
Machine Learning B

708.062 12W 1sst KU, WS 2012/13

Exercises

Problems marked with * are optional.

1 Comparison of Optimization Algorithms [5 P]

Apply the four optimization algorithms gradient descent, genetic algorithms, sim-
ulated annealing, and particle swarm optimization to minimize each of the follow-
ing four 2-dimensional functions;

1) Rastrigin:

f1(x) =
2∑

i=1

(x2
i + 10− 10 cos(2πxi))

in the interval x ∈ [−5, 5]2,

2) Rosenbrock:

f2(x) = (x2 − x2
1)

2 + (x1 − 1)/2 + 2(|x1 − 1.5|+ |x2 − 1.5|)

in the interval x ∈ [−2, 2]2,

3) Ackley:

f2(x) = e + 20− 20 exp(−0.2

√√√√1/2
2∑

i=1

x2
i)− exp(1/2

2∑
i=1

cos(2πxi))

in the interval x ∈ [−8, 8]2,

4) Chasm:
f2(x) = 1000|x1|/(1000|x1|+ 1) + 0.01|x2|

in the interval x ∈ [−5, 5]2

and compare their performance and run time.

a) Download the MATLAB code for the genetic algorithm toolbox (gatoolbox),
simulated annealing (anneal.m) and the calculation of the gradient (gradient.m).1

1http://www.igi.tugraz.at/lehre/MLB/WS12/task1.zip

b) Implement the particle swarm optimization algorithm. Complete the MAT-
LAB function pso.m.

c) Implement the gradient descent algorithm with adaptive learning rate by
estimating the gradient with finite differences as provided in the MATLAB
function gradient.m.

d) In order to carry out the optimization you can write your own MATLAB
code or use the code template provided in compare.m. Missing code frage-
ments that have to be completed are marked with ”... HOMEWORK ...”.

e) For each of the four optimization problems set the free parameters of each of
the four optimization algorithm to appropriate values. The free parameters
are marked with ”... HOMEWORK ...” in the MATLAB code. Explain
and justify your choice.

f) Repeat the minimization for each of the four functions with each of the four
algorithms 10 times (with the parameters settings chosen in e)) and calcu-
late the mean and the standard error of the mean (SEM) of the resulting
minimum function values and the corresponding run times.

g) Compare the results obtained in f) and interpret possible strengths and
weaknesses of each optimization algorithm with respect to the optimized
functions. Hand in graphical illustrations of your results that support all
your statements.

Present your results clearly, structured and legible. Document them in such a
way that anybody can reproduce them effortless.

2 Cart-Pole Controller Optimization [5 P]

Optimize the weights of a neural network that controls the horizontal forces
applied to a cart in order to swing up a pole that is mounted on it into the
upright position. Use an optimization algorithm of your choice (one of the four
algorithms used in homework assignment 1). The state x of the dynamical system
is defined as a four dimensional vector with the elements (xc, ẋc, ϕ, ϕ̇)T , where
xc is the position of the cart and ϕ is the pole angle.

a) Download the MATLAB code for the cart-pole.2 The dynamics of the cart-
pole for one time step is computed in the function cp dyn.m. The state x
of the cart-pole can be visualized with the function cp vis.m (you don’t
have to change or call these two functions).

2http://www.igi.tugraz.at/lehre/MLB/WS12/task2.zip

Figure 1: The cart-pole model.

b) Modify the file learn cp.m that contains also the parameters for the cart-
pole in the structure model (masses, length of the pole etc.) to implement
an optimization algorithm that minimizes the error computed with the
function cost function.m.

c) Modify the file cost function.m that simulates the cart for a duration of 4
seconds and assigns an error value to the dynamics of the cart. You have to
i) complete the function cost function.m to implement a neural network
controller that generates the horizontal force u that is applied to the cart
at each time step, and ii) define an appropriate error function e (that scores
the cart-dynamics for each time step), which has to be minimized.

d) Neural network controller: Write the code to initialize and simulate a
neural network without using the neural network toolbox. The input to
the network for each time step should consist of the following 5 values:
(xc, ẋc, sin ϕ, cos ϕ, ϕ̇)T . The network consists of a single hidden layer with
5 hidden units. The scalar output of the neural network, i.e. the force,
should be bounded with values between -10 and 10.

