄k
12 running average of the product νk

1νk
2
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proportional to the impact of synapse j onto the membrane potential at time
tk times the sensitivity of the output rate on changes of the membrane po-
tential at time tk . This prefactor distributes the weight changes given by the
terms in the curly brackets to the individual synapse j . Changes of strongly
active synapses are larger than those of relatively silent ones. We can divide
the term in the curly brackets into three functionally different parts. Each
of these parts corresponds to the optimization of one of the terms in equa-
tion 3.1. The first part, log(νk

1/ν̄k
1 ), together with the prefactor ν

pre,k
j f (νk

1 ),
drives the optimization of mutual information between inputs and outputs
(note that this part is combined with the second part in equation 3.11, which
is discussed below). The second part, log(ν̄k

1/g̃)γ , accounts for homeostatic
processes to stabilize the output rate. These two parts together with the pref-
actor introduce competition between the synapses, and, as already noted in
Toyoizumi et al. (2005), they implement a BCM-like learning rule. The third
part is given by the two terms of the second line of equation 3.11. These
terms drive the maximization of mutual information between the output
of the neuron YK

1 and the target signal YK
2 . We investigate this part of the

update rule in more detail. The correlation between νk
1 and νk

2 is measured by

φ := ν̄k
12

ν̄k
1 ν̄k

2

, (4.1)

which appears in both terms of the second line of equation 3.11. It has
value 1 for uncorrelated firing rates: values over 1 for positive correlations
and values less than 1 for negative correlations (anticorrelations). To see
how the second line of equation 3.11 depends on the ratio between νk

2
and ν̄k

2 , we assume that ν̄k
2 is constant and introduce ζ := νk

2/ν̄k
2 . Then the

second line of the equation is proportional to

ζ log(φ) − (φ − 1). (4.2)

For νk
2 = ν̄k

2 , this function is negative if φ �= 1 and zero if φ = 1 (dashed line
in Figure 4B).

Suppose that the output of the neuron is positively correlated with the
target signal (φ > 1; see Figure 4B). Then a firing rate νk

2 of this target signal
sufficiently above mean (e.g., ζ = 2) induces long-term potentiation (LTP) in
active synapses (i.e., synapses j with large ν

pre,k
j ). This will further increase

the correlation between νk
1 and νk

2 for the encountered input. A firing rate
νk

2 of the target signal below mean (ζ < 1) will induce long-term depression
(LTD) in active synapses. Again, this increases the correlation between νk

1
and νk

2 .
For anticorrelated signals (φ < 1; see Figure 4B), firing rates νk

2 suffi-
ciently below mean (e.g., ζ = 0) induce LTP in active synapses. This will
increase the anticorrelation between νk

1 and νk
2 for the encountered input.
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Similarly, anticorrelation is increased for νk
2 above mean, when LTD is in-

duced in active synapses. Note that correlation and anticorrelation both
contribute to the increase of mutual information.

4.3 Comparison with the BCM Learning Rule. To elucidate the
relation to the classical Bienenstock-Cooper-Munro (BCM) learning rule
(Bienenstock et al., 1982) we rewrite the simplified rule, equation 3.11, as

�wk
1 j

�t
= −αν

pre,k
j �

(
νk

1 , νk
2

)
, (4.3)

where � is a two-dimensional function of the firing rates νk
1 and νk

2 ,

�
(
νk

1 , νk
2

) = f
(
νk

1

) {
log

[
νk

1

ν̄k
1

(
ν̄k

1

g̃

)γ
]

− β�t
[
νk

2 log φ − ν̄k
2 (φ − 1)

]}
,

(4.4)

with φ = ν̄k
12/(ν̄k

1 ν̄k
2 ). This function �(νk

1 , νk
2 ) can be seen as an extension of

the classical BCM synaptic modification function (Bienenstock et al., 1982;
Toyoizumi et al., 2005) and is plotted in Figures 5A to 5D for the special
case that both average firing rates are equal to the constant target firing
rate (i.e., ν̄k

1 = ν̄k
2 = g̃ = 20 Hz) for four different values of the quotient φ.

Because of the anti-Hebbian nature of equation 4.3, values of � above
0 produce LTD. An analogous Hebbian learning rule for the extraction of
independent components is derived in section 6. For such Hebbian learning
rules, values of � above 0 produce LTP. One sees that for φ = 1 (see Fig-
ure 5B), the second term in equation 4.4 vanishes, in which case, � does not
depend on νk

2 and reduces to the classical BCM function in Toyoizumi et al.
(2005), where regimes of LTP and LTD are separated by a sliding threshold
that depends in a nonlinear way on the running average of the postsynaptic
rate ν̄k

1 . On the other hand, if φ �= 1, the value of � additionally depends
on the current firing rate νk

2 , which results in shifted versions of the BCM
function where the balance between positive and negative domains varies
as νk

2 is changed from small to large values.
If φ < 1, the signals are anticorrelated (see Figure 5A). In this case, �

is more negative for small values of νk
2 and more positive for large values

of νk
2 . This means that for the anti-Hebbian learning rule, equation 4.3,

weights (and therefore also the firing rate νk
1 ) tend to increase for small νk

2
and decrease for large νk

2 . Therefore, the output of the neuron and the target
signal become even more anticorrelated. Similarly, for correlated signals
(φ > 1; see Figures 5C and 5D), their correlation increases even further,
since for small values of νk

2 , the output firing rate νk
1 tends to decrease as

well (due to positive values of �), whereas it grows for large νk
2 (because of
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negative values of �). In both cases (correlated or anticorrelated signals), the
statistical dependence between the output and the target signal increases,
as should be the case for an IB task.

4.4 Comparison with a Previously Proposed Method for Information
Bottleneck Optimization. In the original formulation of the information
bottleneck method (Tishby et al., 1999), the data variable X should be
compressed as much as possible by a quantization or representation X̃. At
the same time, however, this compressed variable should capture as much
information as possible about a relevance variable Y. There is a trade-off
between compression and preserving meaningful information, leading to
the following objective function to minimize,

L = I (X̃; X) − β I (X̃; Y), (4.5)

Figure 5: Two-dimensional synaptic modification function �(νk
1 , ν

k
2 ), equa-

tion 4.4, of the rate-based learning rule, equation 3.11, as an extension of the
classical BCM rule for ν̄k

1 = ν̄k
2 = g̃ = 20 Hz, β = 50, γ = 1, and different val-

ues of the quotient φ = ν̄k
12/(ν̄k

1 ν̄
k
2 ), which measures the correlation between the

output of the neuron and the target signal. The sliding threshold between LTP
and LTD depends not only on the postsynaptic firing rate rk

1 , but also on the
target signal rk

2 if both signals are correlated (φ > 1) or anticorrelated (φ < 1).
(A φ = 0.5. B φ = 1. C φ = 1.5. D φ = 2). Note that � is reduced to a one-
dimensional function (like in the classical BCM-rule) for φ = 1 (see panel B).
In each plot, the solid black line indicates the transition from depression to
potentiation (� = 0).

Figure 6: Extracting a single rate modulation with the spike-based rule, equa-
tion 3.8. (A) Modulation of input rates for each of the four groups. (B) Evolution
of weights during 60 minutes of learning (red: strong synapses, wi j ≈ 1; blue:
depressed synapses, wi j ≈ 0). Weights were initialized randomly between 0.10
and 0.12, α = 5 · 10−4, β = 103, γ = 10. Each group receives Poisson input with
a different rate modulation ri (t); the rate modulation of the target signal is the
same as for input group 1, rT (t) = r1(t). (C) Output rate and rate of the target
signal during 5 s after learning. (D) Evolution of the average mutual infor-
mation per time bin (solid line, left scale) between input and output, and the
Kullback-Leibler divergence per time bin (dashed line, right scale) as a function
of time. Averages are calculated over segments of 1 minute. (E) Evolution of the
average mutual information per time bin between output and the target signal
as a function of time. (F) Trace of the time-varying correlation between output
rate and rate of the target signal during learning. Correlation coefficients are
calculated every 10 s.
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where β > 0 is a trade-off parameter. If the joint distribution P(X, Y) is
given, the value of L depends only on the stochastic mapping4 P(X̃ | X),
because X̃ is independent of Y given X. For a given β, the optimal solution
that minimizes equation 4.5 is given by Tishby et al. (1999),

P(X̃ | X) = P(X̃)
Z(X, β)

exp
[−β DK L (P(Y | X)‖P(Y | X̃))

]
, (4.6)

where Z(X, β) is a normalization function. Note that equation 4.6 is implicit
because both P(X̃) and P(Y | X̃) depend on P(X̃ | X) through

P(X̃) =
∑

X

P(X)P(X̃ | X) (4.7)

and

P(Y | X̃) = 1
P(X̃)

∑
X

P(X, Y)P(X̃ | X). (4.8)

Equations 4.6 to 4.8 can be solved iteratively with an extension of the
Blahut-Arimoto (BA) algorithm, which is well known from applications
to problems from rate distortion theory and channel capacity calculations
(Tishby et al., 1999; Cover & Thomas, 1991). This generalized BA algorithm
performs alternating iterations over the distributions P(X̃ | X), P(X̃), and
P(Y | X̃) and can be shown to converge to the optimal solution of equa-
tions 4.6 to 4.8 (Tishby et al., 1999). In the following we briefly discuss the
relationship between this traditional IB algorithm and our learning rule for
spiking neurons.

