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The perceptron (also referred to as McCulloch-Pitts neuron, or linear
threshold gate) is commonly used as a simplified model for the discrimi-
nation and learning capability of a biological neuron. Criteria that tell us
when a perceptron can implement (or learn to implement) all possible di-
chotomies over a given set of input patterns are well known, but only for
the idealized case, where one assumes that the sign of a synaptic weight
can be switched during learning. We present in this letter an analysis of
the classification capability of the biologically more realistic model of
a sign-constrained perceptron, where the signs of synaptic weights re-
main fixed during learning (which is the case for most types of biological
synapses). In particular, the VC-dimension of sign-constrained percep-
trons is determined, and a necessary and sufficient criterion is provided
that tells us when all 2m dichotomies over a given set of m patterns can be
learned by a sign-constrained perceptron. We also show that uniformity
of L1 norms of input patterns is a sufficient condition for full represen-
tation power in the case where all weights are required to be nonnega-
tive. Finally, we exhibit cases where the sign constraint of a perceptron
drastically reduces its classification capability. Our theoretical analysis
is complemented by computer simulations, which demonstrate in par-
ticular that sparse input patterns improve the classification capability of
sign-constrained perceptrons.

1 Introduction

A simple mathematical model for a neuron is a perceptron, which computes
a function fth : R

n → {−1, 1} of the form fth(x) = ϕ(wT x − θ ) (McCulloch &
Pitts, 1943; Minsky & Papert, 1988; Rosenblatt, 1962; Haykin, 1999). The
activation function ϕ is defined by ϕ(z) = 1 if z ≥ 0, else ϕ(z) = −1. w =
(w1, . . . , wn)T is the weight vector, and θ is the threshold. θ and w are the
adjustable parameters of a perceptron that can be changed during learning.
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If one uses a perceptron as the model for a readout neuron from a neural
circuit, then the vector x = (x1, . . . , xn)T represents the synaptic inputs that
this readout receives at a certain time t from a set of n neurons in the circuit.
If the neurons in the circuit are modeled as spiking neurons, then xi could,
for example, be defined as the number of spikes that the ith presynaptic
neuron emitted during a preceding time interval [t − �, t] of length �.
In this case xi represents an estimate of the current firing rate of the ith
presynaptic neuron.

For an unconstrained perceptron, it is quite clear how the neural circuit
that contains the n presynaptic neurons of this readout could optimally
support the discrimination capability of the perceptron for m activation
patterns x(1), . . . , x(m) of the n presynaptic neurons: it should make sure
that the n-dimensional inputs x(1), . . . , x(m) are linearly independent. If
that is the case and m ≤ n, then a perceptron can learn (with the help of the
perceptron learning rule) to compute any of the 2m possible classification
functions (or dichotomies) h : {x(1), . . . , x(m)} → {−1, 1}.

However there exists one significant discrepancy between physiological
reality and the perceptron learning rule. In the perceptron learning rule,
and also in most other commonly considered learning algorithm for linear
neurons or perceptrons, weights can assume values of any sign and can even
change their sign in the learning process. However, biological synapses are
either excitatory or inhibitory and usually do not switch between excitation
and inhibition. This fact is commonly referred to as Dale’s law. In fact, many
neurophysiologists prefer the assumption that only excitatory synapses are
directly used for learning, whereas inhibitory synapses are tuned for other
tasks (such as gain regulation or regulation of the firing threshold of a
neuron, or timing of firing). In the latter case, one arrives at a perceptron
with nonnegative weights as a more realistic model for a readout neuron.

We consider in this letter the case where the readout is modeled by a
perceptron with sign-constrained weights (i.e., by a linear threshold gate
that obeys Dale’s law). For any vector s = (s1, . . . , sn) ∈ {−1, 1}n, we define
R

n
s ⊆ R

n as

R
n
s = {w = (w1, . . . , wn) ∈ R

n|wi si ≥ 0 for all i ∈ {1, . . . , n}}. (1.1)

A set R
n
s of this type represents the space of possible weight assignments

for such a perceptron, with si = 1 if the ith presynaptic neuron is excitatory
and si = −1 if it is inhibitory. We define R

n
+ as the nonnegative subset of

R
n: R

n
+ = R

n
(1,...,1). An n-dimensional point (vector) w is called nonnegative

if w ∈ R
n
+.

For a list 〈〈x(1), t(1)〉, . . . , 〈x(m), t(m)〉〉 of training examples 〈x(i), t(i)〉
with target outputs t(i) ∈ {−1, 1}, the goal of perceptron learning is to
find a weight vector w ∈ R

n and a bias θ such that ϕ(wT x(i) − θ ) = t(i)
for i = 1, . . . , m. For unconstrained weights, this is achieved, according
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to the perceptron convergence theorem, by the perceptron learning algo-
rithm, provided that such weight vector exists (Rosenblatt, 1962; Minsky
& Papert, 1988). A variation of the perceptron convergence theorem for
sign-constrained weights was proven in Amit, Wong, and Campbell (1989).
However this result provides no information about the discrimination ca-
pability of a sign-constrained perceptron. It tells us only that if a sign-
constrained perceptron can implement a given dichotomy, then it can learn
it. Hence the result of Amit, Wong, et al. (1989) reduces all questions regard-
ing learnability to realizability of given dichotomies by a sign-constrained
perceptron. The latter is the topic of this letter.

The storage capacity of recurrent attractor neural networks with sign-
constrained weights was investigated in Amit, Campbell, and Wong (1989),
based on the classical result by Gardner (1987) for unconstrained weights.
For a single perceptron with input dimension n, Gardner calculated the
relative volume of the weight space, which implements a randomly drawn
dichotomy on p randomly drawn patterns from {−1, 1}n. The volume was
calculated as a function of the loading level α = p/n. Gardner (1987) showed
that there is a critical value αc = 2 of the loading level in the following sense:
in the limit of large n, the relative volume of weights that implement a partic-
ular dichotomy on p patterns (averaged over randomly drawn dichotomies
and randomly drawn patterns) vanishes for a loading level above αc = 2.
Amit, Campbell, et al. (1989) showed that for sign-constrained weights, αc is
exactly one-half of the value in the unconstrained case. However, this result
does not provide information about the number of dichotomies that can
be implemented by sign-constrained perceptrons for a given set of input
patterns for finite n and does not determine the structure of point sets that
maximize this number. Hence, it does not provide any information regard-
ing the questions investigated in this letter. However, we show that for the
interesting case of a critical loading level α = 1, there exist point sets for
which any dichotomy can be implemented with sign-constrained weights
and that one can identify those point sets.