Hints: Don’t forget to optimize the bias values of the neurons. Use a tansig
output neuron to obtained bounded output values.

e) Error function: Use the state variables to construct an error function e
that outputs a value at each time step that assure that the pole remains
in the upright positions after the upswing. Set the error to 106 if the cart

leaves the interval [−1, 1]. The total error (or cost) assigned to the cart
movement is the sum of all e for all time steps.

Hints: The key to success is an appropriate error function.

f) Analyze the best solution found and state the reasons for all choices you
made in the MATLAB code.

Present your results clearly, structured and legible. Document them in such a
way that anybody can reproduce them effortless.

3 Genetic Algorithm [3* P]

Apply the genetic algorithm toolbox in MATLAB to an optimization problem of
your choice for which you can show by simulation that the encoding of the vari-
ables (that should be optimized) in the genome has an effect on the convergence
speed of the algorithm. Describe precisely the optimization problem and the
key ideas behind the encoding scheme. Present your results clearly, structured
and legible. Document them in such a way that anybody can reproduce them
effortless.

4 Genetic Coding [4 P]

a) Choose 2 concepts from Lecture 3 that you found interesting, and provide
more precise definitions and explanations to each of them (about 1/2 page
for each), on the basis of online-sources (give references to these sources).

b) Choose one process from Lecture 3 that you found interesting, and explain
this process in more detail (on 1-2 pages), on the basis of online-sources
(give references to these sources).

5 RL theory I [3 P]

Prove Corollary 1.3 (p. 9) from the script Theory of Reinforcement Learning 3:

Every policy π for which V π satisfies the Bellman optimality equations

V π(s) = max
a∈As

Qπ(s, a) ∀s ∈ S

is optimal.

3http://www.igi.tugraz.at/lehre/intern/MDP Theory.pdf

6 RL theory II [3 P]

Assume that for a given continuing MDP with discount factor γ < 1 we modify
the reward signal by either

a) adding a constant d to all rewards

b) multiplying every reward with a constant k > 0

c) linearly transforming the reward signal to k · r + d, k > 0

Can this change the optimal policy of the MDP? Express for all three cases
the new state values in terms of V (s), γ and the constants (where V (s) is the
optimal value of state s under the original reward function).

Now consider the following modifications for deterministic MDPs:

d) Let (smax, amax) be the state-action pair that leads to the highest possible
immediate reward rmax = maxs,ar(s, a) in the MDP. Set r(smax, amax) ←
rmax + d, d > 0

e) Let (smin, amin) be the state-action pair that leads to the lowest possible
immediate reward rmin = mins,ar(s, a) in the MDP. Set r(smin, amin) ←
rmin − d, d > 0

For simplicity, you can assume in both cases that the minimum/maximum is
unique, i.e. it is taken on exactly at one state-action pair. Can you guarantee
for arbitrary MDPs that the optimal policy stays the same? If not, show a
counterexample.

7 RL application: On- and off-policy learning [3

P]

Download the Reinforcement Learning (RL) MATLAB Toolbox and the example
files4. Adapt the mountain car demo example and apply RL to the following
learning task. Consider the gridworld shown in Figure 2. Implement this envi-
ronment with the RL Toolbox as an undiscounted (γ = 1), episodic task with a
start state at S and a goal state at G. The actions move the agent up, down, left
and right, unless he bumps into a wall, in which case the position is not changed.
The reward is −1 on all normal transitions, −10 for bumping into a wall, and 0
at the bonus state marked with B.

4http://www.igi.tugraz.at/lehre/intern/MountainCarDemo.zip

Figure 2: Gridworld with bonus state.

Use Q-Learning and SARSA without eligibility traces to learn policies for this
task. Use ε-greedy action selection with a constant ε = 0.1. Measure and plot the
online performance of both learning algorithms (i.e. average reward per episode),
and also sketch the policies that the algorithms find. Explain any differences in
the performance of the algorithms. Are the learned policies optimal? Submit
your MATLAB code.

Repeat the exercise again with ε ∈ {0.01, 0.001, 0.0001, 0.00001}, respectively.
Explain and interpret you results for both , i.e. Q-Learning and SARSA. Present
your results clearly, structured and legible. Document them in such a way that
anybody can reproduce them effortless.