The traditional IB approach has so far mainly been applied to discrete
variables X, X̃, and Y in a wide range of applications (see Slonim, 2002,
for a review and references). However, in the general theory, there is no
restriction on the type of these variables. In this article, we apply the IB
principle to spike trains (see Figure 1A): the input spike trains XK to the
learning neuron correspond to the data variable X, the output spike train
YK

1 of this neuron represents the compressed variable X̃, and the target
spike train YK

2 specifies the relevant variable Y. This yields the following
correspondence to the notation of Tishby et al. (1999):

P(X̃ | X) � P
(
YK

1 | XK ),
P(X̃) � P

(
YK

1

)
,

P(Y | X̃) � P
(
YK

2 | YK
1

)
.

4This means that the objective function L , equation 4.5, can be written as a functional
L[P(X̃|X)] = I (X̃; X) − β I (X̃; Y) and minimizing the equation, is equivalent to minimiz-
ing the functional L[P(X̃|X)] with respect to the conditional distribution P(X̃|X) (Tishby
et al., 1999).
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In the traditional IB algorithms, one usually specifies the trade-off pa-
rameter β and the joint distribution P(X, Y) in advance. This is also the
case for our experiments (see section 5) where we choose a particular statis-
tics for the input and target spike trains, XK and YK

2 . Furthermore, both
the BA algorithm and our learning rule search for the optimal distribu-
tions P(X̃ | X) and P(YK

1 | XK ), respectively. However, the compression
achieved by the mapping P(YK

1 | XK ) is modeled not explicitly but implic-
itly through the weights w1 j of the learning neuron. By updating these
weights, we successively adapt the stochastic input-output relationship
given by P(YK

1 | XK ). Due to this modification of P(YK
1 | XK ), the distribu-

tions P(YK
1 ) = 〈P(YK

1 | XK )〉XK and P(YK
2 | YK

1 ) = P(YK
1 , YK

2 )/P(YK
1 ) change

implicitly, whereas in the traditional IB algorithm, the corresponding dis-
tributions P(X̃) and P(Y | X̃) are updated in a separate step. However, as in
the BA algorithm, where the new value of P(X̃ | X) depends on the values
of P(X̃) and P(Y | X̃), in our learning rule the adaptation of P(YK

1 | XK ),
that is, the change of the weights w1 j , depends on P(YK

1 ) and P(YK
2 | YK

1 )
through the terms Ck

1 j , Bk
1 , and Bk

12 of the learning rule, equation 3.8.
More precisely, by comparing the current firing rate with its running

average, the term Bk
1 , equation 3.9, depends on both the output distribu-

tion P(Yk
1 ) and the probability of the output given the input spike trains,

P(Yk
1 | Xk) (see also Toyoizumi et al., 2005). The distribution P(Yk

2 | Yk
1 ) in-

fluences the term Bk
12, equation 3.10, since this term compares the joint

probability P(Yk
1 , Yk

2 ) with the independent distribution P(Yk
1 )P(Yk

2 ), or
equivalently, P(Yk

2 | Yk
1 ) with P(Yk

2 ). Finally, both terms Bk
1 and Bk

12 are
multiplied in the learning rule, equation 3.8, with the correlation term Ck

1 j ,
which can be written as the derivative of the logarithm of P(YK

1 | XK ) with
respect to the weights w1 j , Ck

1 j = ∂
∂w1 j

log P(Yk
1 | Xk) (see equation 3.6 and

section A.2).
Summarizing, the main difference between the previous IB approach

from Tishby et al. (1999) and our special application to spiking neurons is
that in our case, the distribution under consideration, P(YK

1 | XK ), is pa-
rameterized by the weights w1 j of a spiking neuron (whereas in most IB
algorithms, no special assumptions are made about the probability distri-
butions to be optimized), and our learning rule is an online learning rule
performing gradient ascent on the objective function. In the generalized BA
algorithm, the probability distributions are changed directly (e.g., by main-
taining probability tables) and always converge to the optimal solution,
whereas our learning rule can change them only implicitly by adapting the
weights w1 j , and there is no guarantee that the global optimum is found.
Another difference is that the IB algorithm from Tishby et al. (1999) is an
offline algorithm that performs the optimization over the whole range of
the random variables, whereas our algorithm is an online algorithm where
the weights are adapted sequentially as the input and the target spike trains
are presented to the neuron. In this sense, our update rule can be viewed as
a novel online learning approach to IB optimization for a concrete parame-
terized instance of the problem.
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5 Application to Information Bottleneck Optimization

We use a setup as in Figure 1A where we want to maximize the information
that the output YK

1 of a learning neuron conveys about one or more target
signals YK

2 , YK
3 , . . .. In the following simulations, we let the neuron receive

inputs XK at N = 100 synapses, with weights randomly initialized at small
values (from 0.10 to 0.12). Unless stated otherwise, we choose g̃ = 30 Hz
for the target firing rate, and we use discrete time with �t = 1 ms.

5.1 Extracting a Single Rate Modulation. In a first experiment, we
investigate how the spike-based learning rule, equation 3.8, performs in a
simple rate coding paradigm: the information is encoded in the firing rates
of the spike trains. We divide the inputs into four groups of 25 synapses
each. In the following, let ri (t) and rT (t) denote the firing rate of group i
(i = 1, . . . , 4) and of the target signal, respectively, at time t. Each input spike
train is generated by an inhomogeneous Poisson process with common rate
modulation within each group; however, the rate modulations for different
groups are statistically independent (see Figure 6A). More precisely, for
input group 1 (synapses 1 to 25), we choose a periodic rate modulation
r1(t) = r0 + Asin(2π t/T) with r0 = 20 Hz, A = 10 Hz, and T = 500 ms. The
rate of group 2 (synapses 26 to 50) is constant during intervals of 1 s, each
second a firing rate is chosen randomly out of the values 2 Hz, 13 Hz, 25 Hz,
40 Hz, and 50 Hz. Synapses 51 to 75 (input group 3) receive a rate that has
a constant value of 2 Hz, except that a burst is initiated at each time step
with a probability of 0.0005. Thus, there is a burst on average every 2 s. The
duration of a burst is chosen from a gaussian distribution with mean 0.5 s
and SD 0.2 s; the minimum duration is chosen to be 0.1 s. During a burst,
the rate is set to 50 Hz. Finally the remaining synapses (76 to 100; group 4)
receive constant rate Poisson spike trains at 20 Hz.

We generate the target spike train by an inhomogeneous Poisson process
with the same rate modulation as the inputs of group 1, r1(t). In this case,
we expect that weights will grow only for the first group and remain
depressed for the other inputs, since these are the only inputs that are not
statistically independent from the target signal. However, Figure 6 shows
that besides for group 1, strong weights are also developed for group 4, the
uncorrelated constant rate Poisson input. This is because the neuron has to
achieve a mean postsynaptic firing rate close to the constant target firing
rate of 30 Hz, and uncorrelated Poisson spike trains with a constant rate
are always statistically independent from any other spike train. Therefore,
developing strong weights for this group of inputs does not increase the
mutual information between input and output, which should be kept as
low as possible. All other synapses are depressed because their inputs are
statistically independent from the target signal. Moreover, Figure 6 shows
that after learning, the time course of the output rate modulation is similar
to that of the target signal; therefore, the neuron has learned to “represent”
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the target signal. Furthermore, the mutual information between input
and output decreases, whereas the information as well as the correlation
between the output and the target signal increases.

Further experiments show that one can also extract the rates of input
groups 2 and 3, r2(t) and r3(t), if a correlated spike train is chosen as the
target signal. However, it is not reasonable to take an uncorrelated fixed-
rate Poisson spike train as the target spike train, since it does not contain
mutual information with any of the inputs. Using such a target has the same
effect as removing the target signal (see the next experiment).

5.2 Extracting a Time-Varying Combination of Rate Modulations. In
the second experiment, we consider a target signal that is only indirectly
related to some of the inputs, and in addition this relationship varies over
time. Again, the input is divided into four groups of 25 synapses, each
with different rate modulations. This time we use rates that are constant
during random intervals and can take five different values: 2 Hz, 13 Hz,
25 Hz, 40 Hz, and 50 Hz. The time during which the rate remains constant
is drawn uniformly from the interval [0 s, 1 s], and the value of the rate is
also chosen uniformly among the five available values. The spike trains are
generated from an inhomogeneous Poisson process with a rate modulation
created with this method for each of the four input groups, independently
from each other (see Figure 7A).

The rate of the target signal rT (t) is chosen to be a linear combination of
the input rates. At the beginning, we set it to the mean between the rates of
group 1 and 2, that is, rT (t) = (r1(t) + r2(t))/2, in order to test whether this
suffices for triggering the increase of weights from input groups 1 and 2.
To make the experiment more interesting, we change the rate of the target
signal to the mean of rates of group 1 and 3, rT (t) = (r1(t) + r3(t))/2, after
15 minutes . Furthermore, to investigate the effect of removing the target
signal after some time, we switch it off after 45 minutes (rT (t) = 0).