Building on the work of Gardner (1987) and Brunel, Hakim, Isope, Nadal,
and Barbour (2004) calculated the weight distribution of a perceptron with
nonnegative weights that stores a random set of patterns near its critical
loading level. The authors showed that the perceptron with nonnegative
weights is a good model for cerebellar Purkinje cells (with respect to linear
summation and a small time window of temporal integration of inputs).
Fitting their analytically derived weight distributions to that measured for
granule cell–Purkinje cell synapses, a good agreement could be achieved.
The main conclusion of this work was that optimal weight distributions
for perceptrons with nonnegative weights contain a significant amount
(more than 50%) of silent synapses (those with zero weight). The fact that
such silent synapses are not pruned (they obviously do not contribute to
the network behavior), points to the importance of sustained flexibility
of neurons even in the adult (Brunel et al., 2004). The question how the
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(positive) weight constraint of these synapses reduces the flexibility of
computation and learning for a Purkinje cell (modeled by a perceptron)
was not addressed in that article. This question is the main topic of this
letter.

So far, little has been known about the expressive power and generaliza-
tion capability of sign-constrained perceptrons. The VC-dimension (which
has value n + 1 for an unconstrained perceptron with input dimension n) is
a standard measure for the expressive power and generalization capability
of a learning device (see Vapnik, 1998, and Bartlett & Maass, 2003). The VC-
dimension of a class H of hypotheses (the class of hypotheses which can
be implemented by the learner) is defined as the size of the largest set S of
points on which hypotheses from H have unrestricted expressive power (in
the sense that any h′ : S → {−1, 1} can be realized by some h ∈ H). Hence,
it informs us about the size of the largest possible best-case input point set
for the hypothesis class H. We show in section 2 that the VC-dimension
of sign-constrained perceptrons is only by 1 smaller than that of uncon-
strained perceptrons. This implies that there exist also for sign-constrained
perceptrons sets S = {x(1), . . . , x(n)} ⊆ R

n of n inputs on which a percep-
tron can produce (and also learn according to Amit, Wong, et al., 1989) each
of the 2n theoretically possible dichotomies—in spite of its sign constraint.
However, we show in section 3 that such sets S for which sign-constrained
perceptrons achieve their maximal possible flexibility (we call such sets S
shatterable) are much sparser than for unconstrained perceptrons. Whereas
unconstrained perceptrons achieve this for any set S of ≤ n linearly inde-
pendent vectors x(i), we show in theorem 2 that linear independence does
not entail any significant flexibility for sign-constrained perceptrons. This
fact gives rise to the question whether there exists any property of sets
S = {x(1), . . . , x(m)} ⊆ R

n that guarantees for m ≤ n that a sign-constrained
perceptron can learn to compute all of the 2m possible dichotomies over S.
We present such property in section 3 (see theorem 4). In fact we present a
sufficient and necessary condition that requires checking whether a system
of m linear equations is solvable (the straightforward approach would re-
quire checking 2m systems, which is infeasible for reasonable m). In the case
of m = n, this condition can be stated as: a sign-constrained perceptron can
learn to compute all of the 2m possible dichotomies over {x(1), . . . , x(m)} if
and only if a scaling vector v exists that respects the sign constraints with
nonzero entries such that vT x(i) = 1 for all i .

In the case of perceptrons with nonnegative weights and inputs, this con-
dition can be interpreted as a requirement that all vectors x(i) in the set have
the same norm for a scaled version of the L1 norm (where the components
of v are the scaling factors). Furthermore, in this case, uniformity of the L1

norms of the input vectors x(i) is a sufficient condition for shatterability.
We analyze in section 4 through computer experiments to what extent it
suffices when this property is just approximately satisfied. Furthermore we
show that the classification capability of sign-constrained perceptrons is
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substantially larger for sparse input patterns, thereby exhibiting an unex-
pected new benefit of sparse coding for neural computation.

2 An Optimal Bound for the VC-Dimension of Sign-Constrained
Perceptrons

For a vector s ∈ {−1, 1}n, we denote by Hn
s the class of functions f : R

n →
{−1, 1} computable by perceptrons with weights constrained to have signs
given by s, formally:

Definition 1. For a vector s ∈ {−1, 1}n, Hn
s is the set of functions f : R

n →
{−1, 1} of the form f (x) = ϕ(wT x − θ ) with w ∈ R

n
s and θ ∈ R.

For any class H of functions from some domain D into {−1, 1}, the VC-
dimension of H (VC − Dim(H)) is defined as the size of the largest1 subset
D′ of its domain D, which is shattered by H, that is, for which every di-
chotomy h′ over D′ (each of the 2|D′ | many functions h′ : D′ → {−1, 1}) can
be represented as a restriction of some function h ∈ H to the subdomain
D′ (there exists some h in H so that h′(x) = h(x) for all x ∈ D′). The VC-
dimension of a class H of functions had been introduced by Vapnik and
Chervonenkis (1971) as the main tool for estimating the number of training
examples needed for training a learning algorithm (that outputs hypotheses
from H) in order to achieve a given error probability on test examples (see
Vapnik, 1998; a short review is given in Bartlett & Maass, 2003). It is well
known that the VC-dimension of unconstrained perceptrons with n inputs
is n + 1. Figure 1 illustrates how the class of unconstrained perceptrons
shatters a point set consisting of three points in R

2. We show in this letter
that constraining the weights of a perceptron reduces its VC-dimension
only by 1. This small reduction of the VC-dimension is insofar surprising as
the hypothesis spaceH itself is drastically reduced through the introduction
of a sign constraint vector s, for example, to the class of all monotone linear
threshold functions for s = (1, 1, . . . , 1). It implies that a sign-constrained
perceptron needs (for a worst-case probability distribution of examples)
almost the same number of training examples as an unconstrained percep-
tron in order to achieve a given error rate on test examples, in spite of its
significantly reduced expressive power.

Theorem 1. VC − Dim(Hn
s ) = n, for every s ∈ {−1, 1}n.

