
A Genetic Algorithm for Function Optimization: AMatlab ImplementationChristopher R. HouckNorth Carolina State UniversityandJe�ery A. JoinesNorth Carolina State UniversityandMichael G. KayNorth Carolina State UniversityA genetic algorithm implemented in Matlab is presented. Matlab is used for the following reasons:it provides many built in auxiliary functions useful for function optimization; it is completelyportable; and it is e�cient for numerical computations. The genetic algorithm toolbox developedis tested on a series of non-linear, multi-modal, non-convex test problems and compared withresults using simulated annealing. The genetic algorithm using a oat representation is found tobe superior to both a binary genetic algorithm and simulated annealing in terms of e�ciency andquality of solution. The use of genetic algorithm toolbox as well as the code is introduced in thepaper.Categories and Subject Descriptors: G.1 [Numerical Analysis]: Optimization|UnconstrainedOptimization, nonlinear programming, gradient methodsGeneral Terms: Optimization, AlgorithmsAdditional Key Words and Phrases: genetic algorithms, multimodal nonconvex functions, Matlab1. INTRODUCTIONAlgorithms for function optimization are generally limited to convex regular func-tions. However, many functions are multi-modal, discontinuous, and nondi�eren-Name: Christopher R. HouckAddress: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-5188,(919) 515-1543,chouck@eos.ncsu.eduA�liation: North Carolina State UniversityName: Je�ery A. JoinesAddress: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-5188,(919) 515-1543,jjoine@eos.ncsu.eduA�liation: North Carolina State UniversityName: Michael G. KayAddress: North Carolina State University, Box 7906, Raleigh, NC, 27695-7906,USA,(919) 515-2008,(919) 515-1543,kay@eos.ncsu.eduA�liation: North Carolina State UniversitySponsor: This research was funded in part by the National Science Foundation under grant num-ber DMI-9322834.

2 � C. Houck et al.tiable. Stochastic sampling methods have been used to optimize these functions.Whereas traditional search techniques use characteristics of the problem to deter-mine the next sampling point (e.g., gradients, Hessians, linearity, and continuity),stochastic search techniques make no such assumptions. Instead, the next sampledpoint(s) is(are) determined based on stochastic sampling/decision rules rather thana set of deterministic decision rules.Genetic algorithms have been used to solve di�cult problems with objectivefunctions that do not possess \nice" properties such as continuity, di�erentiability,satisfaction of the Lipschitz Condition, etc.[Davis 1991; Goldberg 1989; Holland1975; Michalewicz 1994]. These algorithms maintain and manipulate a family, orpopulation, of solutions and implement a \survival of the �ttest" strategy in theirsearch for better solutions. This provides an implicit as well as explicit parallelismthat allows for the exploitation of several promising areas of the solution space atthe same time. The implicit parallelism is due to the schema theory developed byHolland, while the explicit parallelism arises from the manipulation of a populationof points|the evaluation of the �tness of these points is easy to accomplish inparallel.Section 2 presents the basic genetic algorithm, and in Section 3 the GA is testedon several multi-modal functions and shown to be an e�cient optimization tool.Finally, Section 4 briey describes the code and presents the list of parameters ofthe Matlab implementation.2. GENETIC ALGORITHMSGenetic algorithms search the solution space of a function through the use of sim-ulated evolution, i.e., the survival of the �ttest strategy. In general, the �ttestindividuals of any population tend to reproduce and survive to the next genera-tion, thus improving successive generations. However, inferior individuals can, bychance, survive and also reproduce. Genetic algorithms have been shown to solvelinear and nonlinear problems by exploring all regions of the state space and ex-ponentially exploiting promising areas through mutation, crossover, and selectionoperations applied to individuals in the population [Michalewicz 1994]. A morecomplete discussion of genetic algorithms, including extensions and related topics,can be found in the books by Davis [Davis 1991], Goldberg [Goldberg 1989], Hol-land[Holland 1975], and Michalewicz [Michalewicz 1994]. A genetic algorithm (GA)is summarized in Fig. 1, and each of the major components is discussed in detailbelow.(1) Supply a population P0 of N individuals and respective function values.(2) i 1(3) P 0i selection function(Pi � 1)(4) Pi reproduction function(P 0i)(5) evaluate(Pi)(6) i i+ 1(7) Repeat step 3 until termination(8) Print out best solution foundFig. 1. A Simple Genetic Algorithm