Figure 7 shows the performance of the simplified learning rule, equa-
tion 3.11, for this task. In Figure 7B, we see that weights grow initially for
input groups 1 and 2 and remain depressed for the other inputs, as ex-
pected. After 15 minutes, as the firing rate combination of the target signal
changes, the weights of group 2 are weakened, whereas the efficacies of the
third group now start to grow. This means that the learning rule is able to
adapt to new situations where the relevant target signal changes. However,
the final distribution of synaptic efficacies persists when the target signal is
removed after 45 minutes.

5.3 Extracting Spike-Spike Correlations. So far we have considered
only rate coding—the information was encoded in the firing rates of the
spike trains. But can the proposed learning rule also take into account infor-
mation that is contained in the spike timings rather than in the firing rates?
In the next experiment, we investigate the effect of spike-spike correlations
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between the target spike train and parts of the input for the spike-based
learning rule, equation 3.8. All input spike trains and the target spike train
are now generated by a Poisson process at a constant rate of 20 Hz. However,
different correlation groups are established within the inputs in the follow-
ing way. The first 25 inputs are strongly correlated with the target spike train
(with a coefficient of 0.5), and the second 25 synapses have weaker corre-
lations with the target spike train (coefficient 0.2). The remaining 50 inputs
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are uncorrelated with the target spike train; however, inputs 51 to 75 are
pairwise correlated with a coefficient of 0.5, and inputs 76 to 100 are uncorre-
lated. Inputs belonging to different groups are also uncorrelated. Correlated
spike trains are generated by the procedure described in Gütig, Aharonov,
Rotter, and Sompolinsky (2003) and Legenstein, Näger, and Maass (2005).

Figure 8 shows that strong weights grow for those synapses where the
input has spike-spike correlations with the target spike train. Because the
first group of inputs is correlated more strongly than the second group,

Figure 7: Extracting input components that are indirectly and just during cer-
tain time points related to the target signal with the rate-based rule, 3.11.
(A) Modulation of input rates for each of the four groups. Each group i re-
ceives Poisson input with a different rate modulation ri (t). (B) Evolution of
weights during 60 minutes of learning (red: strong synapses, wi j ≈ 1; blue: de-
pressed synapses, wi j ≈ 0). Weights were initialized randomly between 0.10
and 0.12, α = 10−3, β = 5 · 103, γ = 10. Initially, rT (t) = 1/2(r1(t) + r2(t)); after
15 minutes it changes to rT (t) = 1/2(r1(t) + r3(t)). After 45 minutes, rT (t) = 0.
(C) Output rate and rate of the target signal during 5 s just before the target
signal is removed. (D) Evolution of the average mutual information between
input and output per time bin (solid line, left scale) and the Kullback-Leibler
divergence per time bin (dashed line, right scale) as a function of time. Averages
are calculated over segments of 1 minute. (E) Evolution of the average mutual
information per time bin between output and the target signal as a function of
time. (F) Trace of the correlation between output rate and rate of the target signal
during learning. Note that the target signal is changed after 15 minutes and set
to 0 after 45 minutes. Correlation coefficients are calculated every 10 seconds.

Figure 8: Extracting spike-spike correlations with the spike-based learning rule,
equation 3.8. (A) Evolution of weights during 60 minutes of learning (red: strong
synapses, wi j ≈ 1; blue: depressed synapses, wi j ≈ 0.) Weights were initialized
randomly between 0.10 and 0.12, α = 10−4, β = 102, γ = 50. All inputs and the
target spike train are Poisson spike trains at a constant rate of 20 Hz. Input
group 1 and the target spike train, are correlated with a coefficient of 0.5; be-
tween input group 2 and the target spike train, a correlation coefficient of 0.2 is
established. Group 3 is also correlated with 0.5, but uncorrelated to the target
spike train, and group 4 is uncorrelated at all. Spike trains from different groups
are uncorrelated. (B) Evolution of the average mutual information per time bin
(solid line, left scale) between input and output, and the Kullback-Leibler di-
vergence per time bin (dashed line, right scale) as a function of time. Averages
are calculated over segments of 1 minute. (C) Evolution of the average mutual
information per time bin between output and the target signal as a function of
time. (D) Trace of the current spike-spike correlation between the output spike
train and the target spike train during learning. Correlation coefficients are cal-
culated every 10 s. This experiment shows that the neuron learns with the IB
learning rule to extract information from high-dimensional input streams that
is contained in the spike times.
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weights from the first group reach their maximum value of 1, whereas
those for the second group grow up only to a value of about 0.5. That is,
the learning rule is sensitive to different levels of correlation. Note that
the information conveyed by spike-spike correlations is about one order
of magnitude larger than in the previous experiments with rate coding. In
Figure 8D, the correlation between the output and the target spike train is
bounded from above by the maximum correlation of inputs with the target
spike train (0.5).

5.4 Extracting Information That Is Relevant for two Different Target
Signals. We use a setup as in Figure 1A where we want to maximize the in-
formation that the output YK

1 of a learning neuron conveys about two target
signals, YK

2 and YK
3 . If the target signals are statistically independent from

each other, we can optimize the mutual information to each target signal
separately; we include the term β(I (YK

1 ; YK
2 ) + I (YK

1 ; YK
3 )) in the objective

function 3.1. This leads to an update rule,

�wk
1 j

�t
= −αCk

1 j

[
Bk

1 (−γ ) − β�t
(
Bk

12 + Bk
13

)]
, (5.1)

where Bk
12 and Bk

13 are the postsynaptic terms, equation 3.10, sensitive to
the statistical dependence between the output and target signals 1 and 2,
respectively.

In this experiment, we demonstrate that it is possible to consider two
very different kinds of target signals: one target spike train has a similar rate
modulation as one part of the input, while the other target spike train has a
high spike-spike correlation with another part of the input. The first two of
the four input groups consist of rate-modulated Poisson spike trains, where
the rate of the first 25 inputs is modulated by a gaussian white noise signal
with mean 20 Hz that has been low-pass-filtered with a cut-off frequency
of 5 Hz. Synapses 26 to 50 receive the burst signal described in section 5.1,
which was used there for input group 3 (see Figure 9A). Spike trains from
the remaining groups 3 and 4 are Poisson spike trains at a constant rate
of 20 Hz, but have spike-spike correlations with a coefficient of 0.5 within
each group. However, spike trains from different groups are uncorrelated.
The first target spike train is chosen to have a similar rate modulation as the
inputs from group 1; gaussian random noise is superimposed on the rate
with a standard deviation of 2 Hz. The second target spike train is correlated
with inputs from group 3 (with a coefficient of 0.5) but uncorrelated to inputs
from group 4. Furthermore, both target signals are silent during random
intervals: at each time step, the rate of each target signal is independently
set to 0 with a certain probability (10−5) and remains silent for a duration
chosen from a gaussian distribution with mean 5 s and SD 1 s (minimum
duration is 1 s). Hence this experiment tests whether learning works even
if the target signals are not available all of the time.
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Figure 9 shows that strong weights evolve for the first and third groups
of synapses, whereas the efficacies for the remaining inputs are depressed.
Both groups with growing weights are correlated with one of the target
signals; therefore, the mutual information between output and target spike
trains increases. Since spike-spike correlations convey more information
than rate modulations, synaptic efficacies develop more strongly to group 3
(the group with spike-spike correlations). This results in an initial decrease
in correlation with the rate-modulated target signal to the benefit of higher
correlation with the second target spike train. However, after about 30
minutes when the weights become stable, the correlations as well as the
mutual information quantities stay roughly constant.

5.5 Extracting Information Uncorrelated with the Target Signal But
with Higher-Order Statistical Dependencies. So far we have analyzed
the IB setup only for situations where the target signal is correlated to parts
of the input (via either rate correlations or spike-spike correlations). To
show that the learning rule is also able to extract statistical dependencies of
higher order, we try to extract uncorrelated but still statistically dependent
information. In this experiment, we use again rate coding and choose the
firing rate of the target signal to be a function of one of the input rate
modulations as to induce strong statistical dependence between the target
spike train and this input group. In order to decorrelate the target signal
from this input, a whitening transformation is applied (see appendix B).

We generate the rate modulations for the four input groups r1(t), . . . , r4(t)
in the same way as in the experiment described in section 5.3: piece-
wise constant rates chosen randomly out of the set {2 Hz, 13 Hz, 25 Hz,

40 Hz, 50 Hz}, and the duration during which the rate is constant is drawn
uniformly from the interval [0 s, 1 s]. Inputs from the same group share
the same rate modulation, and inputs from different groups are statisti-
cally independent, since the rates are drawn independently for each group.
The rate of the target signal is chosen to be a function of the first input
rate: rT (t) = f (r1(t)), where f (2) = 13 Hz, f (13) = 25 Hz, f (25) = 40 Hz,
f (40) = 50 Hz, and f (50) = 2 Hz. In this way, statistical dependence has
been established between the first input group and the target spike train.
Now, the whitening transformation is applied to decorrelate the rate modu-
lation of the first input group, r1(t), and the target signal, rT (t), yielding r̃1(t)
and r̃T (t). Finally, the input spike trains are generated by inhomogeneous
Poisson processes with the rates r̃1(t), r2(t), r3(t), and r4(t), and the target
spike train is drawn from r̃T (t). For this experiment, we choose g̃ = 20 Hz.