We give a formal proof of VC − Dim(Hn
s ) ≥ n in appendix A. Here we

will give the main idea of this proof in order to provide some intuition,

1In case that subsets D′ of arbitrarily large finite size are shattered by H, one says that
the VC-dimension of H is infinite.
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Figure 1: Eight dichotomies for a set D := {(0, 0), (0, 1), (1, 0), (1, 1)} of four
points in R

2 can be realized by the class H2 of unconstrained perceptrons. For
each of the eight functions h ∈ H2 illustrated, the shaded region represents the
half-space where h(x) = 1. When a point x ∈ D satisfies h(x) = 1, it is marked
as an X ; when it satisfies h(x) = −1, it is marked as a circle. The functions illus-
trated show that the subset D′ := {(0, 0), (0, 1), (1, 0)} of D is shattered by H2.
Since each h ∈ H2 defines a half-plane in R

2, one can see easily that the set D
itself cannot be shattered by H2. This is true for any set D of four points in R

2.

which will prove useful also for the following sections. To simplify
matters, we restrict our intuitive arguments to nonnegative weights (i.e.,
s = (1, 1, . . . , 1)). We can assume without loss of generality that the weight
vector is not the null vector.2 A weight vector w ∈ R

n and threshold θ

define a hyperplane by the linear equation wT x = θ . We say that a point x
is above the hyperplane if wT x > θ and below the hyperplane if wT x < θ .
A nonnegative weight vector is constrained to the nonnegative quadrant
of R

n, and the hyperplane is perpendicular to this weight vector. We call a
hyperplane constrained if its weight vector is constrained and nonnegative
if its weight vector is nonnegative.

In order to shatter a point set S with nonnegative perceptrons, all di-
chotomies on S have to be implemented with such restricted hyperplanes.
This can easily be done for n points, which are placed directly on the axes
of the coordinate system (e.g., the point set S = {ei |i = 1, . . . , n}). Here, ei

is the ith unit vector with the ith entry being 1 and other entries being zero
(see Figure 2A). We can find a nonnegative hyperplane that goes through
these points. Then we can slightly tilt the hyperplane such that an arbitrary

2A perceptron with the null weight vector can implement only the two constant
functions, and for a given set of input patterns, these functions can also be implemented
by perceptrons with a nonnegative weight vector of nonzero length.
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Figure 2: Shattering of point sets with nonnegative weights in three dimen-
sions. (A) A nonnegative weight vector w is restricted to the positive quadrant
of weight space. The corresponding hyperplane is indicated by the gray tri-
angle. Lines “behind the hyperplane” are plotted in dark gray. x(1), x(2), and
x(3) are points on the axes of the coordinate system. The hyperplane goes
through these points. (B) A given dichotomy on the points x(1), x(2), and x(3)
can be realized by slightly tilting the hyperplane from A). The hyperplane
shown here corresponds to a perceptron that classifies x(2) negative and x(1) x(3)
positive.

subset of points in S is above the hyperplane, and the other points of S are
below it (see Figure 2B). This finishes our description of the idea for proving
VC − Dim(Hn

s ) ≥ n.
To prove that VC − Dim(Hn

s ) ≤ n, we show that for each point set S that
can be shattered by perceptrons with sign-constrained weights, one can
construct a point set S′ with one additional point, which can be shattered
by some unconstrained perceptron. Hence, if one could shatter a point
set of n + 1 points with constrained perceptrons, the VC-dimension of
unconstrained perceptrons would be at least n + 2, which is a contra-
diction. We sketch the construction of S′ for nonnegative weights (i.e.,
s = (1, 1, . . . , 1)) in the following. Since we can shatter S, we can fix for
each dichotomy hi : S → {−1, 1} one nonnegative hyperplane Hi defined
by w(i), θ (i), which realizes this dichotomy (i = 1, . . . , 2|S|). We can assume
that no point in S is on one of these hyperplanes (a point x is on the hyper-
plane Hi if w(i)T x = θ (i)). Note that for any point x ∈ S, if wT x > θ , then
−wT x < −θ . Hence, the “flipped” hyperplane H′

i defined by −w(i) and
−θ (i) realizes the dichotomy −hi for i ∈ {1, . . . , 2|S|}. Hence, the point set
S can also be shattered with the set of flipped hyperplanes. Furthermore,
there exists a point p that is above all hyperplanes H1, . . . , H2|S| (therefore,
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p 
∈ S).3 This point p is below all flipped hyperplanes H′
1, . . . H′

2|S| . Hence,
there exists a separating hyperplane for each dichotomy on S′ = S ∪ {p} in
{H1, . . . , H2|S| , H′

1, . . . , H′
2|S| }. It follows that S′ can be shattered by uncon-

strained perceptrons. A rigorous proof can be found in appendix A.
Theorem 1 implies that the generalization capabilities of sign-con-

strained perceptrons (for worst-case probability distribution of examples)
are only marginally better than for unconstrained perceptrons. Hence, if
a perceptron learns a classification on some input distribution, there can-
not exist a general guarantee that the number of errors after learning on
data coming from the same distribution is much better for sign-constrained
perceptrons than for unconstrained ones.

3 A Characterization of Those Sets of Patterns on Which
Sign-Constrained Perceptrons Have Unlimited Classification
Capability

The VC-dimension of a class H informs us only about the size of the largest
set S of points that can be shattered by H, that is, on which hypotheses from
H have unrestricted expressive power (in the sense that any h′ : S → {−1, 1}
can be realized by some h ∈ H). But the VC-dimension does not provide any
information about the frequency (or mathematical structure) of these point
sets S that are “ideal” with regard to the expressive power of H. It could,
for example, be the case that these “ideal” sets S are very rare and that
practically, the expressive power of a learning algorithm with hypothesis
space H is much less than suggested by the value of VC − Dim(H). This
question is, for example, relevant if one considers a neuron v (modeled by
a linear threshold gate) in a neural circuit and the sign-vector s is defined
by the type (excitatory or inhibitory) of the n synapses onto this neuron v.
If one wants to know how much this sign constraint s reduces the potential
of this neuron v to learn an arbitrary dichotomy on a given set S of m
activation patterns of the n presynaptic neurons, one needs to know under
what conditions on S this neuron v can shatter this set S. For the classical
theory without a sign constraint, there is a clear answer: a set S ⊆ R

n can
be shattered by a perceptron if and only if the points in S are linearly
independent. But for the case of sign-constrained perceptrons, the situation
is completely different.