A GA for function optimization � 3The use of a genetic algorithm requires the determination of six fundamentalissues: chromosome representation, selection function, the genetic operators makingup the reproduction function, the creation of the initial population, terminationcriteria, and the evaluation function. The rest of this section describes each ofthese issues.2.1 Solution RepresentationFor any GA, a chromosome representation is needed to describe each individual inthe population of interest. The representation scheme determines how the problemis structured in the GA and also determines the genetic operators that are used.Each individual or chromosome is made up of a sequence of genes from a certainalphabet. An alphabet could consist of binary digits (0 and 1), oating point num-bers, integers, symbols (i.e., A, B, C, D), matrices, etc. In Holland's original design,the alphabet was limited to binary digits. Since then, problem representation hasbeen the subject of much investigation. It has been shown that more natural repre-sentations are more e�cient and produce better solutions[Michalewicz 1994]. Oneuseful representation of an individual or chromosome for function optimization in-volves genes or variables from an alphabet of oating point numbers with valueswithin the variables upper and lower bounds. Michalewicz[Michalewicz 1994] hasdone extensive experimentation comparing real-valued and binary GAs and showsthat the real-valued GA is an order of magnitude more e�cient in terms of CPUtime. He also shows that a real-valued representation moves the problem closerto the problem representation which o�ers higher precision with more consistentresults across replications. [Michalewicz 1994]2.2 Selection FunctionThe selection of individuals to produce successive generations plays an extremelyimportant role in a genetic algorithm. A probabilistic selection is performed basedupon the individual's �tness such that the better individuals have an increasedchance of being selected. An individual in the population can be selected morethan once with all individuals in the population having a chance of being selectedto reproduce into the next generation. There are several schemes for the selectionprocess: roulette wheel selection and its extensions, scaling techniques, tournament,elitist models, and ranking methods [Goldberg 1989; Michalewicz 1994].A common selection approach assigns a probability of selection, Pj , to each indi-vidual, j based on its �tness value. A series of N random numbers is generated andcompared against the cumulative probability, Ci = Pij=1 Pj, of the population.The appropriate individual, i, is selected and copied into the new population ifCi�1 < U (0; 1) � Ci. Various methods exist to assign probabilities to individuals:roulette wheel, linear ranking and geometric ranking.Roulette wheel, developed by Holland [Holland 1975], was the �rst selectionmethod. The probability, Pi, for each individual is de�ned by:P [Individual i is chosen] = FiPPopSizej=1 Fj ; (1)where Fi equals the �tness of individual i. The use of roulette wheel selection limits

4 � C. Houck et al.the genetic algorithm to maximization since the evaluation function must map thesolutions to a fully ordered set of values on <+. Extensions, such as windowing andscaling, have been proposed to allow for minimization and negativity.Ranking methods only require the evaluation function to map the solutions toa partially ordered set, thus allowing for minimization and negativity. Rankingmethods assign Pi based on the rank of solution i when all solutions are sorted.Normalized geometric ranking, [Joines and Houck 1994], de�nes Pi for each indi-vidual by: P [Selecting the ith individual] = q0 (1 � q)r�1; (2)where: q = the probability of selecting the best individual;r = the rank of the individual, where 1 is the best:P = the population sizeq0 = q1�(1�q)PTournament selection, like ranking methods, only requires the evaluation functionto map solutions to a partially ordered set, however, it does not assign probabilities.Tournament selection works by selecting j individuals randomly, with replacement,from the population, and inserts the best of the j into the new population. Thisprocedure is repeated until N individuals have been selected.2.3 Genetic OperatorsGenetic Operators provide the basic search mechanismof the GA. The operators areused to create new solutions based on existing solutions in the population. Thereare two basic types of operators: crossover and mutation. Crossover takes twoindividuals and produces two new individuals while mutation alters one individualto produce a single new solution. The application of these two basic types ofoperators and their derivatives depends on the chromosome representation used.Let �X and �Y be two m-dimensional row vectors denoting individuals (parents)from the population. For �X and �Y binary, the following operators are de�ned:binary mutation and simple crossover.Binary mutation ips each bit in every individual in the population with proba-bility pm according to equation 3.x0i = � 1� xi; if U (0; 1) < pmxi; otherwise (3)Simple crossover generates a random number r from a uniform distribution from1 to m and creates two new individuals (�X 0 and �Y 0) according to equations 4 and 5.x0i = � xi; if i < ryi; otherwise (4)y0i = � yi; if i < rxi; otherwise (5)Operators for real-valued representations, i.e., an alphabet of oats, were de-veloped by Michalewicz [Michalewicz 1994]. For real �X and �Y , the following op-