The performance of the rate-based rule on this task is shown in Figure 10.
It can be seen that weights reach values close to maximal efficacy for the
statistically dependent group (group 1) and finally get depressed for the
remaining inputs. The output is now uncorrelated to, but still statistically
dependent on, the target signal. Note that the mutual information between
output and target signal increases, whereas the correlation stays around 0.
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This means that the learning rule is also sensitive to higher-order statistical
dependencies.

6 Extracting Independent Components

With a slight modification in the objective function 3.1, the learning rule al-
lows us to extract statistically independent components from an ensemble
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of input spike trains. We consider two neurons receiving the same in-
put at their synapses (see Figure 1B). For both neurons i = 1, 2, we max-
imize information transmission under the constraint that their outputs

Figure 9: Using two target signals at the same time with the spike-based rule,
equation 3.8. (A) Modulation of input rates to input groups 1 and 2. (B) Evolution
of weights during 60 minutes of learning (red: strong synapses, wi j ≈ 1; blue:
depressed synapses, wi j ≈ 0.) Weights were initialized randomly between 0.10
and 0.12, α = 10−4, β = 2 · 103, γ = 50. Input groups 1 and 2 receive Poisson
spike trains with different rate modulations; groups 3 and 4 receive constant
rate Poisson at 20 Hz, but each group is correlated with a coefficient of 0.5, and
spike trains from different groups are uncorrelated. The first target spike train is
a Poisson spike train with the same rate modulation as group 1, superimposed
with gaussian noise (σ = 2 Hz). The second target spike train has a constant
rate of 20 Hz and is correlated with coefficient 0.5 to input group 3. (C) Output
rate and rate of target signal 1 during 5 s after learning. (D) Evolution of the
average mutual information per time bin (solid line, left scale) between input
and output and the Kullback-Leibler divergence per time bin (dashed line,
right scale) as a function of time. Averages are calculated over segments of 1
minute. (E) Evolution of the average mutual information per time bin between
output and both target spike trains as a function of time. (F) Trace of the current
correlation between output rate and rate of target signal 1 (solid line) and the
spike-spike correlation (dashed line) between the output and target spike train
2 during learning. Correlation coefficients are calculated every 10 s.

Figure 10: Extracting uncorrelated but statistically dependent information with
the rate-based rule, equation 3.11. (A) Modulation of input rates to input groups
1 to 4. (B) Evolution of weights during 30 minutes of learning (red: strong
synapses, wi j ≈ 1; blue: depressed synapses, wi j ≈ 0.) Weights were initialized
randomly between 0.10 and 0.12, α = 10−6, β = 2 · 107, γ = 50. Each input group
receives Poisson input with different rate modulations; the rate modulation of
the target is a function of the rate of input group 1. The rate of the target signal
and the rate of input group 1 are decorrelated using the whitening transform
described in the text. Nevertheless, the learning rule picks out inputs that have
statistical dependencies with the target signal. (C) Output rate and rate of the
target signal during 5 s after learning. (D) Evolution of the average mutual in-
formation per time bin (solid line, left scale) between input and output and the
Kullback-Leibler divergence per time bin (dashed line, right scale) as a function
of time. Averages are calculated over segments of 1 minute. (E) Evolution of the
average mutual information per time bin between output and target spike train
as a function of time. One clearly sees that this mutual information keeps increas-
ing, whereas the mutual information between input and output (see D) stays at
the same level. (F) Trace of the correlation between output rate and rate of the
target signal during learning. Correlation coefficients are calculated every 10 s.
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stay as statistically independent from each other as possible. That is, we
maximize

L̃ i = I
(
XK ; YK

i

)− β I
(
YK

1 ; YK
2

)− γ DK L
(
P
(
YK

i

)‖P̃
(
YK

i

))
. (6.1)

Since the same terms (up to the sign) are optimized in equations 3.1 and
6.1, we can derive a gradient ascent rule for the weights of neuron i , wi j ,
analogous to section 3:

�wk
i j

�t
= αCk

i j

[
Bk

i (γ ) − β�tBk
12

]
(6.2)

(see Table 1 for a definition of the terms in this equation).
In order to compare this rule with the BCM model as in section 4.3, we

consider the weight change of neuron 1 for the rate-based rule derived for
the simplified neuron model,

�wk
1 j

�t
= αν

pre,k
j �̃

(
νk

1 , νk
2

)
, (6.3)

where �̃(νk
1 , νk

2 ) is given by

�̃
(
νk

1 , νk
2

)= f
(
νk

1

) {
log

[
νk

1

ν̄k
1

(
ν̄k

1

g̃

)−γ
]

− β�t
[
νk

2 log φ − ν̄k
2 (φ − 1)

]}
,

(6.4)

with φ = ν̄k
12/(ν̄k

1 ν̄k
2 ).

Compared to the IB rule, equation 4.3, the sign of the weight update has
changed in equation 6.3, reflecting the different signs in the first two terms
of the objective function 6.1 as compared to 3.1. The synaptic modification
function, equation 6.4, is the same as �(νk

1 , νk
2 ) in equation 4.4 except that γ

in equation 4.4 is replaced by −γ . In the following discussion, we consider
the case where the output rate of neuron 1 is already close to the target
firing rate, so that ν̄k

1 ≈ g̃. In this case, �̃(νk
1 , νk

2 ) is approximately equal to
�(νk

1 , νk
2 ), and Figure 5 qualitatively also applies for �̃.

Analogous arguments as in section 4.3 can be applied when comparing
this rule with the BCM model. Because of the Hebbian nature of equa-
tion 6.3, values of � above 0 produce LTP and values below 0 produce LTD
(see Figure 5). Again, for the special case φ = 1 (see Figure 5B), the outputs
are uncorrelated, and the learning rule reduces to the classical BCM rule:
the output of neuron 2, νk

2 , has no influence on the weight change �wk
1 j

of neuron 1. In case of anticorrelated outputs of the two neurons (φ < 1;
see Figure 5A), the learning rule will try to make them more correlated by
increasing νk

1 for large νk
2 and decreasing νk

1 for small νk
2 . On the other hand,

if the outputs are correlated (φ > 1; see Figures 5C and 5D), anticorrelations
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will be increased. For large values of νk
2 , the output firing rate νk

1 tends to de-
crease; for small values of νk

2 , it increases. In this way, the learning rule tries
to make these outputs statistically independent. Again, note that correlation
and anticorrelation both contribute in the same way to mutual information.

6.1 An Approximation of the Learning Rule. The term Bk
12, equa-

tion 3.10, in the learning rule, equation 6.2, is nonlocal and difficult to
implement by a spiking neuron in reality. In the following we provide an
approximation to the learning rule, equation 6.2, in which we implement
the effect of the term Bk

12 by modifying the value g(ui (tk)) in the term Bk
i .

This could provide an idea how this learning rule might be implemented in
a biologically realistic circuit of neurons. More precisely, we let the weights
of neuron i evolve according to the learning rule,

�wk
i j

�t
= αCk

i j B̂k
i (γ ), (6.5)

which is similar to the generalized BCM rule for spiking neurons presented
in section 2, where

B̂k
1 (γ ) = yk

1

�t
log

[
ĝ1(tk)
ḡ1(tk)

(
g̃

ḡ1(tk)

)γ ]

−(1 − yk
1

)
R1(tk)

[
ĝ1(tk) − (1 + γ )ḡ1(tk) + γ g̃

]
, (6.6)

is Bk
i (γ ) with a modified gain function ĝi (tk) (see Table 3). Note that we do

not change the actual gain function (i.e., firing behavior) of the neuron; the
modified gain function ĝi (tk) is effective only in the learning rule.

To find the desired expression for ĝi (tk), we compare the combined post-
synaptic term Bk

i (γ ) − β�tBk
12 in equation 6.2 with the simple postsynaptic

term B̂k
i (γ ), equation 6.6, for both neurons and for the two cases that the

neuron itself or the other neuron has emitted a spike (see appendix C). This
results in a modified gain function for the learning rule of neuron i = 1, 2
of

ĝi (tk) = g(ui (tk)) · ai (tk)yk
i (1−yk

3−i ) + bi (tk)yk
3−i (1 − yk

i ). (6.7)

The term

ai (tk) = exp
[

R3−i (tk)β�t
(

ḡ12(tk)
ḡi (tk)

− ḡ3−i (tk)
)]

(6.8)

corresponds to a multiplicative change of g(ui (tk)) in case of spikes of neu-
ron i itself. If the outputs have been correlated (i.e., ḡ12(tk) > ḡ1(tk)ḡ2(tk))
the modified gain in equation 6.5 is increased; if the outputs have been
anticorrelated (ḡ12(tk) < ḡ1(tk)ḡ2(tk)), it is decreased. If, on the other hand,
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Table 3: Summary of the Approximation of the Learning Rule for Extracting
Independent Components.

The weights wi j of neuron i = 1, 2 evolve according to the generalized BCM rule for
spiking neurons. The weight change �wk

i j at time tk = k�t is given by

�wk
i j

�t
= αCk

i j Bk
i (γ ) (6.5)

with a learning rate α > 0 and optimization parameter γ > 0.