Figure 3A shows that for linearly independent points drawn uniformly
from [0, 1]n, the fraction Fshat of point sets S that can be shattered with
nonnegative weights drops exponentially with the dimension n. The same
holds true if the vectors in S are normalized to have the same L2 norm. The

3Consider points of the form γ 1 with 1 = (1, 1, . . . , 1)T and γ > 0. For large enough
γ , we have w(i)T (γ 1) > θ (i) for all i ∈ {1, . . . , 2|S|}, since all w(i) are nonnegative and not
the null vector.
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Figure 3: (A) Only an exponentially decreasing fraction Fshat of sets S of points
drawn uniformly from [0, 1]n can be shattered by nonnegative perceptrons (full
line). The same holds true if the points in S are normalized to have the same L2

norm (dashed line). Each set S consisted of n n-dimensional nonnegative vec-
tors drawn from a uniform distribution on [0, 1]n. For each data point, we have
drawn 105 sets S and determined shatterability with the use of corollary 1 given
below. Lines show fitted exponentials (least mean squares fit). (B) Positive com-
binations of some randomly drawn points q(1), q(2), q(3) in R

3 (which could,
for example, be the columns of the matrix X in equation 3.1) constitute a cone
C (surfaces of C indicated by gray shading). The cone expands unboundedly in
the direction indicated by the dashed lines.

following theorem shows that the number of computable dichotomies for
linearly independent points can in fact be extremely small (logarithmic in
the number of all possible dichotomies) if the sign of weights is constrained.

Theorem 2. For every s ∈ {−1, 1}n and every m ≤ n, there exists a set S of m
linearly independent vectors x ∈ R

n, such that at most m + 1 dichotomies over S
can be implemented by perceptrons from Hn

s .

For the case s = (1, . . . , 1) one can use here the fact that perceptrons with
nonnegative weights can compute only monotone functions. We construct
a set S of linearly independent points x(1), . . . , x(m) that are monotonously
linearly ordered in every dimension: x(i + 1) has in any dimension a value
not less than x(i) in that dimension, for all i ∈ {1, . . . , m − 1}. Obviously, if
x(i) is classified positive by a perceptron with nonnegative weights, then
x( j) is also classified positive for all j > i . Therefore, nonnegative percep-
trons can only compute m + 1 dichotomies over S. The full proof can be
found in appendix B.
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Perceptrons with unconstrained weights can produce all 2m dichotomies
over these sets S of linearly independent points. Therefore, sign-constrained
perceptrons are much less powerful than unconstrained ones in the worst
case. Since the VC-dimension of sign-constrained perceptrons is n, there
is a huge gap between their classification capability for the best and the
worst set S of points. Indeed, our simulation results indicate that most
point sets in high-dimensional input spaces are not shatterable by sign-
constrained perceptrons (see below). Furthermore, theorem 2 shows that
the actual structure of the point set has a strong influence on its shatterabil-
ity. In the following, we analyze which types of point sets are optimal from
the perspective of shatterability. In other words, we analyze how input pat-
terns should be represented in order to give a sign-constrained perceptron
maximal flexibility for classification of these patterns.

Consider a set S of m ≤ n linearly independent points x(1), . . . , x(m) in
R

n. We examine for an arbitrarily fixed s ∈ {−1, 1}n the question of whether
it is possible to compute all 2m possible classifications on these m points
(i.e., one can shatter them) with sign-constrained perceptrons from Hn

s . In
the following discussion, we consider for simplicity the case s = (1, . . . , 1).
To determine the set of all dichotomies on S that could possibly be imple-
mented by a nonnegative perceptron, we analyze the set of scalar products
of points in S with nonnegative vectors v. For a nonnegative weight vector
v, consider the vector

(x(1)T v, x(2)T v, . . . , x(m)T v)T = Xv,

where the ith row of the matrix X is given by x(i)T . For nonnegative v, Xv
is called a positive combination of the columns of X (for short a positive
combination of X).4 Note that one linearly combines here the columns of X
(n points in m-dimensional space) whereas our point set S is given by the
rows of X. The set of all possible positive combinations of X has the form
of a cone. We therefore refer to this set as the cone CX of X:

CX = {y ∈ R
m | y = Xv for some v ∈ R

n
+}. (3.1)

The cone is a convex set and closed under positive combinations (see
Figure 3B). It is the set of points that lie on a ray that passes through the ori-
gin and the convex region spanned by the n points defined by the columns
of X. This cone CX provides complete information about which dichotomies
h can be computed over S = {x(1), . . . , x(m)} by perceptrons with nonneg-
ative weights: these are exactly those dichotomies for which there exists a
point q ∈ CX and a threshold θ so that qi ≥ θ ⇔ h(x(i)) = 1. We can write

4We use the term positive combination for consistency with the literature. However,
nonnegative combination would be more appropriate because factors can be zero.
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Figure 4: For two points x(1), x(2) in three-dimensional space, the column space
of X consists of three points q(1), q(2), q(3) in R

2. (A) Can one shatter the
two points x(1) = (4, 1, 2) and x(2) = (2, 3, 4) by perceptrons with nonnegative
weights? (B) In the column space of X, these two points transform to q(1) =
(4, 2), q(2) = (2, 3), and q(3) = (2, 4). The cone CX is indicated by the gray shaded
region. An ε-ball around 1 is inside the cone (gray circle). Therefore, one can
shatter x(1), x(2) by perceptrons with nonnegative weights. Since the ε-ball
around 1 is in the cone, the two points α = (1, 1 + γ ) and β = (1 + γ, 1) are also in
the cone for some small γ > 0. α ∈ CX implies that a nonnegative weight vector
w exists such that wT x(2) > wT x(1), and x(2) can be classified positive, while x(1)
can be classified negative with this weight vector. Furthermore, β ∈ Cx implies
that a nonnegative weight vector exists such that x(1) is classified positive and
x(2) is classified negative.

this condition without explicitly referring to the threshold θ : exactly those
dichotomies h can be computed over S = {x(1), . . . , x(m)} by perceptrons
with nonnegative weights for which there exists a point q ∈ CX so that
h(x(i)) = 1 ∧ h(x( j)) = −1 ⇒ qi > q j .

