Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity

R. Legenstein, D. Pecevski, and W. Maass


Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how local learning rules at single synapses support behaviorally relevant adaptive changes in complex networks of spiking neurons. However the potential and limitations of this learning rule could so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allow us to predict under which conditions reward-modulated STDP will be able to achieve a desired learning effect. In particular, we can produce in this way a theoretical explanation and a computer model for a fundamental experimental finding on biofeedback in monkeys (reported in [1])

Reference: R. Legenstein, D. Pecevski, and W. Maass. Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticity. In Proc. of NIPS 2007, Advances in Neural Information Processing Systems, volume 20, pages 881-888. MIT Press, 2008.