The correlation term Ck
i j and the postsynaptic term Bk

i (γ ) are given by

Ck
i j = Ck−1

i j

(
1 − �t

τC

)
+

k∑
n=1

ε(tk − tn)xn
j

g′(ui (tk ))
g(ui (tk ))

[
yk

i − ρk
i
]

(3.6)

Bk
i (γ ) = yk

i

�t
log

[
ĝi (tk )
ḡi (tk )

(
g̃

ḡi (tk )

)γ ]

−(1 − yk
i )Ri (tk )

[
ĝi (tk ) − (1 + γ )ḡi (tk ) + γ g̃

]
(6.6)

(compare to equation 3.9 in Table 1).

The original gain value g(ui (tk )) is modified both additively and multiplicatively:

ĝi (tk ) = g(ui (tk )) · ai (tk )yk
i (1−yk

3−i ) + bi (tk )yk
3−i (1 − yk

i ), (6.7)

where yk
i ∈ {0, 1} indicates an output spike of neuron i at time tk .

If neuron i itself has spiked, the value g(ui (tk )) is multiplied with the following factor:

ai (tk ) = exp
[

R3−i (tk )β�t
(

ḡ12(tk )
ḡi (tk )

− ḡ3−i (tk )
)]

. (6.8)

If the other neuron (neuron 3 − i) has spiked, the following term is added to the value
g(ui (tk )):

bi (tk ) = −β

[
ḡ12(tk )
ḡ3−i (tk )

− ḡi (tk )
]

. (6.9)
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a spike is elicited by the other neuron (neuron 3 − i) the value g(ui (tk)) is
modified additively by the term

bi (tk) = −β

[
ḡ12(tk)
ḡ3−i (tk)

− ḡi (tk)
]

. (6.9)

In case of correlated outputs, it is decreased; in case of anticorrelated out-
puts, it is increased.

Note that equations 6.5 to 6.9 provide only an approximation to the
learning rule, equation 6.2, because we have considered only the cases
where one of the two neurons spikes. The approximation presented here
is still not local because the modified value ĝi (tk) still depends on nonlocal
variables, for example, the average product of firing rates ḡ12(tk). However,
it indicates what a real biological learning rule would have to approximate.
Each neuron needs information about the firing behavior of both neurons.
In particular, a circuit of interneurons would be necessary to implement
some of the terms in equations 6.7 to 6.9.

6.2 Extracting Different Correlation Groups. Figure 12 shows the re-
sults of an experiment where two neurons receive the same Poisson input
with a rate of 20 Hz at their 100 synapses. The input is divided into two
groups of 40 spike trains each, such that synapses 1 to 40 and 41 to 80
receive correlated input with a correlation coefficient of 0.5 within each
group; however, any spike trains belonging to different input groups are
uncorrelated. The remaining 20 synapses receive uncorrelated Poisson in-
put (see Figure 11 for a sample of such input spike trains). Weights close
to the maximal efficacy wmax = 1 are developed for one of the groups of
synapses that receives correlated input (group 2 in this case), whereas those
for the other correlated group (group 1), as well as those for the uncorrelated
group (group 3), stay low. Neuron 2 develops strong weights to the other
correlated group of synapses (group 1), whereas the efficacies of the second
correlated group (group 2) remain depressed, thereby trying to produce a
statistically independent output. For both neurons, the mutual information
is maximized, and the target output distribution of a constant firing rate
of 30 Hz is approached well. After an initial increase in both the mutual
information and the correlation between the outputs, where the weights
of both neurons start to grow simultaneously, these amounts drop as both
neurons develop strong efficacies to different parts of the input.

6.3 Comparison with Other Neural ICA Learning Rules. Neural learn-
ing algorithms based on information optimization principles, such as inde-
pendent component analysis (ICA) (Hyvärinen et al., 2001), have previously
been derived for rate-based models (Hyvärinen & Oja, 1996, 1998). How-
ever, an application to spiking neurons has still been missing. In this section,
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time [s]
0 1

input sample

Figure 11: Demonstration of the difficulty of the ICA task for spike trains.
Shown are 10 spike trains for 1 s that represent 10 out of 100 inputs in the
experiment described in Figure 12. The top four spike trains (group 1) are
correlated with a correlation coefficient of 0.5, as are spike trains 5–8 (group 2).
However, spike trains from different groups are uncorrelated. The remaining
bottom two input spike trains (group 3) are uncorrelated. Obviously it is quite
difficult to detect which spike trains are correlated due to their rather weak
correlation.

we have presented an ICA rule for spiking neurons that is able to detect sta-
tistical dependencies between the input rates and also between the timing
of individual spikes, as shown in the experiment in Figure 12. Furthermore,
while in ICA one usually assumes that the data are generated by a linear
combination of statistically independent sources, we do not assume any
model on how the data are generated. The experiment in Figure 12 also
shows that our learning rule performs blind source separation even if the
sources are not linearly mixed (which is not possible for a spiking input
where the information is encoded in spike timings).

7 Discussion

Information bottleneck (IB) and independent component analysis (ICA)
have been proposed as principles for unsupervised learning in lower corti-
cal areas; however, learning rules that can implement these principles with
spiking neurons have been missing. So far, synaptic update rules optimizing
information-theoretic objectives have been presented mainly for rate mod-
els and real-valued units (Linsker, 1989; Bell & Sejnowski, 1995; Becker,
1996). In this article we have derived from information-theoretic principles
learning rules that enable a stochastically spiking neuron to solve these
tasks. We have shown in section 4.3 that these rules can be viewed as an ex-
tension to the classical Bienenstock-Cooper-Munro (BCM) rule (Bienenstock
et al., 1982) and to its generalized variant for spiking neurons (Toyoizumi
et al., 2005). Furthermore, we have demonstrated how they are related to
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Figure 12: Extracting independent components from 100 input spike trains.
(A, B) Evolution of weights during 30 minutes of learning for both postsynap-
tic neurons (red: strong synapses, wi j ≈ 1; blue: depressed synapses, wi j ≈ 0.)
Weights were initialized randomly between 0.10 and 0.12, α = 5 · 10−4, β = 100,
γ = 50. (C) Evolution of the average mutual information per time bin between
both output spike trains as a function of time. (D, E) Evolution of the average
mutual information per time bin (solid line, left scale) between input and out-
put and the Kullback-Leibler divergence per time bin for both neurons (dashed
line, right scale) as a function of time. Averages are calculated over segments of
1 minute. (F) Trace of the current correlation between both output spike trains
during learning. Correlation coefficients are calculated every 10 seconds.

traditional IB algorithms (see section 4.4) and neural ICA learning rules (see
section 6.3). Our learning rules, which are optimal from the perspective of
information theory, are not local in the sense that they use only informa-
tion that is available at a single synapse without an auxiliary network of
interneurons or other biological processes. But they tell us what type of
information would have to be ideally provided by such auxiliary network
and how the synapse should change its efficacy in order to approximate a
theoretically optimal learning rule.

The learning rule for ICA that we have derived appears to be the first ICA
learning rule for spiking neurons. We have demonstrated in Figures 11 and
12 that in particular, this learning rule enables spiking neurons to discover
and remove dependencies in their input spike trains that are not encoded
through correlations or other dependencies between their firing rates, but
through correlations between the timing of individual spikes. But this ICA
rule is also able to remove dependencies in firing rates.

Information bottleneck optimization is another and potentially more
powerful method for deriving rules for learning that might shape the output
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of projection neurons that send selected information to higher cortical areas
or downward to the thalamus. In contrast to ICA, IB optimization need
not be driven exclusively by the statistics of sensory input signals. Rather,
IB optimization allows the selection of information from sensory inputs
that is related to inputs from another sensory modality, to proprioceptive
feedback, to expectations, or to rewards. Hence, it may contribute to the
emergence of synergistic internal codes for relevant parts of the external
world, which combine information from different sensory modalities
(see Calvert, Spence, & Stein, 2004), causing in particular effects such as
improved understanding of spoken language if the face of the speaker can
be observed and to goal-oriented and task-dependent sensory processing
(Sigala & Logothetis, 2002; Shuler & Bear, 2006; Fritz, Shamma, Elhilali, &
Klein, 2003). Hence, IB learning rules share aspects of both unsupervised
and supervised5 learning. We have demonstrated through five computer
experiments that the IB learning rules for spiking neurons that we have
derived are capable of extracting information simultaneously from rates
and from spike trains (see; Figures 6, 8, and 9), to extract input signals that
are only partially related to the target signal (since the target is a sum of
several input signals; see Figure 7), and to extract information that is related
to two simultaneously presented target signals (which encode information
in two different ways; see Figure 9). We have also demonstrated in Figure 10
that the learning rule can learn to extract information from the input that
is not correlated with the target signal, but is related through higher-order
statistical dependencies. Finally, we have demonstrated that the learning
rules that we have derived work quite fast—in most cases, within a few
minutes. We have also demonstrated that they are very stable (hence,
do not require any regulation of learning rates), since their performance
does not degrade during experiments of long duration. Furthermore, the
firing rate of the learning neurons always stays within the desired range.
In future work, it would be interesting to investigate applications of these
learning rules to signal processing problems (e.g., noise filtering), since the
IB approach promises to provide optimal solutions to some of these tasks.