We illustrate the statement of the subsequent theorem 3 in an exam-
ple. Two points in three-dimensional space are shown in Figure 4A. The
situation in the two-dimensional column space of X together with the cor-
responding cone is shown in Figure 4B.

The observation above indicates a special role of points having the same
value in all dimensions, for example, 1 (the vector having entry 1 in all
dimensions). Consider, for example, the set of points Q = {1, 1 + γ }m for
some small γ > 0. This set consists of points that differ from 1 by γ in an
arbitrary set of dimensions, that is, points q of the form q = (1 + γ1, 1 +
γ2, . . . , 1 + γm)T , where γi can be either 0 or γ . If Q ⊂ CX, then it follows
from the preceding observations that all dichotomies can be computed
over S by perceptrons with nonnegative weights. If a small ball around
1 = (1, 1, . . . , 1)T is in CX, then for small enough γ , Q is a subset of the
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cone. Hence, any dichotomy can be computed over S by perceptrons with
nonnegative weights if a small ball around 1 is in the cone CX.

We formalize and generalize these ideas. An ε-ball around a vector x is
the set of points {y | ‖x − y‖ < ε}, where ‖ · ‖ denotes the L2 norm. For
a matrix X, let CX be the cone spanned by the columns of X and 1 be
the vector having entry 1 in all dimensions. Let Ds denote the diagonal
matrix with the sign constraints s in its diagonal, that is, the elements of
Ds = [di j ]i, j=1,...,n are dii = si for i = 1, . . . , n, and di j = 0 for i 
= j . Note that
for a matrix X, the multiplication X · Ds multiplies the ith column of X with
the sign constraint si , i = 1, . . . , n.

Theorem 3. Fix any s ∈ {−1, 1}n. Let S = {x(1), . . . , x(m)} be a set of m ≤ n
linearly independent n-dimensional points, and let the ith row of the m × n matrix
X be given by x(i)T for i = 1, . . . , m. S can be shattered by Hn

s if and only if an
ε-ball around 1 lies inside the cone C(X·Ds).

The proof of the “if”-part of this theorem was sketched in the preceding
discussion (a full proof is given in appendix C). For the “only if” part, one
intuitive idea is to construct an ε-ball from the points defined by the 2m

dichotomies, thereby taking the reverse route in the preceding argument.
However, the proof that such a construction is possible is not straight-
forward. Instead we employ a well-known theorem from economics: the
theorem of separating hyperplanes. The full proof of theorem 3 is given in
appendix C.

The condition given by theorem 3 is not easy to verify in practice for a
given sets of points. The criterion can be stated in a simpler form with the
help of the following lemma. For an m × n matrix X and a vector v ∈ R

n, let
Rv(X) be the set of columns of X for which v has nonzero entries, that is,
Rv(X) = {column i of X|vi 
= 0}.

Lemma 1. Let S = {x(1), . . . , x(m)} be a set of m ≤ n linearly independent n-
dimensional points, and let the ith row of the m × n matrix X be given by x(i)T

for i = 1, . . . , m. An ε-ball around 1 is in the cone CX if and only if there exists
a nonnegative v such that X · v = 1 and Rv(X) contains m linearly independent
vectors.

A rigorous proof of this lemma is given in appendix D. Theorem 3 states
that S can be shattered by Hn

s if and only if an ε-ball around 1 lies inside the
cone CX·Ds . With the help of lemma 1, we see that S can be shattered by Hn

s
if and only if there exists a nonnegative v such that (XDs)v = 1 and Rv(X)
contains m linearly independent vectors. We note that (XDs)v = X(Dsv)
and that v is nonnegative if and only if Dsv ∈ R

n
s . Hence, S can be shattered

by Hn
s if and only if there exists a weight vector v ∈ R

n
s such that Xv = 1 and

v combines (i.e., has nonzero entries for) m linearly independent columns
of X.
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Theorem 4. Let s ∈ {−1, 1}n. Let S = {x(1), . . . , x(m)} be a set of m ≤ n linearly
independent n-dimensional points, and let the ith row of the m × n matrix X be
given by x(i)T for i = 1, . . . , m. S can be shattered by Hn

s if and only if there
exists a v ∈ R

n
s such that Xv = 1 and Rv(X) contains m linearly independent

vectors.

As a consequence of theorem 4, we get the following simple criterion for
m = n.

Corollary 1. Let s ∈ {−1, 1}n, and S = {x(1), . . . , x(n)} be a set of n linearly
independent n-dimensional points. S can be shattered by Hn

s if and only if there
exists a v ∈ R

n
s with all entries being nonzero such that x(i)T v = 1 for i = 1, . . . , n.

Corollary 1 gives a simple criterion for predicting whether a set S of n
n-dimensional points can be shattered by sign-constrained perceptrons. If
the matrix X that consists of the rows x(1)T , . . . , x(n)T does not have full
rank, this is not possible. If X has full rank, compute v = X−11. Since the
solution to this equation is unique, S can be shattered by sign-constrained
perceptrons from Hn

s if and only if v satisfies the sign constraints given by s.
Obviously this criterion is much easier to test than checking for each of the
2n possible dichotomies h over S whether h can be realized with the given
sign constraint.

We add another corollary for the case of perceptrons with nonnegative
weights and n = m:

Corollary 2. Let S = {x(1), . . . , x(n)} be a set of n linearly independent n-
dimensional points. S can be shattered by Hn

(1,1,...,1) if and only if there exists a
positive v such that x(i)T v = 1 for i = 1, . . . , n.

For the biologically important case of nonnegative inputs, the product x(i)T v
in corollary 2 can be interpreted as a scaled L1 norm of x(i). In this inter-
pretation, the condition of corollary 2 is that there exists a positive scaling
factor vi for each dimension i of the nonnegative input vectors such that
the L1 norm of the scaled vectors is uniform, that is, that there exists some
positive scaling vector v such that

∑n
j=1 v j x j (i) = 1 for i = 1, . . . , n. Note

that corollary 2 implies a simple sufficient condition for shatterability of
S ⊆ R

n
+ with nonnegative weights: the condition that all points in S have

the same (nonzero) L1 norm.