8 RL game [3* P]

Consider the following game: You have a random number generator that produces
in every round an integer number from 1 to 3 with equal probability. You play 3
rounds and have to decide at which position of a 3 digit number you want to place
the random digit. Your goal is to form the largest possible (decimal) number.
Formulate this game as a Markov decision process and find an optimal policy.
Also analyze the case where the numbers are drawn without replacement, i.e. if
the digit 3 appears in the first round, it cannot appear anymore in the remaining
two rounds.

9 Policy Gradient Methods: Swimmer [4 P]

In this task you have to learn optimal policies for the swimmer (see Figure 3)
using different policy gradient methods. You have to compare two algorithms to
compute the gradient ∇θJ(θh), namely Finite Differences and Likelihood Ratio.
The robot is a 3-link (2-joints) snake-like robot swimming in the water. It has

Figure 3: 3 link wwimmer task: The simulated snake-like robot should swim fast
and energy efficient.

two actuators, you have to learn how to use these actuators to swim as fast as
possible in a given direction. The model, the policy and the reward function are
already given in the provided matlab package swimmer.zip5. The used policy
is a stochastic Gaussian policy implemented by a Dynamic Movement Primitive
(DMP). The DMP uses 6 centers per joint. As we deal with a periodic movement
the phase variable x of the DMP is also periodic. The policy itself is a stochastic
policy which adds noise to the velocity variable of the DMP, i.e.

π(ẏ|z, x;b) = N (ẏ|Φ(x)b + z, σ2I),

where b is the parameter vector (also denoted as θ in the further description) of
the policy which we have to learn. The DMP itself is already implemented so
you do not have to deal with that, the MATLAB package provides you with all
information you need to calculate the gradients. The reward function (already
implemented) is given by rt = 10−2vx − 10−6u2, where vx is the velocity in x-
direction and u is the used torque.

9.1 MATLAB package description

In order to work with the swimmer model add the folder model to your MATLAB
path. The model environment is stored in a structure, which is created with the
command E = initE(). For implementing the policy gradient methods, the most

5http://www.igi.tugraz.at/lehre/MLB/WS12/intern/swimmer.zip

important function is the function E.J to perform a single rollout

[perf, ε, φ, rewards, ...] = E.J(E, θ, σ)

6. The function takes the model structure E, the policy parameters θ (i.e. the
linear parameters b in our case) and the variance of the stochastic policy σ as
arguments. The function simulates the swimmer using θ as parameters of the
policy for 200 time steps (dt = 0.01s resulting in a simulation time of 2s) and
returns the summed reward (perf) for this episode (

∑
t rt). In addition it returns

the used noise vector ε for each time step (so ε is a 2 × 200 matrix) and the
features φ(xt) for each timestep (6 × 200 matrix). The single rewards for each
time step can also be obtained (rewards). The E.J function has additional output
values which return the visited trajectory, the performed torques and the state
variables of the dmp (y and ẏ), see evaluate.m for further details. To visualize a
policy use plotPolicy(E, θ).

Finally some general remarks: The policy θ has (E.d − 1) × E.NumRBFs
parameters, where d = 3 denotes the number of links of the swimmer. The
number of Gaussian kernel functions is given by the model and set to 6. Make
sure, that the parameters are within the interval [+4,−4].

9.2 Policy Gradient Methods

At least for the finite difference method, you may normalize the gradient as a
unit vector before the weight update, i.e.

δθh+1 = θh + α
∇θJ(θ)

|∇θJ(θ)|
.

This usually improves the learning speed. For a more exact description of the
methods and the equations see the lecture slides.

• Finite Differences [2 P]: This method perturbs the parameter vector itself
to estimate the gradient. We can set the stochasticity of the policy to 0
for this method to improve the accuracy of the estimation. Generate I
(try 24) rollouts by adding small Gaussian Noise to the parameter vector
∆θi = N (0, σ2

FDI), where σFD equals small values like 0.5. Try several
learning rates α (Hint: Setting α to 2 is a good starting point).