A GA for function optimization � 5erators are de�ned: uniform mutation, non-uniform mutation, multi-non-uniformmutation, boundary mutation, simple crossover, arithmetic crossover, and heuris-tic crossover. Let ai and bi be the lower and upper bound, respectively, for eachvariable i.Uniformmutation randomly selects one variable, j, and sets it equal to an uniformrandom number U (ai; bi): x0i = � U (ai; bi); if i = jxi; otherwise (6)Boundary mutation randomly selects one variable, j, and sets it equal to eitherits lower or upper bound, where r = U (0; 1):x0i = 8<: ai; if i = j; r < 0:5bi; if i = j; r � 0:5xi; otherwise (7)Non-uniform mutation randomly selects one variable, j, and sets it equal to annon-uniform random number:x0i = 8<: xi + (bi � xi)f(G) if r1 < 0:5,xi � (xi + ai)f(G) if r1 � 0:5,xi; otherwise (8)where f(G) = (r2(1� GGmax))b; (9)r1; r2 = a uniform random number between (0,1),G = the current generation,Gmax = the maximum number of generations,b = a shape parameter.The multi-non-uniform mutation operator applies the non-uniform operator toall of the variables in the parent �X .Real-valued simple crossover is identical to the binary version presented abovein equations 4 and 5. Arithmetic crossover produces two complimentary linearcombinations of the parents, where r = U (0; 1):�X0 = r �X + (1 � r) �Y (10)�Y 0 = (1� r) �X + r �Y (11)Heuristic crossover produces an linear extrapolation of the two individuals. Thisis the only operator that utilizes �tness information. A new individual, �X 0, iscreated using equation 12, where r = U (0; 1) and �X is better than �Y in terms of�tness. If �X 0 is infeasible, i.e., feasibility equals 0 as given by equation 14, thengenerate a new random number r and create a new solution using equation 12,otherwise stop. To ensure halting, after t failures, let the children equal the parentsand stop.

6 � C. Houck et al. �X 0 = �X + r(�X � �Y) (12)�Y 0 = �X (13)feasibility = � 1; if x0i � ai; x0i � bi 8i0; otherwise (14)2.4 Initialization, Termination, and Evaluation FunctionsThe GA must be provided an initial population as indicated in step 1 of Fig. 1.The most common method is to randomly generate solutions for the entire popula-tion. However, since GAs can iteratively improve existing solutions (i.e., solutionsfrom other heuristics and/or current practices), the beginning population can beseeded with potentially good solutions, with the remainder of the population beingrandomly generated solutions.The GA moves from generation to generation selecting and reproducing parentsuntil a termination criterion is met. The most frequently used stopping criterion isa speci�ed maximumnumber of generations. Another termination strategy involvespopulation convergence criteria. In general, GAs will force much of the entire pop-ulation to converge to a single solution. When the sum of the deviations amongindividuals becomes smaller than some speci�ed threshold, the algorithm can beterminated. The algorithm can also be terminated due to a lack of improvementin the best solution over a speci�ed number of generations. Alternatively, a tar-get value for the evaluation measure can be established based on some arbitrarily\acceptable" threshold. Several strategies can be used in conjunction with eachother.Evaluation functions of many forms can be used in a GA, subject to the minimalrequirement that the function can map the population into a partially ordered set.As stated, the evaluation function is independent of the GA (i.e., stochastic decisionrules).3. TESTING AND CONCLUSIONSThe Matlab implementation of the algorithm has been tested with respect to e�-ciency and reliability by optimizing a family of multi-modal non-linear test prob-lems. The family of test problems is taken from Corana, [Corana et al. 1987],which compare the use of the simulated annealing algorithm to the simplex methodof Nelder-Mead and adaptive random search. In [Houck et al. 1995a] we report indetail the e�ectiveness of the genetic algorithm for solving the continuous location-allocation problem, and in [Houck et al. 1995b] on the use of the genetic algorithm inconjunction with local-improvement heuristics for non-linear function optimization,location-allocation, and the quadratic assignment problem.The Corana family[Corana et al. 1987] of parameterized functions,qn, are verysimple to compute and contain a large number of local minima. This function isbasically a n-dimensional parabola with rectangular pockets removed and where theglobal minima occurs at the origin (0; 0; : : : ; 0). This family is de�ned as follows:

