Institut für Grundlagen der
    Informationsverarbeitung (708)
Assoc. Prof. Dr. Robert Legenstein
Office hours: by appointment (via e-mail)
E-mail: robert.legenstein@igi.tugraz.at
    Homepage: www.igi.tugraz.at/legi/
| Date | Speaker | Paper | |
| 
           Mar 28, 2012  | 
        
           Robert Legenstein  | 
        
           A quick introduction to Boltzmann Machines  | 
      |
| 
           Apr 25, 2012  | 
        
           Daniel Markl  | 
        
           Reducing the dimensionality of data with neural networks, Slides  | 
      |
| 
           
  | 
        
           
  | 
        
           
  | 
      |
| 
           May 23, 2012  | 
        
           Teresa Klatzer  | 
        
           Learning Deep Architectures for AI (2), Slides  | 
      |
| 
           Jun 6, 2012  | 
        
           Florian Hubner  | 
        
           Unsupervised learning of image transformations, Slides  | 
      |
| 
           Jun 13, 2012  | 
        
           Markus Eger  | 
        
           The Recurrent Temporal Restricted Boltzmann Machine, Slides  | 
      |
| 
           Jun 20, 2012  | 
        
           Gernot Griesbacher  | 
        
           Neural sampling: A model for stochastic computation in recurrent networks of spiking neurons, Slides  | 
      |
| 
           Jun 20, 2012  | 
        
           Michael Rath  | 
        
           Probabilistic inference in general graphical models
          through sampling in stochastic networks of spiking
          neurons, 
          Slides  | 
      |
| Jul 04, 2012 | 
        Philipp Singer | 
        Discovering Binary Codes
        for Documents by Learning Deep Generative Models, 
        Slides | 
      
| 
          Hinton, G. E. and
          Salakhutdinov, R. R. 
            Reducing the dimensionality of data
            with neural networks. The science paper that made deep networks
          popularScience, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006. [ full paper ] [ supporting online material (pdf) ] [ Matlab code ]  | 
      
| 
          Hinton, G. E.,
          Osindero, S. and Teh, Y. 
            A fast learning algorithm for deep
            belief nets The basis for deep learning: the contrastive
          divergence learning algorithmNeural Computation 18, pp 1527-1554. 2006. [pdf]  | 
      
| 
          Taylor, G. W., Hinton, G. E. and Roweis, S. 
            Modeling human motion using binary
            latent variables Advances in Neural Information Processing Systems, 19 MIT Press, Cambridge, MA, 2007 [pdf]  | 
      
| 
          Memisevic, R. and Hinton, G. E.. | 
      
| 
          Salakhutdinov R. R, Mnih, A. and Hinton, G. E. 
            Restricted Boltzmann Machines for
            Collaborative Filtering 
        International Conference on Machine Learning, Corvallis, Oregon, 2007 [pdf]  | 
      
| 
          Sutskever, I., Hinton, G. E. and Taylor, G. W. 
            The Recurrent Temporal Restricted
            Boltzmann Machine 
        Advances in Neural Information Processing Systems 21, MIT Press, Cambridge, MA [pdf]  | 
      
| 
          Memisevic, R. and Hinton, G. E. 
            Learning to represent spatial
            transformations with factored higher-order Boltzmann
            machines 
        Neural Computation, Vol 22, pp 1473-1492 [pdf]  | 
      
| 
          Hinton, G. E. and Salakhutdinov, R. 
            Discovering Binary Codes for Fast
            Document Retrieval by Learning Deep Generative
            Models Topics in Cognitive Science, Vol 3, pp 74-91 [pdf]  | 
      
| 
          Ruslan Salakhutdinov, Josh Tenenbaum , Antonio
          Torralba. 
            Learning to Learn with Compound
            Hierarchical-Deep Models 
        Neural Information Processing Systems (NIPS 25), 2012 [ pdf]  | 
      
| 
          Ruslan Salakhutdinov and Geoffrey Hinton. 
            An Efficient Learning Procedure for
            Deep Boltzmann Machines 
        MIT Technical Report MIT-CSAIL-TR-2010-037, 2010 [ pdf]  | 
      
| 
          Yoshua Bengio.  
            Learning Deep Architectures for
            AI 
        Foundations and Trends in Machine Learning: Vol. 2: No. 1, pp 1-127, 2009 [pdf]  | 
      
| 
          L. Büsing, J. Bill, B. Nessler, and
          W. Maass  
            Neural dynamics as sampling: A model
            for stochastic computation in recurrent networks of
            spiking neurons. PLoS Computational Biology,
            published 03 Nov 2011. doi:10.1371/journal.pcbi.1002211
            (pdf)
           
         | 
      
| This paper shows how Boltzman
        machines can be implemented by networks of spiking
        neurons. | 
      
| 
          D. Pecevski, L. Büsing, and
          W. Maass  
            Probabilistic inference in general
            graphical models through sampling in stochastic
            networks of spiking neurons. 
        PLoS Computational Biology, 7(12):e1002294, 2011 (pdf)  |