4 Approximate Uniformization of the L1 Norm

We concentrate in the following on perceptrons with nonnegative weights
and inputs for simplicity. Analogous arguments apply to general sign con-
straints. Corollary 2 implies that a set S of nonnegative vectors can be shat-
tered by perceptrons with nonnegative weights if all of these vectors have
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Figure 5: Fraction Fshat of randomly drawn point sets S that can be shat-
tered by perceptrons with nonnegative weights (solid lines) and fraction Fdich

of dichotomies that can be implemented by perceptrons with nonnegative
weights over randomly drawn sets S (dashed line). Each set S consisted of
n n-dimensional nonnegative vectors drawn from a uniform distribution on
[0, 1]n. The parameter γ determines the spread of different L1 norms in S (see
text). Dependency of Fshat on dimension (A) and dependency on γ for di-
mension n = 100 (B, solid line) are shown. Fdich was estimated by testing 200
dichotomies that were randomly drawn from a uniform distribution on over all
possible dichotomies.

the same L1 norm, because then we get X · (c · 1) = 1 for some scalar c > 0.
This is not true if the vectors in S have the same L2 norm. This confirms our
simulation results that sets S of nonnegative vectors with uniform L1 norm
can be shattered by perceptrons with nonnegative weights, whereas sets S
of nonnegative vectors with uniform L2 norm do not have this property in
general (see Figure 3A). What happens if the L1 norms of the vectors in S
are just slightly jittered around a constant value? We have performed com-
puter simulations to elucidate this question. Vectors were drawn randomly
from a uniform distribution over [0, 1]n. Each vector x was then normalized
to (1 + r ) · x/||x||L1 , where r is a random number (different for each vec-
tor) drawn from the uniform distribution on the interval [−γ /2,+γ /2]. For
each dimension and each γ , 30,000 such sets S, were drawn. Then for each
such set S we determined with the help of corollary 1 whether the set can
be shattered by a perceptron with nonnegative weights. The fraction Fshat

of sets S that could be shattered with nonnegative weights is shown for
different γ values as a function of n in Figure 5A. Figure 5B shows that it
drops for fixed n = 100 very fast with increasing γ .

Even if a set S cannot be shattered, the number of dichotomies over S
that can be computed by sign-constrained perceptrons could still be quite
large. This was tested in further computer simulations. Let Fdich denote
the fraction of dichotomies that can be computed by a perceptron with
nonnegative weights. We show in Figure 5B that Fdich decays more
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Figure 6: The sparsity of input vectors influences the classification capabilities
of perceptrons with nonnegative weights. The “neural activity” on the horizon-
tal axis is the percentage of nonzero entries in the vectors of the point sets S.
Point sets S consisted of 100 linearly independent 100-dimensional nonnegative
vectors. (A) Fraction Fshat of point sets S that can be shattered by perceptrons
with nonnegative weights for different neural activities. (Sets of vectors with
only one nonzero dimension per vector can always be shattered in a trivial way.
However, very sparse vectors with more than one nonzero dimension have a
very low probability of being shatterable, an effect for which we could not find
a full explanation.) For each point in the plot, we tested 500 randomly chosen
point sets. (B) Fraction Fdich of dichotomies that can be realized by perceptrons
with nonnegative weights on point sets S for different neural activities. For each
point in the plot, we tested 200 randomly chosen dichotomies on each of the
250 randomly chosen point sets. The parameter γ determines the spread of L1

norms in the set (see text).

gracefully with γ than the fraction Fshat of shatterable sets, but still ap-
proaches 0 if the L1 norm of the patterns x is not sufficiently uniform.

Neural activity in biological neural circuits is known to be sparse. We
therefore also considered the impact of sparse input vectors on the clas-
sification capability of a sign-constrained perceptron. Sparse vectors were
produced by setting all except a given percentage of randomly chosen com-
ponents5 of each input vector x to zero (we term this percentage “neural
activity”).6 Figure 6A shows that sparse input sets have a higher proba-
bility of being shatterable than nonsparse ones. This effect is even more
pronounced if one probes the number of dichotomies that can be realized
with nonnegative weights on sparse sets (see Figure 6B).

5Implemented by drawing random permutations of the components (1, . . . , n).
6Very sparse sets tend to produce singular matrices (in our case, this tends to happen

up to a dimension of 10). We therefore added only vectors to the set that were not linearly
dependent on the previously chosen vectors.
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5 Discussion

We have presented theoretical results on the generalization capability (the
VC-dimension) and expressive power of sign-constrained perceptrons. We
have also exhibited a simple necessary and sufficient condition for points
sets S that tells us when exactly sign-constrained perceptrons have the same
full classification capability over S as unconstrained perceptrons. A result-
ing sufficient criterion is the uniformity of L1 norms in S. Computer tests
with randomly drawn point sets S show also that an approximate satis-
faction of the uniformity of L1 norms increases the chance that S can be
shattered with sign-constrained perceptrons. We have also demonstrated
that the experimentally observed sparsity of neural activity contributes to
the classification capability of sign-constrained perceptrons. A more de-
tailed analysis of implications of the results of this letter for learning in
circuits of spiking neurons is given in Legenstein and Maass (2006).

Appendix A: Proof of Theorem 1

We first show VC − Dim(Hn
s ) ≥ n. We do this by constructing a set of n

points that can be shattered by Hn
s .

Consider the set of points S = {si ei |i = 1, . . . , n}. Here, ei is the ith unit
vector, with the ith entry being 1 and other entries being zero. Any partition
of S into P, N (P and N are a partition of S if P ∪ N = S and P ∩ N = {}) can
be implemented by a perceptron (vectors in P are assumed to be classified
positive) with θ = 1/2 and the weight vector

w =
∑
x∈P

x. (A.1)

We get wT x = 1 > θ for x ∈ P and wT x = 0 < θ for x ∈ N.
Now we show VC − Dim(Hn

s ) ≤ n. We use the following strategy. We
show that if one can shatter a set of n + 1 points in n-dimensional space
by Hn

s , then one can shatter a set of n + 2 points with perceptrons without
weight restrictions. This is a contradiction to well-known results about the
VC-dimension of perceptrons.

Suppose that VC − Dim(Hn
s ) = n + 1. We can then shatter a set S of n + 1

points in n-dimensional space. For each partition P, N of S, let wP,N, θ P,N

be a weight vector and threshold that separate P from N (points in P are
classified positive; note that we fix one weight vector and threshold for
each pair P, N). We can assume without loss of generality (w.l.o.g.) that
wP,N 
= (0, . . . , 0) for all partitions P, N of S and (wP,N)T x − θ P,N 
= 0 for all
partitions P, N of S and x ∈ S.