The results of this article show only that biological neurons could
in principle carry out ICA and IB analysis, and we have shown how
close-to-optimal learning rules for spiking neurons would look like. We
also have argued that both learning principles are very useful for any
multisensory distributed cognitive system. This article poses the challenge

5Note that maximizing the mutual information between the output of a neuron and
a target signal offers an interesting alternative to supervised learning for neurons, where
the “code” that the neuron uses is left unspecified. While in a supervised learning task
the target output is prescribed and should be reproduced as exactly as possible by the
learning unit, this is not the case for an Infomax problem. Rather, information bottleneck
can be viewed as a supervised selection of what is relevant, while the learning process
itself and the choice of neural codes is unsupervised.
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to neurophysiology to test through experiments in vivo and in vitro to
what extent (and where) these learning principles are implemented in
neural systems and how they are implemented through synaptic plasticity.

Appendix A: Details of the Derivations of the Learning Rules

A.1 Evaluation of Firing and Joint Firing Probabilities. To quantify
the information between output spike trains YK

1 and YK
2 of length K�t,

we need an expression for the joint probability P(YK
1 , YK

2 ). For given input
spike trains Xk = (Xk

1, . . . , Xk
N) up to time step k and postsynaptic spike

history Yk−1
i , we can write the probability of emitting a postsynaptic spike

in the kth time step using the firing probability ρk
i , equation 2.2, as the

binary distribution:

P
(
yk

i | Yk−1
i , Xk) = (

ρk
i

)yk
i
(
1 − ρk

i

)(1−yk
i )
. (A.1)

The marginal probability, given only the postsynaptic history, can be written
as

P
(
yk

i | Yk−1
i

) = (
ρ̄k

i

)yk
i
(
1 − ρ̄k

i

)(1−yk
i )
, (A.2)

where ρ̄k
i = 〈ρk

i 〉Xk |Yk−1
i

= ∑
Xk ρk

i P(Xk |Yk−1
i ) is the average firing probability

in the kth time step (where ρk
i depends, of course, on Xk and Yk

i ). The
probability of an entire output spike train YK

i given the input XK is then
obtained by

P
(
YK

i | XK ) =
K∏

k=1

P
(
yk

i | Yk−1
i , Xk) (A.3)

and, analogously, the probability of an output spike train by

P
(
YK

i

) =
K∏

k=1

P
(
yk

i | Yk−1
i

)
. (A.4)

If two neurons receive the same input at their synapses and produce
outputs YK

1 and YK
2 , we can write the joint probability of spiking in the kth

time step given the postsynaptic histories and the input as

P
(
yk

1 , yk
2 | Yk−1

1 , Yk−1
2 , Xk) = P

(
yk

1 | Yk−1
1 , Xk)P(yk

2 | Yk−1
2 , Xk). (A.5)
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The marginal probability given only the postsynaptic histories can be writ-
ten using equation A.1 as

P(yk
1 , yk

2 |Yk−1
1 , Yk−1

2 )

=
〈(

ρk
1

)yk
1
(
1 − ρk

1

)(1−yk
1 )(

ρk
2

)yk
2
(
1 − ρk

2

)(1−yk
2 )
〉
Xk |Yk−1

1 ,Yk−1
2

= (=ρk
12)yk

1 yk
2
(=

ρk
1 − =ρk

12)
)yk

1 (1−yk
2 )

(=ρk
2 − =ρk

12)(1−yk
1 )yk

2

× (1 − =ρk
1 − =ρk

2 + =ρk
12

)(1−yk
1 )(1−yk

2 )
, (A.6)

where =ρk
i = 〈ρk

i 〉Xk |Yk−1
1 ,Yk−1

2
= ∑

Xk ρk
i P(Xk |Yk−1

1 , Yk−1
2 ) is the average firing

probability of neuron i , given the postsynaptic history of both neurons,
and =ρk

12 = 〈ρk
1ρk

2 〉Xk |Yk−1
1 ,Yk−1

2
is the average product of firing probabilities of

both neurons. The joint probability of two entire output spike trains is then
finally given as

P
(
YK

1 , YK
2

) =
K∏

k=1

P
(
yk

1 , yk
2 |Yk−1

1 , Yk−1
2

)
. (A.7)

A.2 Evaluation of the Gradient of �Lk
12. We have to calculate the gra-

dient ∂�Lk
12/∂w1 j , with

�Lk
12 =

〈
β log

P
(
yk

1 , yk
2 | Yk−1

1 , Yk−1
2

)
P
(
yk

1 | Yk−1
1

)
P
(
yk

2 | Yk−1
2

)
〉

Xk ,Yk
1,Y

k
2

. (A.8)

The strategy for the derivation is similar as for the terms considered in
Toyoizumi et al. (2005), but a number of details are different.

We treat the nominator and the two product terms of the denominator
in equation A.8 separately. The average of an arbitrary function fw with
arguments x, y1, and y2 is by definition

〈
fw(x, y1, y2)

〉
x,y1,y2

=
∑

x,y1,y2

pw(x, y1, y2) fw(x, y1, y2)

=
〈∑

y1

pw(y1 | x) fw(x, y1, y2)

〉
x,y2

, (A.9)

where pw(x, y1, y2) = p(x)p(y2 | x)pw(y1 | x) denotes the joint probability of
the triple (x, y1, y2) to occur, assuming that y1 is independent of y2 given x.
The subscript w indicates that both the probability distribution pw and the
function fw depend on an additional parameter w.
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Taking the derivative with respect to w, the product rule yields two
terms,

∂

∂w

〈
fw(x, y1, y2)

〉
x,y1,y2

=
〈∑

y1

pw(y1|x)
∂

∂w
fw(x, y1, y2)

〉
x,y2

+
〈∑

y1

∂

∂w
pw(y1|x) fw(x, y1, y2)

〉
x,y2

, (A.10)

where the first term contains the derivative of the function fw and the
second term contains the derivative of the conditional probability pw. Since

∂

∂w
pw(y1 | x) = pw(y1 | x)

∂

∂w
log pw(y1 | x), (A.11)

the right-hand side of equation A.10 evaluates to〈
∂

∂w
fw(x, y1, y2)

〉
x,y1,y2

+
〈[

∂

∂w
log pw(y1|x)

]
fw(x, y1, y2)

〉
x,y1,y2

,

(A.12)

that is, it can be written as an average over the joint distribution of x, y1,
and y2.

Now we can evaluate each of the terms of equation A.8 using A.12.
Considering the term ∂

∂w1 j
〈log P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )〉Xk ,Yk

1,Y
k
2

first, we get〈
∂

∂w1 j
log P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )

〉
Xk ,Yk

1,Y
k
2

+
〈[

∂

∂w1 j
log P(Yk

2 |Xk)
]

log P(yk
1 , yk

2 |Yk−1
1 , Yk−1

2 )
〉

Xk ,Yk
1,Y

k
2

. (A.13)

We find that the first term of equation A.13 vanishes because〈
∂

∂w1 j
log P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )

〉
Xk ,Yk

1,Y
k
2

=

=
〈〈

∂

∂w1 j
log P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )

〉
yk

1,y
k
2|Yk−1

1 ,Yk−1
2

〉
Yk−1

1 ,Yk−1
2

=
〈∑

yk
1 ,yk

2

[
∂

∂w1 j
log P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )

]
P(yk

1 , yk
2 |Yk−1

1 , Yk−1
2 )

〉
Yk−1

1 ,Yk−1
2

=
〈

∂

∂w1 j


∑

yk
1 ,yk

2

P(yk
1 , yk

2 |Yk−1
1 , Yk−1

2 )


〉

Yk−1
1 ,Yk−1

2

= 0. (A.14)
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In the second line of equation A.14, we drop the expectation over Xk , since
the argument of the expectation operator is independent of the input spike
train Xk , and use the identity 〈·〉Yk

1,Y
k
2
= 〈〉·〉yk

1,y
k
2|Yk−1

1 ,Yk−1
2

〉Yk−1
1 ,Yk−1

2
. With the

same argument, it can be shown that

〈
∂

∂w1 j
log P(yk

i |Yk−1
i )

〉
Xk ,Yk

1,Y
k
2

=
〈

∂

∂w1 j
log P(yk

i |Yk−1
i , Xk)

〉
Xk ,Yk

1,Y
k
2

= 0 (A.15)

for i = 1, 2. Hence, the only term that gives a nontrivial contribution in
equation A.13 is the second one. With an analogous evaluation for the other
terms in equation A.8, we finally have

∂

∂w1 j
�Lk

12 =
〈[

∂

∂w1 j
log P

(
Yk

1 | Xk)]

× log
P
(
yk

1 , yk
2 | Yk−1

1 , Yk−1
2

)
P
(
yk

1 | Yk−1
1

)
P
(
yk

2 | Yk−1
2

)
〉

Xk ,Yk
1,Y

k
2

. (A.16)

Now we can identify the factors

Ck
1 j := ∂

∂w1 j
log P(Yk

1 |Xk)

=
k∑

l=1

[
yl

1

ρl
1

− 1 − yl
1

1 − ρl
1

]
∂ρl

1

∂u1

l∑
n=1

ε(tl − tn)xn
j (A.17)

and

F k
12 := log

P(yk
1 , yk

2 |Yk−1
1 , Yk−1

2 )

