A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models

A. Kaske and W. Maass

Abstract:

It is shown that real-time computations on spike patterns and temporal integration of information in neural microcircuit models are compatible with potentially descruptive additional inputs such as oscillations. A minor change in the connection statistics of such circuits (making synaptic connections to more distal target neurons more likely for excitatory than for inhibitory neurons) endows such generic neural microcircuit model with the ability to generate periodic patterns autonomously. We show that such pattern generation can also be multiplexed with pattern classification and temporal integration of information in the same neural circuit. These results can be interpreted as showing that periodic activity provides a second channel for communication in neural systems which can be used to synchronize or coordinate spatially separated processes, without encumbering local real-time computations on spike trains in diverse neural circuits.



Reference: A. Kaske and W. Maass. A model for the interaction of oscillations and pattern generation with real-time computing in generic neural microcircuit models. Neural Networks, 19(5):600-609, 2006.