There exists a point p ∈ R
n that is classified positive by all wP,N, θ P,N.

To show this, we consider the point p = αs for some α > 0. This point is
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classified positive for all partitions P, N of S, if
∑n

i=1 w
P,N
i pi =

α
∑n

i=1 |wP,N
i | > θ P,N for all P, N. Since wP,N 
= (0, . . . , 0) for all partitions

P, N of S, this is true for

α > max
P,N

{
θ P,N∑n

i=1

∣∣wP,N
i

∣∣
}

. (A.2)

Hence, p exists, and since it is classified positive by all weight vectors and
thresholds, p is not in S.

One can shatter S ∪ {p} with unconstrained weights in the following way.
In order to implement any partition P ∪ {p}, N, one can simply use wP,N,
and θ P,N since p is classified positive by these weights and thresholds. In
order to implement any partition P, N ∪ {p}, one can use −wN,P and −θ N,P

(note the changed superscripts in wN,P and θ N,P ), since we have:

∀x ∈ P : xT wN,P < θ N,P ⇒ ∀x ∈ P : −xT wN,P > −θ N,P ⇒
⇒ ∀x ∈ P : x is classified positive,

∀x ∈ N : xT wN,P > θ N,P ⇒ ∀x ∈ N : −xT wN,P < −θ N,P ⇒
⇒ ∀x ∈ N : x is classified negative,

pT wN,P > θ N,P ⇒ pT (−wN,P ) < −θ N,P ⇒ p is classified negative.

It follows that the class of perceptrons in n dimensions has a VC-dimension
at least n + 2. This in a contradiction to the fact that the VC-dimension
of perceptrons in n dimensions is n + 1. Therefore, the assumption that
VC − Dim(Hn

s ) ≥ n + 1 was wrong, and the claim of theorem 1 follows.

Appendix B: Proof of Theorem 2

We can assume w.l.o.g. that all weights are restricted to be nonnegative, that
is, w ∈ R

n
+. The result for w ∈ R

n
s simply follows by symmetry (see also the

last paragraph in the proof). The proof idea is the following. We consider
a set of m points in R

n that are ordered according to their index in every
dimension, that is, x(i + 1) has in any dimension a value not less than x(i) in
that dimension for all i . m such points exist that are linearly independent.
Since all components of w are nonnegative, it follows that x(i + 1)T w is
not smaller than x(i)T w for all i . Hence, if x(i) is classified positive, then
for all j > i , x( j) is classified positive. The theorem follows. We make this
mathematically explicit:

Consider a set S = {x(1), . . . , x(m)} of m linearly independent vectors
such that for all i ∈ {1, . . . , m − 1} and all j ∈ {1, . . . , n}, we have xj (i) ≤
xj (i + 1). Such a set exists. The vectors x(1), . . . , x(m) can, for example,
be defined as xj (i) = min{1, max{0, i − j + 1}} (i = 1, . . . , n, j = 1, . . . m).
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Hence, in x(i), the first i components have value 1, and the other components
have value 0. These vectors are obviously linearly independent, and the
criterion xj (i) ≤ xj (i + 1) is fulfilled. For any nonnegative weight vector w
and any i, k with i < k, we have

∑
j x j (i)w j ≤ ∑

j x j (k)w j . Hence, for any
nonnegative weight vector w, any threshold θ , and any i, k with i < k, if
x(i) is classified positive, then x(k) is classified positive. Therefore, no more
than m + 1 dichotomies can be produced with nonnegative weight vectors
on S.

For arbitrary sign-constrained weights, one can simply multiply x(i)
with the ith weight sign. Hence the result is true also for arbitrary sign-
constrained threshold functions.

Appendix C: Proof of Theorem 3

The theorem of separating hyperplanes is the basis of the following proof
(see Strang, 1988, p. 420):

Lemma 2 (theorem of separating hyperplanes). Either Xv = b has a non-
negative solution, or there is a y such that yX ≥ 0, yb < 0.

Proof: “If”-part: Consider a dichotomy h : S → {−1, 1}. Because an ε-ball
around 1 lies inside C(X·Ds), there exists an ε′ > 0 such that the vector b of
the form b = 1 + ε′ ∑m

i=1 ei h(xi ) lies inside C(X·Ds), where ei is the ith unit
vector. Since C(X·Ds) is the set of positive combinations of (X · Ds), there
exists a nonnegative weight vector v such that (X · Ds)v = b. Hence, the
vector ṽ = Dsv satisfies the weight constraints given by s and Xṽ = b. The
dichotomy h is accomplished by setting the threshold θ to 1.

Now we show the “only if” part. We show that if all dichotomies are pos-
sible, then an ε-ball around 1 lies inside C(X·Ds). If all dichotomies are pos-
sible, then for an arbitrary dichotomy h : S → {−1, 1}, there exists a weight
vector v ∈ R

n
+, a threshold θh > 0, and a p̃h ∈ R

m such that XDsv = p̃h and
p̃h

i > θh if h(x(i)) = 1 and p̃h
i < θh if h(x(i)) = −1. Because a nonnegative

weight vector can only project onto points in C(X·Ds), the point ph has to
lie inside C(X·Ds). Since for any point, any scaling of the point is in C(X·Ds),
the point ph = p̃h/θh is in C(X·Ds) and ph

i > 1 if h(x(i)) = 1 and ph
i < 1 if

h(x(i)) = −1.
Consider some ordering of the 2m possible dichotomies h1, . . . , h2m . Since

we can find such a point phi for any of these dichotomies hi , we can construct
an m × 2m matrix P with these points. In P , the j th column corresponds
to the j th dichotomy h j . Hence, there exists an ε′ > 0 such that for any
j ∈ {1, . . . , 2m}, the j th column p( j) of P is such that pi ( j) ≥ 1 + ε′ for
h j (x(i)) = 1 and pi ( j) ≤ 1 − ε′ for h j (x(i)) = −1.