P(yk
1 |Yk−1

1 )P(yk
2 |Yk−1

2 )

= yk
1 yk

2 log
=ρk

12

ρ̄k
1 ρ̄k

2

+ yk
1 (1 − yk

2 ) log
=ρk

1 − =ρk
12

ρ̄k
1 − ρ̄k

1 ρ̄k
2

+

+ (1 − yk
1

)
yk

2 log
=ρk

2 − =ρk
12

ρ̄k
2 − ρ̄k

1 ρ̄k
2

+ (1 − yk
1

)(
1 − yk

2

)
log

1 − =ρk
1 − =ρk

2 + =ρk
12

1 − ρ̄k
1 − ρ̄k

1 + ρ̄k
1 ρ̄k

2

. (A.18)
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For computational reasons, we approximate the sum
∑k

l=1 in the correla-
tion term Ck

1 j , equation A.17, by an exponential window with time constant
τC = 1 s (Toyoizumi et al., 2005):

Ck
1 j = Ck−1

1 j

(
1 − �t

τC

)
+

k∑
n=1

ε(tk − tn)xn
j

g′(u1(tk))
g(u1(tk))

[
yk

1 − ρk
1

]
. (A.19)

Furthermore, if we make the assumption =ρk
i = ρ̄k

i (see section A.3) we
can simplify the term F k

12, equation A.18, and write ρ̄k
i = ḡi (tk)Ri (tk)�t and

=ρk
12 = ḡ12(tk)R1(tk) R2(tk)(�t)2 with ḡi (tk) = 〈g(ui (tk))〉Xk |Yk−1

i
and ḡ12(tk) =

〈g(u1(tk))g(u2(tk))〉Xk |Yk−1
1 ,Yk−1

2
. Using the approximation log(1 − x) ≈ −x for

small x, we get

F k
12 = yk

1 yk
2 log

ḡ12(tk)
ḡ1(tk)ḡ2(tk)

− yk
1

(
1 − yk

2

)
R2(tk)�t

[
ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
]

−

− (1 − yk
1

)
yk

2 R1(tk)�t
[

ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

+

+ (1−yk
1

)(
1−yk

2

)
R1(tk)R2(tk)(�t)2 [ḡ12(tk)− ḡ1(tk)ḡ2(tk)

]
. (A.20)

This approximation is valid for small �t.
The weight change is then finally given by

�w̃k
1 j = α

〈
Ck

1 jβF k
12

〉
Xk ,Yk

1,Y
k
2
. (A.21)

A.3 A Closer Look at the Firing Probabilities =ρk
i and ρ̄k

i . For simplicity,
we assume i = 1. Using equations A.1 and A.2 we can write for ρk

1 and ρ̄k
1 :

ρk
1 = P(yk

1 = 1|Xk, Yk−1
1 ), and (A.22)

ρ̄k
1 = P(yk

1 = 1|Yk−1
1 ). (A.23)

From =ρk
1 = 〈ρk

1 〉Xk |Yk−1
1 ,Yk−1

2
we find that

=ρk
1 = P

(
yk

1 = 1 | Yk−1
1 , Yk−1

2

)
. (A.24)

Qualitatively, any difference between ρ̄k
1 and =wρk

1 arises from the additional
information that, given the postsynaptic history Yk−1

1 , the output of the
other neuron, Yk−1

2 , conveys about a postsynaptic event at time step k. For
a learning rule that uses the term F k

12, equation 3.7, we have to calculate =ρk
i

online. The average firing probabilities ρ̄k
i = 〈ρk

i 〉Xk |Yk−1
i

are implemented as
running averages of ρk

i , as in Toyoizumi et al. (2005).
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We can express =ρk
1 , equation A.24, using ρ̄k

1 , A.23, that is,

=ρk
1 = ρ̄k

1 · P(Yk−1
2 |yk

1 = 1, Yk−1
1 )

P(Yk−1
2 |Yk−1

1 )
. (A.25)

The second factor in equation A.25 is hard to evaluate online. However, if
we assume that yk

1 = 1 is independent from Yk−1
2 given Yk−1

1 —that P(yk
1 =

1, Yk−1
2 |Yk−1

1 ) = P(yk
1 = 1|Yk−1

1 )P(Yk−1
2 |Yk−1

1 )—we can set =ρk
1 = ρ̄k

1 . In this
case, since

ρ̄k
1 = 〈=ρk

1

〉
Yk−1

2 |Yk−1
1

, (A.26)

we replace =ρk
1 by its mean value with respect to the distribution

P(Yk−1
2 |Yk−1

1 ).

A.4 Derivation of the Simplified Learning Rule. The starting point for
the derivation for this simplified model is the weight update rule, equa-
tion 3.8,

�wk
1 j

�t
= −α

〈
Ck

1 j Bk
1 (−γ ) + αβ�tCk

1 j Bk
12

〉
Yk

1,Y
k
2,X

k

= −α
〈〈

Ck
1 j B1(−γ )

〉
Yk

1|Xk + αβ�t
〈
Ck

1 j Bk
12

〉
Yk

1,Y
k
2|Xk

〉
Xk

, (A.27)

where in contrast to equation 3.8, we consider the batch version of the
learning rule in which the weight update is averaged over the input and
output distribution.

For notational convenience, we write the correlation term, equation A.17,
as6

Ck
1 j =

k∑
l=1

[
yl

1

ρl
1

− 1 − yl
1

1 − ρl
1

]
∂ρl

1

∂u1

l∑
n=1

ε(tl − tn)xn
j

=
k∑

l=1

[
yl

1 − ρl
1

] (ρl
1)′

ρl
1(1 − ρl

1)

l∑
n=1

ε(tl − tn)xn
j

=
k∑

l=1

K1(l)
[
yl

1 − ρl
1

]
,

6For simplicity, we write g(u) instead of galt(u) throughout this section.
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with

K1(l) = (ρl
1)′

ρl
1(1 − ρl

1)

l∑
n=1

ε(tl − tn)xn
j ≈ g′(u1(tl ))

g(u1(tl ))

l∑
n=1

ε(tl − tn)xn
j .

Here, we used the approximation ρl
1 ≈ g(u1(tl ))�t, which holds for small

�t. Furthermore, we write the postsynaptic term as

Bk
1 (−γ ) = yk

1

�t
Bk

1A + (1 − yk
1 )Bk

1B, (A.28)

with

Bk
1A = log

[
g(u1(tk))

ḡ1(tk)

(
ḡ1(tk)

g̃

)γ ]
,

Bk
1B =−R1(tk)[g(u1(tk)) − (1 − γ )ḡ1(tk) − γ g̃].

Since 〈yk
i 〉Yk

i |Xk = ρk
i and 〈yl

i yk
i 〉Yk

i |Xk = δlkρ
k
i + ρl

i ρ
k
i (1 − δlk), where δlk is the

Kronecker delta function, we get

〈Ck
1 j Bk

1 (−γ )〉Yk
1|Xk =

〈
k∑

l=1

K1(l)[yl
1 − ρl

1]
(

yk
1

�t
Bk

1A + (1 − yk
1 )Bk

1B

)〉
Yk

1|Xk

=
k∑

l=1

K1(l)δlk

[
ρk

1

�t
Bk

1A − (ρk
1 )2

�t
Bk

1A

− ρk
1 Bk

1B + (ρk
1 )2 Bk

1B

]
. (A.29)

Since ρk
i ≈ g(ui (tk))�t, we get

〈Ck
1 j Bk

1 (−γ )〉Yk
1|Xk = K1(k)

[
g(u1(tk))Bk

1A − g(u1(tk))2�tBk
1A

− g(u1(tk))�tBk
1B + g(u1(tk))2(�t)2 Bk

1B

]
= K1(k)

[
g(u1(tk))Bk

1A + O(�t)
]

≈ K1(k)g(u1(tk))Bk
1A, (A.30)

where we assume small �t. Substitution of K1(k) and Bk
1A yields

〈Ck
1 j Bk

1 (−γ )〉Yk
1|Xk ≈ ν

pre,k
j f (νk

1 ) log

[
νk

1

ν̄k
1

(
ν̄k

1

g̃

)γ
]

, (A.31)
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where the presynaptic rate at synapse j is denoted by ν
pre,k
j = a

∑k
n=1 ε(tk −

tn)xn
j with a in units (Vs)−1, and ν̄k

1 , ν̄k
2 , ν̄k

12 are running averages of the
output rate νk

1 , the target rate νk
2 , and the product of these values, νk

1νk
2 . The

rate νk
1 is given directly by galt(u1(tk)). The function f (νk

1 ) = g′(g−1(νk
1 ))/a is

proportional to the derivative of g with respect to u, evaluated at the current
membrane potential.

For evaluation of the second term in equation A.27, we write Bk
12 as

Bk
12 = yk

1 yk
2

(�t)2 Dk
12 − yk

1 (1 − yk
2 )

�t
Dk

1

− (1 − yk
1 )yk

2

�t
Dk

2 + (1 − yk
1 )(1 − yk

2 )D0, (A.32)

with

Dk
12 = log

ḡ12(tk)
ḡ1(tk)ḡ2(tk)

,

Dk
1 = ḡ12(tk)

ḡ1(tk)
− ḡ2(tk),

Dk
2 = ḡ12(tk)

ḡ2(tk)
− ḡ1(tk),

Dk
0 = ḡ12(tk) − ḡ1(tk)ḡ2(tk).

