Branch-specific plasticity enables self-organization of nonlinear computation in single neurons

R. Legenstein and W. Maass

Abstract:

It has been conjectured that nonlinear processing in dendritic branches endows individual neurons with the capability to perform complex computational operations that are needed in order to solve for example the binding problem. However, it is not clear how single neurons could acquire such functionality in a self-organized manner, since most theoretical studies of synaptic plasticity and learning concentrate on neuron models without nonlinear dendritic properties. In the meantime, a complex picture of information processing with dendritic spikes and a variety of plasticity mechanisms in single neurons has emerged from experiments. In particular, new experimental data on dendritic branch strength potentiation in rat hippocampus have not yet been incorporated into such models. In this article, we investigate how experimentally observed plasticity mechanisms, such as depolarization-dependent STDP and branch-strength potentiation could be integrated to self-organize nonlinear neural computations with dendritic spikes. We provide a mathematical proof that in a simplified setup these plasticity mechanisms induce a competition between dendritic branches, a novel concept in the analysis of single neuron adaptivity. We show via computer simulations that such dendritic competition enables a single neuron to become member of several neuronal ensembles, and to acquire nonlinear computational capabilities, such as for example the capability to bind multiple input features. Hence our results suggest that nonlinear neural computation may self-organize in single neurons through the interaction of local synaptic and dendritic plasticity mechanisms.



Reference: R. Legenstein and W. Maass. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of Neuroscience, 31(30):10787-10802, 2011.