• Likelihood ratio + Policy Gradient Theorem [2 P]: Here the noise directly
acts on the action, therefore we use a stochastic policy (use σ = 0.5 which
can be set in the E.J function). For both methods you need to be able to
calculate the gradient of the log-likelihood of the policy for each time step,
e.g. ∇θ log π(ẏt|zt, xt;b). As we can see in the lecture slides the only two

6This function points to the file evaluate.m

quantities needed for this operation are the used noise εt and the feature
representation Φ(xt). Both quantities are provided by the function E.J 7.
For the policy gradient theorem the reward rt for each time step is needed
instead of the summed reward signal. This vector is given by the 4-th
output value of the E.J function. 12 rollouts and a learning rate of α = 10
are proper choices.

All policy gradient methods should be compared with respect to learning
speed. Therefore, create a performance curve (x-axis : number of episodes seen
by the algorithm, y-axis: summed reward of current parameter value) for each
algorithm. In order to get a reliable estimate, use the average over at least 10
trials for each curve.

10 Bayesian networks [2+2* P]

Figure 4: Graphical model for diagnosis example.

a) [2 P] Consider the graphical model in Figure 4 for a medical diagnosis
example, where B = bronchitis, S = smoker, C = cough, X = positive
X-ray, and L = lung cancer.

List the pairs of nodes that can be proven to be conditionally independent
with the definition of d-separation, given the following evidence:

1) [1/2 P] No evidence for any of the nodes.

2) [1/2 P] The lung cancer node is set to true (and no other evidence).

7Note that in the lecture slides the gradient log π(ẏt|zt, xt;b) is given by ∝ εΦ(x)T , which
is typically a matrix not a vector. The gradient vector can be obtained by transforming the
matrix to a vector [εt(1)Φ(xt); εt(2)Φ(xt)]

3) [1/2 P] The smoker node is set to true (and no other evidence).

4) [1/2 P] The cough node is set to true (and no other evidence).

b) [2* P] In your local nuclear power plant station, there is an alarm that
senses when a temperature gauge exceeds a given threshold. The gauge
measures the temperature of the core. Consider the Boolean variables A
(alarm sounds), FA (alarm is faulty), and FG (gauge is faulty) and the
multivalued nodes G (gauge reading) and T (actual core temperature).

1. Draw a Bayesian network for this domain, given that the gauge is more
likely to fail when the core temperature gets too high.

2. Suppose there are just two possible actual and measured temperatures,
normal and high; the probability that the gauge gives the correct tem-
perature is x when it is working, but y when it is faulty. Give the
conditional probability table associated with G.

3. Suppose the alarm works correctly unless it is faulty, in which case it
never sounds. Give the conditional probability table associated with
A.

11 Approximate inference in Bayesian networks

[4 P]

Apply Gibbs sampling to carry out approximate inference in Bayesian networks.
You should estimate the (marginal) probability distribution of several variables
in a Bayesian network, given the settings of a subset of the other variables (evi-
dence). Implement the Gibbs algorithm in MATLAB based on the code provided
Gibbs.zip8 and test it on the three Bayesian networks shown below. Your code
should run Gibbs sampling a specified number of iterations in order to estimate
the required probability distributions. Since Gibbs sampling is a randomized, it-
erative algorithm, the actual number of iterations needed to estimate probabilities
is an important issue, that will be explored as part of this assignment.

a) Download the MATLAB code and modify the file gibbs.m to implement
Gibbs sampling. The file loads one of six predefined Bayesian networks that
are stored in the files alarm.mat, insurance.mat, leader-follower 05.mat,

... leader-follower 20.mat. Each of these data files contains the two
variables var and p that specify the random variables and the factors of
the joint probability distribution for each Bayesian network, respectively.

8http://www.igi.tugraz.at/lehre/MLB/WS12/intern/Gibbs.zip

Figure 5: A Bayesian network establishing relations between events on the burglary-
earthquake-alarm domain, together with complete specifications of all probability dis-
tributions.

b) As a sanity check, to be sure that your code is working, start by running
Gibbs sampling on the ”earthquakes and burglar alarms” Bayesian network
(Fig. 5) provided in the file alarm.mat.

1. Run Gibbs sampling 1000 times for 2000 steps starting each time from
random intial values for the hidden variables (drawn from a uniform
distribution) and verify that the conditional probability of burglary
given that both John and Mary call is approximately 0.284. In order
to estimate this conditional probability calculate the mean and the
SEM (standard error of the mean) for the 1000 values of the binary
random variable that is one if burglary = true and 0 otherwise (after
2000 steps).