A GA for function optimization � 7Df � fx 2 <n : �a1 � x1 � a1; : : : ;�an � xn � an; a 2 <n+gdk1;:::;kn � �x 2 Df : k1s1� t1<x1<k1s1+ t1; : : : ; knsn� tn<xn<knsn+ tn;k1; : : : ; kn 2 Z; �t; �s 2 <n+; ti < si2 ; i = 1; : : : ; nDm � [k1:::;kn2Z dk1;:::;kn � d0;0;:::;0Dr � Df �Dmqn(x) � nXi=1 dix2i ; x 2 Dr ;d 2 <n+;qn(x) � nXi=1 diz2i ; x 2 dk1;:::;kn; (k1; : : : ; kn) 6= 0;zi = 8<: kisi + ti if ki < 0,0 if ki = 0,kisi � ti if ki > 0,For the optimization of the test function two di�erent representations were used.A real-valued alphabet was employed in conjunction with the selection, mutationand crossover operators with their respective options as shown in table I. Also,a binary representation was used in conjunction with the selection, mutation andcrossover operators with their respective options as shown in table II. A descriptionof the options for each of the functions is provided in the following section, Section 4.Table I. GAOT Parameters used for Real-Valued Corana Function OptimizationName ParametersUniform Mutation 4Non-Uniform Mutation [4 Gmax 3]Multi-Non-UniformMutation [6 Gmax 3]Boundary Mutation 4Simple Crossover 4Arithmetic Crossover 4Heuristic Crossover [2 3]Normalized Geometric Selection 0.08Table II. GAOT Parameters used for Binary Corana Function OptimizationName ParametersBinary Mutation 0.05Simple Crossover 0.6Normalized Geometric Selection 0.08Two di�erent evaluation functions were used for both the oat and binary geneticalgorithm, the �rst simply returned the value of the Corana function at the point

8 � C. Houck et al.as determined by the genetic string. The second evaluation function utilizes a Se-quential Quadratic Programming (SQP) (available in Matlab) method to optimizethe Corana function starting from the point as determined by the genetic string.This provides the genetic algorithm with a local improvement operator which, asshown in [Houck et al. 1995b], can greatly enhance the performance of the geneticalgorithm. Many researchers have shown that GAs perform well for a global searchbut perform very poorly in a localized search [Davis 1991; Michalewicz 1994; Houcket al. 1995a; Bersini and Renders 1994]. GAs are capable of quickly �nding promis-ing regions of the search space but may take a relatively long time to reach theoptimal solution.Both the oat genetic algorithm (FGA) and binary genetic algorithm (BGA) wererun 10 times with di�erent random seeds. The simulated annealing (SA) resultsare taken from the 10 replications of these test problems reported in [Corana et al.1987]. The resulting solution value found and the number of function evaluationsto obtain that solution are shown in Table III. Since Corana et al. did not usean improvement procedure, both the FGA and BGA were run without the use ofSQP. As shown in the table, the FGA outperformed both BGA and SA in termsof computational e�ciency and solution quality. With respect to the epsilon of1e�6 as used in [Corana et al. 1987], FGA found the optimal in all three casesin all replications, while SA was unable to �nd the optimal two times for the 4dimensional case and not at all for the 10 dimensional case. The table also showsthat the use of the local improvement operator signi�cantly increases the power ofthe genetic algorithm in terms of solution quality and speed of convergence to theoptimal. Table III. Solution Quality and Procedure E�ciencyStd. of Avg. # Std. # Min #Dim. Method Avg Sol. Sol. Min. Sol. of eval. of eval. of eval.FGA 5:75e�7 2:87e�7 2:09e�7 6:90e+3 1:33e+3 5:87e+3FGA-SQP 0:00e+0 0:00e+0 0:00e+0 6:02e+2 1:89e+2 3:95e+22 BGA 4:51e�7 3:40e�7 3:31e�8 9:60e+3 3:56e+3 4:56e+3BGA-SQP 8:45e�15 2:67e�15 5:40e�79 8:48e+2 2:61e+2 6:03 + 2SA 1:13e�8 1:42e�8 4:21e�10 6:89e+5 1:73e+4 6:56e+5FGA 6:80e�7 3:35e�7 1:58e�7 1:06e+5 5:56e+4 4:81e+4FGA-SQP 0:00e+0 0:00e+0 0:00e+0 3:76e+3 1:27e+3 1:66e+34 BGA 5:34e�7 2:99e�7 3:57e�9 3:07e+5 7:25e+4 1:93e+5BGA-SQP 2:53e�9 7:71e�9 6:80e�26 3:32e+4 1:78e+4 1:32e+4SA 6:18e�4 1:40e�3 8:70e�8 1:38e+6 1:11e+5 1:18e+6FGA 6:15e�7 4:01e�7 1:68e�8 2:31e+5 3:06e+4 1:77e+5FGA-SQP 0:00e+0 0:00e+0 0:00e+0 5:38e+4 3:29e+4 3:80e+410 BGA 1:74e+2 1:85e+2 2:29e+1 1:47e+6 6:96e+4 1:34e+6BGA-SQP 5:74e+2 1:09e+3 4:23e+0 8:26e+2 1:63e+2 5:27e+2SA 5:40e�4 0:00e+0 5:40e�4 1:62e+6 3:65e+4 1:55e+6The results of this testing show that the use of genetic algorithms for func-tion optimization is highly e�cient and e�ective. The use of a local improvement