Note that any column of P lies in C(X·Ds). Hence, any positive combination
of columns of P also lies in C(X·Ds), which is closed under such combinations.
We show that any vector b of the form b = 1 + ε

∑m
i=1 ai ei ( for ai ∈ [−1, 1])
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lies inside C(X·Ds) for ε ≤ ε′ (this does actually not define an ε-ball but a
hypercube of side length 2ε, but still a ball is inside the cube). To do this, we
use lemma 1 and show that a y as given there does not exist, which implies
that a nonnegative v exists and b lies inside C(X·Ds). In order to achieve
yT b < 0,

m∑
i=1

yi (1 + εai ) < 0

has to hold. We get

m∑
i=1

yi <−ε

m∑
i=1

ai · yi

≤ ε · ‖y‖L1. (C.1)

Let Spos be the set of indices of nonnegative entries in y and Sneg be the
set of indices of negative entries in y (i.e., Spos ∪ Sneg = {1, . . . , m}, yi ≥ 0
for i ∈ Spos and yi < 0 for i ∈ Sneg). Choose j such that pi ( j) ≥ 1 + ε′ for
i ∈ Sneg and pi ( j) ≤ 1 − ε′ for i ∈ Spos . By lemma 2, either there exists a y of
the form given by equation C.1 such that the product yT p( j) is nonnegative
or Pv = b has a nonnegative solution. The product yT p( j) is

yT p( j) =
∑

i∈Spos

yi pi ( j) −
∑

i∈Sneg

|yi |pi ( j)

≤
∑

i∈Spos

yi (1 − ε′) −
∑

i∈Sneg

|yi |(1 + ε′)

=
∑

i∈Spos

yi −
∑

i∈Sneg

|yi | −
∑

i∈Spos

yiε
′ −

∑
i∈Sneg

|yi |ε′

<ε · ‖y‖L1 − ε′ ∑
i

|yi |

= ε · ‖y‖L1 − ε′‖y‖L1.

Hence, for ε ≤ ε′, we have yT p( j) < 0. It follows from lemma 2 that Pv = b
has a nonnegative solution. This implies that b lies inside C(X·Ds).

Appendix D: Proof of Lemma 1

We first show the “if” part. We can choose m linearly independent columns
in X out of Rv(X) and write them in an m × m matrix X∗. We write the
corresponding entries of v in a vector v∗. The remaining columns of X are
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collected in an m × (n − m) matrix X̄ and the corresponding entries in v in
v̄. We can now write the linear equation as

Xv = X∗v∗ + X̄v̄ = 1.

Since X∗ is invertible, v∗ is given by

v∗ = X∗−1(1 − X̄v̄).

We decompose the equation X · v′ = b for a vector b ∈ R
n in a similar

manner:

Xv′ = X∗v′∗ + X̄v̄ = b.

We consider vectors b of the form b = 1 + ε′ ∑m
i=1 ei pi with pi ∈ [−1, 1]

defining a hypercube around 1. If for small enough ε′, there exists a non-
negative solution for v′ for any such vector, then an ε-ball around 1 lies
inside the cone CX. For such b, we have

v′∗ = X∗−1 ·
(

1 + ε′
m∑

i=1

ei pi − X̄v̄

)

= v∗ + X∗−1 · ε′
m∑

i=1

ei pi .

Let x−1
i j denote the entry in the ith row and j th column of X∗−1. For 0 <

ε′ <
mini {v∗

i }
m·maxi, j {|x−1

i j |} , we get for arbitrary k ∈ {1, . . . , m}

v′∗
k ≥ v∗

k − ε′ · m · max
i, j

{∣∣x−1
i j

∣∣}
>v∗

k − min
i

{v∗
i } ≥ 0.

It follows that v′ is nonnegative for any b of the form b = 1 + ε′ ∑m
i=1 ei pi

with pi ∈ [−1, 1]. Therefore, an ε-ball around 1 lies inside CX.
Now we show the “only-if” part of the lemma. Since an ε-ball lies inside

CX, there exist m linearly independent points y(1), . . . , y(m) such that an
ε′-ball around 1 lies inside the cone of these points. These points could, for
example, be y(i) = 1 + ε∗ei for i = 1, . . . , m and some ε∗ > 0. Let the ith
column of the m × m matrix Y be given by y(i) for i = 1, . . . , m. Y has full
rank m and is given by

Y = X · W
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for some nonnegative matrix W. W might have rows with zero entries only.
However, rows of W with nonzero entries correspond to a set of columns
of X consisting of m linearly independent vectors. More precisely, the set

RW(X) = {column i of X|∃ j : wi j > 0}

contains m linearly independent vectors. Otherwise, Y could not have full
rank.

There exists a unique and nonnegative v∗ such that Y · v∗ = 1. Since
Y = X · W, we have

X · W · v∗ = 1.

We consider the weight vector v = W · v∗ (hence, we have X · v = 1). We
assume that v∗ is positive in the following (this will be proven at the end
of this proof). Since W is nonnegative, it follows from the assumption that
v∗ is positive that v has nonzero entries for rows of W that are not entirely
consisting of zeros. Hence,

Rv(X) = {column i of X|vi 
= 0} = {column i of X|∃ j : wi j > 0} = RW(X).

Hence, under the assumption that v∗ is positive, Rv(X) contains m linearly
independent vectors (see arguments about RW(X) given above).

It remains to be shown that v∗ is positive. The solution to Yv∗ = 1 is
unique, and v∗

i ≥ 0 holds for i = 1, . . . , m. In the following we consider the
case of zero entries in v∗. Recall that an ε-ball around 1 lies inside CY and that
v∗ is the solution to Yv∗ = 1. Assume that v∗

i = 0 for some i ∈ {1, . . . , m}.
Since an ε-ball around 1 lies inside CY, there exists an ε′ > 0 such that for
arbitrary j ∈ {1, . . . , m} and p ∈ {−1, 1}, there exists a nonnegative v′( j, p)
such that

v′( j, p) = Y−1 (
1 + ε′e j p

)
= Y−11 + Y−1ε′e j p

= v∗ + Y−1ε′e j p.

The ith component of v′( j, p) is therefore (note that i was chosen such that
v∗

i = 0)

v′
i ( j, p) = ε′eT

i Y−1e j p

= ε′ · p · c( j),
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where c( j) = eT
i Y−1e j . We can find some j such that c( j) 
= 0 since otherwise

Y−1 would have a row consisting of zeros only, which implies that it is not
invertible. Hence, we can choose a j ∈ {1, . . . , m} and a p ∈ {−1, 1} such
that v′

i ( j, p) < 0 which leads to a contradiction. Hence, the assumption that
v∗ is positive holds, which finally proves the lemma.
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