Institut für Grundlagen der
Informationsverarbeitung (708)
Assoc. Prof. Dr. Robert Legenstein
Office hours: by appointment (via e-mail)
E-mail: robert.legenstein@igi.tugraz.at
Homepage: www.igi.tugraz.at/legi/
Date | Speaker | Paper | |
Mar 28, 2012 |
Robert Legenstein |
A quick introduction to Boltzmann Machines |
|
Apr 25, 2012 |
Daniel Markl |
Reducing the dimensionality of data with neural networks, Slides |
|
|
|
|
|
May 23, 2012 |
Teresa Klatzer |
Learning Deep Architectures for AI (2), Slides |
|
Jun 6, 2012 |
Florian Hubner |
Unsupervised learning of image transformations, Slides |
|
Jun 13, 2012 |
Markus Eger |
The Recurrent Temporal Restricted Boltzmann Machine, Slides |
|
Jun 20, 2012 |
Gernot Griesbacher |
Neural sampling: A model for stochastic computation in recurrent networks of spiking neurons, Slides |
|
Jun 20, 2012 |
Michael Rath |
Probabilistic inference in general graphical models
through sampling in stochastic networks of spiking
neurons,
Slides |
|
Jul 04, 2012 |
Philipp Singer |
Discovering Binary Codes
for Documents by Learning Deep Generative Models,
Slides |
Hinton, G. E. and
Salakhutdinov, R. R.
Reducing the dimensionality of data
with neural networks. The science paper that made deep networks
popularScience, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006. [ full paper ] [ supporting online material (pdf) ] [ Matlab code ] |
Hinton, G. E.,
Osindero, S. and Teh, Y.
A fast learning algorithm for deep
belief nets The basis for deep learning: the contrastive
divergence learning algorithmNeural Computation 18, pp 1527-1554. 2006. [pdf] |
Taylor, G. W., Hinton, G. E. and Roweis, S.
Modeling human motion using binary
latent variables Advances in Neural Information Processing Systems, 19 MIT Press, Cambridge, MA, 2007 [pdf] |
Memisevic, R. and Hinton, G. E.. |
Salakhutdinov R. R, Mnih, A. and Hinton, G. E.
Restricted Boltzmann Machines for
Collaborative Filtering
International Conference on Machine Learning, Corvallis, Oregon, 2007 [pdf] |
Sutskever, I., Hinton, G. E. and Taylor, G. W.
The Recurrent Temporal Restricted
Boltzmann Machine
Advances in Neural Information Processing Systems 21, MIT Press, Cambridge, MA [pdf] |
Memisevic, R. and Hinton, G. E.
Learning to represent spatial
transformations with factored higher-order Boltzmann
machines
Neural Computation, Vol 22, pp 1473-1492 [pdf] |
Hinton, G. E. and Salakhutdinov, R.
Discovering Binary Codes for Fast
Document Retrieval by Learning Deep Generative
Models Topics in Cognitive Science, Vol 3, pp 74-91 [pdf] |
Ruslan Salakhutdinov, Josh Tenenbaum , Antonio
Torralba.
Learning to Learn with Compound
Hierarchical-Deep Models
Neural Information Processing Systems (NIPS 25), 2012 [ pdf] |
Ruslan Salakhutdinov and Geoffrey Hinton.
An Efficient Learning Procedure for
Deep Boltzmann Machines
MIT Technical Report MIT-CSAIL-TR-2010-037, 2010 [ pdf] |
Yoshua Bengio.
Learning Deep Architectures for
AI
Foundations and Trends in Machine Learning: Vol. 2: No. 1, pp 1-127, 2009 [pdf] |
L. Büsing, J. Bill, B. Nessler, and
W. Maass
Neural dynamics as sampling: A model
for stochastic computation in recurrent networks of
spiking neurons. PLoS Computational Biology,
published 03 Nov 2011. doi:10.1371/journal.pcbi.1002211
(pdf)
|
This paper shows how Boltzman
machines can be implemented by networks of spiking
neurons. |
D. Pecevski, L. Büsing, and
W. Maass
Probabilistic inference in general
graphical models through sampling in stochastic
networks of spiking neurons.
PLoS Computational Biology, 7(12):e1002294, 2011 (pdf) |