A GA for function optimization � 9procedure, in this case SQP, can greatly enhance the performance of the geneticalgorithm.4. GAOT: A MATLAB IMPLEMENTATIONMatlab is a technical computing environment for high-performance numeric com-putation. Matlab integrates numerical analysis, matrix computation and graphicsin an easy-to-use environment. User-de�ned Matlab functions are simple text �lesof interpreted instructions. Therefore, Matlab functions are completely portablefrom one hardware architecture to another without even a recompilation step.The algorithm discussed in Section 2 has been implemented as a Matlab toolbox,i.e., a group of related functions, named GAOT, Genetic Algorithms for Optimiza-tion Toolbox. Each module of the algorithm is implemented using a Matlab func-tion. This provides for easy extensibility, as well as modularity. The basic functionis the ga function, which runs the simulated evolution. The basic call to the gafunction is given by the following Matlab command.[x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalParams,params,startPop,...termFN,termParams,selectFN,selectParams,xOverFNs,xOverParams,mutFNs,mutParams)Output parameters|x is the best solution string, i.e. �nal solution,|endPop(optional) is the �nal population,|bPop(optional) is a matrix of the best individuals and the corresponding gener-ation they were found,|traceInfo(optional) is a matrix of maximum and mean functional value of thepopulation for each generation.Input parameters|bounds is a matrix of upper and lower bounds on the variables,|evalFN is the evaluation function, usually a .m �le,|evalParams(optional) is a row matrix of any parameters to the evaluation func-tion defaults to [NULL],|params(optional) is a vector of options, i.e. [epsilon prob param disp param]where epsilon is the change required to consider two solutions di�erent andprob params is 0 if you want to use the binary version of the algorithm, or 1for the oat version. disp param controls the display of the progress of the algo-rithm, 1 displays the current generation and the the value of the best solutionin the population, while 0 prevents any output during the run. This parameterdefaults to [1e�6 1 0].|startPop(optional) is a matrix of solutions and their respective functional values.The starting population defaults to a randomly created population created withinitialize,|termFN(optional) is the name of the termination function which defaults to['maxGenTerm'],|termParams(optional) is a row matrix of parameters which defaults to [100],