We get

〈
Ck

1 j Bk
12

〉
Yk

1,Y
k
2|Xk =

k∑
l=1

K1(l)
〈 [

yl
1 − ρl

1

] [ yk
1 yk

2

(�t)2 Dk
12−

− yk
1

�t
Dk

1 + yk
1 yk

2

�t
Dk

1 − yk
2

�t
Dk

2 + yk
1 yk

2

�t
Dk

2−

−Dk
0 + yk

1 Dk
0 + yk

2 Dk
0 − yk

1 yk
2 Dk

0

] 〉
Yk

1,Y
k
2|Xk

.

For given input Xk , the two spike trains Yk
1 and Yk

2 are independent and
〈yl

1 yk
2 〉Yk

1,Y
k
2|Xk = ρl

1ρ
k
2 . Furthermore, we use 〈yl

1 yk
1 yk

2 〉Yk
1,Y

k
2|Xk = 〈yl

1 yk
1 〉Yk

1|Xk ρk
2 ,

to get〈
Ck

1 j Bk
12

〉
Yk

1,Y
k
2|Xk = K1(k)g(u1(tk))[g(u1(tk))Dk

12 − Dk
1 + O(�t)]

≈ K1(k)g(u1(tk))[g(u2(tk))Dk
12 − Dk

1]

= ν
pre
j (tk) f (ν1(tk))

[
νk

2 log
ν̄k

12

ν̄k
1 ν̄k

2

−
(

ν̄k
12

ν̄k
1

− ν̄k
2

)]
. (A.33)
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Again, the approximation is valid for small �t.
Substitution of equations A.31 and A.33 into A.27 yields

�wk
1 j

�t
= −αν

pre,k
j f (νk

1 )

{
log

[
νk

1

ν̄k
1

(
ν̄k

1

g̃

)γ
]

−β�t
(

νk
2 log

[
ν̄k

12

ν̄k
1 ν̄k

2

]
− ν̄k

2

[
ν̄k

12

ν̄k
1 ν̄k

2

− 1
])}

, (A.34)

where the expectation 〈·〉X in equation A.27 is approximated by averaging
over a single long trial under the assumption of a small learning rate α.

Appendix B: Whitening Transform

For the whitening transform used in the experiment described in section 5.5,
we define a vector x(t) = [r1(t) − 〈r1〉, r2(t) − 〈r2〉]T , where r1(t) and r2(t) are
the signals that should be whitened (the rate modulations of one input and
the target signal in this case). Note that the averages of both signals are sub-
tracted as to make x have zero mean. Furthermore, let C = E{xxT } denote
the 2-by-2 covariance matrix of x, which is calculated in the simulations
as the empirical covariance matrix of 10 s samples of r1(t) and r2(t). The
whitening transform is then given by

T = ED− 1
2 ET , (B.1)

where E is the orthogonal matrix of eigenvectors of C and D is the diagonal
matrix of its eigenvalues, D = diag(λ1, λ2) (i.e., C = EDET .). With this trans-
formation, the vectors Tx have unit variance; in order to scale them back
to the variance of the original signals, we define an additional scaling ma-
trix S = diag(σ1, σ2), where σ1 and σ2 are the standard deviations of r1 and
r2, respectively. With the means added back, which have been subtracted
before, the total transformation is then given by

x̃ = STx +
[ 〈r1〉

〈r2〉
]

, (B.2)

where the elements of x̃(t) = [r̃1(t), r̃2(t)]T are uncorrelated.

Appendix C: Derivation of the Approximation in Section 6.1

Remember that the combined postsynaptic term of the learning rule of
neuron i , equation 6.2, can be written as

Ak
i := Bk

i (γ ) − β�tBk
12, (C.1)
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where

Bk
i (γ ) = yk

i

�t
log

[
g(ui (tk))

ḡi (tk)

(
g̃

ḡi (tk)

)γ ]

−(1 − yk
i )Ri (tk)

[
g(ui (tk)) − (1 + γ )ḡi (tk) + γ g̃

]
, (C.2)

and

Bk
12 = yk

1 yk
2

(�t)2 log
ḡ12(tk)

ḡ1(tk)ḡ2(tk)
− yk

1

�t
(1 − yk

2 )R2(tk)
[

ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
]

− yk
2

�t
(1 − yk

1 )R1(tk)
[

ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

+(1 − yk
1 )(1 − yk

2 )R1(tk)R2(tk)
[
ḡ12(tk) − ḡ1(tk)ḡ2(tk)

]
. (C.3)

For simplicity we consider only neuron 1 in the following; symmetric
arguments apply for the case of neuron 2. We can distinguish four postsy-
naptic states for both neurons in each time step k: one where both are spiking
(yk

1 = yk
2 = 1), one where neither of them emits a spike (yk

1 = yk
2 = 0), and

two cases where only one of them fires (yk
1 = 1, yk

2 = 0, and yk
1 = 0, yk

2 = 1,
respectively). For these four cases, the postsynaptic term, equation C.1,
evaluates to

� yk
1 = yk

2 = 1:

Ak
1 = 1

�t
log

[
g(u1(tk))

ḡ1(tk)

(
g̃

ḡ1(tk)

)γ ]

− 1
�t

β log
ḡ12(tk)

ḡ1(tk)ḡ2(tk)
, (C.4)

� yk
1 = 1, yk

2 = 0:

Ak
1 = 1

�t
log

[
g(u1(tk))

ḡ1(tk)

(
g̃

ḡ1(tk)

)γ ]

+β R2(tk)
[

ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
]

, (C.5)

� yk
1 = 0, yk

2 = 1:

Ak
1 = −R1(tk)

[
g(u1(tk)) − (1 + γ )ḡ1(tk) + γ g̃

]
+β R1(tk)

[
ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

, (C.6)
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� yk
1 = yk

2 = 0:

Ak
1 =−R1(tk)

[
g(u1(tk)) − (1 + γ )ḡ1(tk) + γ g̃

]
−β�tR1(tk)R2(tk)

[
ḡ12(tk) − ḡ1(tk)ḡ2(tk)

]
. (C.7)

We want to model the contribution of the term Bk
12, equation C.3, by

changing the value g(u1(tk)). That is, we again apply the simple postsynaptic
BCM term,

B̂k
1 (γ ) = yk

1

�t
log

[
ĝ1(tk)
ḡ1(tk)

(
g̃

ḡ1(tk)

)γ ]

−(1 − yk
1

)
R1(tk)

[
ĝ1(tk) − (1 + γ )ḡ1(tk) + γ g̃

]
, (C.8)

instead of the combined postsynaptic term Ak
1, equation C.1, in the learning

rule of neuron 1, but encapsulate the effect of the term Bk
12 in changing the

gain g(u1(tk)) into ĝ1(tk) in this simple postsynaptic term B̂k
1 .

We look for arithmetic expressions for ĝ1(tk) by comparing formula C.8
with equations C.4 to C.7. We get

� yk
1 = yk

2 = 1:

ĝ1(tk) = g(u1(tk))
(

ḡ1(tk)ḡ2(tk)
ḡ12(tk)

)β

, (C.9)

� yk
1 = 1, yk

2 = 0:

ĝ1(tk) = g(u1(tk)) exp
[

R2(tk)β�t
(

ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
)]

, (C.10)

� yk
1 = 0, yk

2 = 1:

ĝ1(tk) = g(u1(tk)) − β

[
ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

, (C.11)

� yk
1 = yk

2 = 0:

ĝ1(tk) = g(u1(tk)) + R2(tk)β�t
[
ḡ12(tk) − ḡ1(tk)ḡ2(tk)

]
. (C.12)

However, Figure 3 suggests that significant effects of Bk
12 are encountered

only when one of the two neurons is firing; we also neglect the influence of
simultaneous action potentials within the same time step as �t gets small.
Therefore, we focus only on cases C.10 and C.11 where exactly one of the
two neurons is firing. The value g(u1(tk)) is then modified according to

ĝ1(tk) = g(u1(tk)) exp
[

R2(tk)β�t
(

ḡ12(tk)
ḡ1(tk)

− ḡ2(tk)
)]

if yk
1 = 1, yk

2 = 0, (C.13)
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which corresponds to a multiplicative change, and

ĝ1(tk) = g(u1(tk)) − β̃

[
ḡ12(tk)
ḡ2(tk)

− ḡ1(tk)
]

if yk
2 = 1, yk

1 = 0, (C.14)

which corresponds to an additive change.
Summarizing, the modified value ĝi (tk) for neuron i = 1, 2 can be written

as follows:

ĝi (tk) = g(ui (tk)) · ai (tk)yk
i (1−yk

3−i ) + bi (tk)yk
3−i (1 − yk

i ). (C.15)

The modulation terms ai (tk) and bi (tk) are given by

ai (tk) = exp
[

R3−i (tk)β�t
(

ḡ12(tk)
ḡi (tk)

− ḡ3−i (tk)
)]

, (C.16)

bi (tk) = −β

[
ḡ12(tk)
ḡ3−i (tk)

− ḡi (tk)
]

. (C.17)
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