2. Suppose now that you learn that there was an earthquake in the area.
Run Gibbs sampling to estimate the probability of a burglary (given
that John and Mary both called, and that there was an earthquake).
Interpret the result.

c) The Bayesian network illustrated in Fig. 6 attempts to estimate the risk
posed by an individual seeking car insurance. In other words, the network
attempts to relate variables like the age and driving history of the individual
to the cost and likelihood of property damage or bodily injury.

The network has 27 variables (usually the 12 shaded variables are considered
hidden or unobservable, while the other 15 are observable) and over 1400
parameters. An insurance company would be interested in predicting the
bottom three ”cost” variables, given all or a subset of the other observable
variables. The network has been provided in the file insurance.mat.

Figure 6: A Bayesian network establishing relations between events on the automobile
insurance domain.

1. You should estimate the cost of property damage, i.e. the probabilities
of the values of the variable PropertyCost, for an adolescent driving a
car (Age = Adolescent) with about 50,000 miles (Mileage = FiftyThou)
and no anti-lock brakes (Antilock = False).

Run Gibbs sampling for a 1000 times for 1, 10, 100, and 1000 steps
starting from random intial values for the hidden variables (drawn
from a uniform distribution) and plot the dependence of the resulting
probability distribution (obtained for the 1000 trials) on the number of
steps. Because some of the factors of the joint probability distribution
are 0 you have to make sure that the probability of the intial state of
the random variables is larger than zero (if not choose another initial
state).

How long ist the burn-in time (number of steps) that is required to
sample from the stationary probability distribution?

2. Try out at least one other query of your own invention and report the
results. Comment on why your results did or did not make sense.

d) Explore the convergence properties of Gibbs sampling on a very simple
family of Bayesian networks. Theoretically, Gibbs sampling will converge

Figure 7: A Bayesian network establishing relations between events on the leader-
follower domain.

to the correct stationary probability distribution asymptotically, that is,
as the number of iterations becomes very large. However, in practice, it
is not always clear how many iterations actually suffice, as this example
demonstrates.

Each network in this family has a single ”leader” variable, and some number
of ”follower” variables as shown in Fig. 7. The idea is that the leader
selects a bit at random (0 or 1 with equal probability), and then all of the
followers choose their own bits, each one copying the leader’s bit with 90%
probability, or choosing the opposite of the leader’s bit with 10% probability.
Leader-follower networks with k followers have been provided in the files
leader-follower-k.bn for k = 5, 10, 15, 20.

What is the marginal probability distribution for the leader variable, in the
absence of any evidence (i.e., none of the other variables have been set to
specified values)?

1. What is the correct answer for the query given above? (This should
be easy to answer.)

2. Run Gibbs sampling on a network with 5 followers using the given
query. Run for at least 1000000 steps, printing the partial results every
1000 steps. Make a plot of the estimated probability (as estimated
by Gibbs sampling) of the leader choosing the bit 0 as a function of
the number of steps. In other words, the x-axis gives the number of
steps, and the y-axis gives the probability of the leader bit being 0 as
estimated after t steps of Gibbs sampling. Does Gibbs sampling seem
to converge to the right answer? If so, roughly how long does it seem
to take?

3. Now repeat the last question on networks with 10, 15 and 20 followers.
Run for at least 1000000 steps, printing partial results at least every
1000 steps.

4. Can you explain what you observed? Why does Gibbs sampling have
such a hard time with these networks? What do these experiments
say about the difficulty of detecting convergence?

Submit your MATLAB code. Present your results clearly, structured and legible.
Document them in such a way that anybody can reproduce them effortless.

12 Learning overhypotheses [3* P]

Figure 8: A hierarchical Bayesian model. Each setting of (α, β) is an overhypothesis:
β represents the color distribution across all categories, and α represents the variability
in color within each category.

Apply Gibbs sampling to acquire overhypotheses about the feature variability
for the bags of marbles model illustrated in Fig. 8: Suppose that S is a stack
containing many bags of marbles. We empty several bags and discover that the
marbles within the same bag have certain features in common: For instance some
bags may contain black marbles, others may contain white marbles, but that the
marbles in each bag are uniform in color. Given a new bag - bag n - and a
single marble (e.g. a black marble) drawn from this bag we are interested in the
probability of the colors of all other marbles within this bag. On its own, a single
draw would provide little information about the contents of the new bag, but
experience with previous bags may lead us to endorse certain hypothesis (e.g. all
marbles in a bag have uniform colors).