10 � C. Houck et al.|selectFN(optional) is the name of the selection function which defaults to ['nor-mGeomSelect'],|selectParams(optional) is a row matrix of parameters for the selection functionwhich defaults to [0.08],|xOverFNs(optional) is a blank separated string of the names of the cross-overfunctions which defaults to ['arithXover heuristicXover simpleXover'] for the oatversion and ['simpleXover] for the binary version.|xOverParams(optional) is a matrix of the crossover parameters which defaultto [2 0;2 3;2 0] for the oat version and [0.6] for the binary|mutFNs(optional) is a blank separated string of mutation operators which de-fault to ['boundaryMutation multiNonUnifMutation nonUnifMutation unifMuta-tion'] for the oat version and ['binaryMutation'] for the binary version.|mutParams(optional) is a matrix of mutation parameters which defaults to [40;6 100 3;4 100 3;4 0] for the oat version and [0.05] for the binary.GA performs the simulated evolution using the evalFN to determine the �tnessof the solution strings. The GA uses the operators xOverFNs and mutFNs to alterthe solution strings during the search. The program has been run successfully on aDecStation 3100, a DecStation 5000/25, Motorolla 604 and an HP 715.The system maintains a high degree of modularity and exibility as a result ofthe decision to pass the selection, evaluation, termination functions to the GA aswell as a list of genetic operators. Thus, the base genetic algorithm is able to per-form evolution using any combination of selection, crossover, mutation, evaluationand termination functions that conform to the functional speci�cations as outlinedbelow or can easily be used with the default parameters.4.1 Evaluation FunctionThe evaluation function is the driving force behind the GA. The evaluation functionis called from the GA to determine the �tness of each solution string generatedduring the search. An example evaluation function is given below:function [x, val] = gaDemo1Eval(x,parameters)val = x(1) + 10*sin(5*x(1))+7*cos(4*x(2));To run the ga using this test function use either of the following function calls fromMatlab.bstX = ga([0 10; 0 -10],'gaDemo1Eval')bstX = ga([0 10; 0 -10],'x(1) + 10*sin(5*x(1))+7*cos(4*x(2))');where gaDemo1Eval.m is contains the evaluation function as given above. Usually,a .m �le will be more convenient to use as the evaluation function will be morecomplex than the simple example provided. This function call will use all of thedefault parameters of the ga and return only the best solution found during thecourse of the simulated evolution.Note that the evaluation function must take two parameters, x and options. xis a row vector of n + 1 elements where the �rst n elements are the parameters ofinterest. The n+ 1'th element is the value of this solution. The parameters matrixis a row matrix of

A GA for function optimization � 11[current_generation, evalParams]The evaluation function must return both the value of the string, val and the stringitself, x. This is done so that an evaluation can repair or improve the string ifdesired. This allows for the use of local improvement procedures as discussed inSection 3.An evaluation function is unique to the optimization of the problem at handtherefore, every time the ga is used for a di�erent problem, an evaluation functionmust be developed to determine the �tness of the individuals.The remainder of this section describes the other modules of the genetic toolbox.While GAOT allows for easy modi�cation of any of these modules, the defaults asgiven work well for a wide class of optimization problems as shown in [Houck et al.1995b].4.2 Operator FunctionsOperators provide the search mechanism of the GA. The operators are used tocreate new solutions based on existing solutions in the population. There are twobasic types of operators, crossover and mutation. Crossover takes two individualsand produces two new individuals while mutation alters one individual to producea single new solution. The ga function calls each of the operators to produce newsolutions. The function call for crossovers is as follows:[c1,c2] = crossover(p1,p2,bounds,params)where p1 is the �rst parent, [solution string function value], p2 is the second par-ent, bounds is the bounds matrix for the solution space and params is the vectorof [current generation, operatorParams], where operatorParams is the appropriaterow of parameters for this crossover/mutation operator. The �rst value of the op-eratorParams is frequency of application of this operator. For the oat ga, this isthe discrete number of times to call this operator every generation, while for thebinary ga it is the probability of application to each member of the population.The mutation function call is similar, but only takes one parent and returns onechild:[c1] = mutation(p1,bounds,params)The crossover operator must take all four arguments, the two parents, the boundsof the search space, the information on how much of the evolution has taken placeand any other special options required. Similarly, mutations must all take thethree arguments and return the resulting child. Table IV shows the operators im-plemented in Matlab, their corresponding �le names, and any options that theoperator takes in addition to the �rst option, the number of applications per gen-eration.4.3 Selection FunctionThe selection function determines which of the individuals will survive and continueon to the next generation. The ga function calls the selection function each gener-ation after all the new children have been evaluated to create the new populationfrom the old one.The basic function call used in ga for selection is:

12 � C. Houck et al.Table IV. Matlab Implemented Operator FunctionsName File OptionsArithmetic Crossover arithXover.m noneHeuristic Crossover heuristicXover.m number of retries (t)Simple Crossover simpleXover.m noneBoundary Mutation boundary.m noneMulti-Non-Uniform Mutation multiNonUnifMut.m max num of generations, shape parameter (b)Non-Uniform Mutation nonUnifMut.m max num of generations, shape parameter (b)Uniform Mutation unifMut.m none[newPop] = selectFunction(oldPop,options)where newPop is the new population selected, oldPop is the current population,and options is a vector for any other optional parameters.Notice that all selection routines must take both parameters, the old populationfrom which to select members from, and any speci�c options to that particularselection routine. The function must return the new population. Table V showsthe selection routines that have been implemented in GAOT. The �le names areprovided, as they are the function names to be used in Matlab, and the options foreach function is also provided.Table V. Matlab Implemented Selection FunctionsName File OptionsRoulette Wheel roulette.m NoneNormalized Geometric Select normGeomSelect.m Probability of Selecting BestTournament tourn.m Number of individuals in each tournament4.4 Initialization and Termination FunctionsInitialization of a population to provide the ga a starting point is usually done bygenerating random strings within the search space, and this is the default behaviorof the ga function. However, it is possible to 'seed' the initial population withindividuals, or generate solutions in some other form. The ga allows for this withthe optional startPop parameter which provides the ga with an explicit startingpopulation.The termination function determines when to stop the simulated evolution andreturn the resulting population. The ga function calls the termination functiononce every generation after the application of all of the operator functions and theevaluation function for the resulting children. The function call is of the format:done = terminateFunction(options,bestPop,pop)where options is a vector of termination options the �rst of which is always thecurrent generation. bestPop is a matrix of the best individuals and the respectivegeneration it was found. pop is the current population. Table VI shows the termi-nation routines that have been implemented in GAOT. The �le names are provided

A GA for function optimization � 13as they are the function names to be used in Matlab, and the options for eachfunction is also provided.Table VI. Matlab Implemented Termination FunctionsName File OptionsTerminate at Speci�ed Generation maxGenTerm.m �nal generationTerminate at Optimal or max gen maxGenOptTerm.m �nal generation, optimal value, epsilon4.5 Online TutorialSeveral Matlab demos are provided as a tutorial to the genetic algorithm toolbox.The �rst demo, gademo1, gives a brief introduction to GAs using a simple onevariable function. The second demo, gademo2, uses a more complicated example,the 4-dimensional Corana function, to further illustrate the use of the toolbox. The�nal demo, gademo3, is a reference to the format used for the operator, selection,evaluation, and termination functions.5. SUMMARYA genetic algorithm capable of either using a oating point representation or abinary representation has been implemented as a Matlab toolbox. This toolboxprovides a modular, extensible, portable algorithm in an environment rich in math-ematical capabilities. The toolbox has been tested on a series of non-linear, non-convex, multi-modal functions. The results of these tests show that the algorithmis capable of �nding better solutions with less function evaluations than simulatedannealing.REFERENCESBersini, H. and Renders, B. 1994. Hybridizing genetic algorithms with hill-climbing meth-ods for global optimization: Two possible ways. In 1994 IEEE International SymposiumEvolutionary Computation, Orlando, Fl, pp. 312{317.Corana, A.,Marchesi, M.,Martini, C., and Ridella, S. 1987. Minimizingmultimodal func-tions of continuous variables with the \simulated annealing" algorithm.ACM Transactionson Mathematical Software 13, 3, 262{280.Davis, L. 1991. The Handbook of Genetic Algorithms. Van Nostrand Reingold, New York.Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.Addison-Wesley.Holland, J. 1975. Adaptation in natural and arti�cial systems. The University of MichiganPress, Ann Arbor.Houck, C., Joines, J., and Kay, M. 1995a. A comparison of genetic algorithms, randomrestart, and two-opt switching for solving large location-allocation problems. Computers &Operations Research forthcoming in special issue on evolution computation.Houck, C., Joines, J., and Kay, M. 1995b. The e�ective use of local improvement proceduresin conjunction with genetic algorithms. Technical Report NCSU-IE Technical Report 95,North Carolina State University.Joines, J. and Houck, C. 1994. On the use of non-stationary penalty functions to solve con-strained optimization problems with genetic algorithms. In 1994 IEEE International Sym-posium Evolutionary Computation, Orlando, Fl, pp. 579{584.

14 � C. Houck et al.Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs. AISeries. Springer-Verlag, New York.