Learning overhypothesis: The term overhypothesis is used to refer to any
form of abstract knowledge that sets up a hypothesis space at a less abstract
level. By this criterion, an overhypothesis sets up a space of hypotheses about
the marbles in bag n: they could be uniformly black, uniformly white, and so on.
Hierarchical Bayesian models capture the notion of overhypothesis by allowing
hypothesis spaces at several levels of abstraction. In this example we wish to
explain how a certain kind of inference can be drawn from a given body of data.

In this case, the data are observations of several bags and we are working with a
set of 2 colors.

Bags of marbles model: Let yi indicate a set of observations of the marbles
in bag i. If we have drawn five marbles from bag 7 and all but one are black, then
y7 = [4, 1]. We are interested in the ability to predict the color of the next marble
to be drawn from bag n. The first step is to identify a kind of knowledge (level
1 knowledge) that explains the data and that supports the ability of interest. In
this case, level 1 knowledge is knowledge about the color distribution of each bag.
Let θi indicate the true color distribution for the ith bag in the stack. We assume
that yi is drawn from a binomial distribution with parameter θi: in other words,
the marbles responsible for the observations in yi are drawn independently at
random from the ith bag, and the color of each depends on the color distribution
θi for that bag. If 60% of the marbles in bag 7 are black, then θ7 = [0.6, 0.4].

For the marbles scenario, level 2 knowledge is knowledge about the distribu-
tion of the θ variables. This knowledge is represented using two parameters, α
and β. The vectors θi are drawn from a Beta distribution parameterized by a
scalar α and a vector β = (β1, β2) with β1 +β2 = 1. The parameter α determines
the extent to which the colors in each bag tend to be uniform, and β represents
the distribution of colors across the entire collection of bags. We need to formalize
our a priori expectations about the values of these variables.

Level 2 knowledge is acquired by relying on a body of knowledge at an even
higher level, level 3. We use a uniform distribution on β1 and an exponential
distribution on α, which captures a weak prior expectation that the marbles in
any bag will tend to be uniform in color. The mean of the exponential distribution
is λ = 1, i.e. P (α) = exp(−α). The parameter λ and the pair (α, β) are both
overhypotheses, since each sets up a hypothesis space at the next level down.
Since the level 3 knowledge is specified in advance (λ), you should analyze how
an overhypothesis can be learned at level 2.

The joint probability distribution for this model is therefore given by

P (y1, ...,yn, θ1, ..., , θn, α, β|λ) =
n∏

i=1

P (yi|θi)P (θi|α, β)P (α|λ)P (β) (1)

with

α ∼ Exponential(λ) (2)

β1 ∼ Beta(1, 1) (3)

θi ∼ Beta(αβ1, αβ2) (4)

yi|ni ∼ Binomial(θi) (5)

where ni is the number of observations for bag i.

Task: You should perform Gibbs sampling for this joint distribution to esti-
mate the marginal distributions for each single θi, α and β (the overhypotheses)
where the observation yi are kept fixed for the following scenarious:

1. After observing 10 all-white bags, 10 all-black bag and a single black marble
in the last bag.

2. After observing 20 mixed bags, where half of the marbles are white and
half of the marbles are black, and a single black marble in the last bag.

3. Same as in 1 but with fixed α = 1 and β1 = β2 = 0.5.

4. Same as in 2 but with fixed α = 1 and β1 = β2 = 0.5.

Calculate average distributions across 50 Markov chains, each of which was run
for 100000 iterations (discard the first 10000 samples as burn-in). Hand in plots
for all estimated distributions and interpret your results.

Hints:

1. For the resampling of θi the factor P (yi|θi)P (θi|α, β) is again a Beta dis-
tribution that can be directly sampled in MATLAB with the command
random and the argument beta.

2. For the resampling of α and β apply sampling-importance-resampling sam-
pling (with 100 samples drawn from a proposal distribution that is identi-
cal to the prior distribution) from a distribution proportional to the factor
P (θi|α, β)P (α|λ)P (β).

3. You should adapt your own MATLAB code from the previous Gibbs sam-
pling homework example to solve this assignment.

Submit your MATLAB code. Present your results clearly, structured and legible.
Document them in such a way that anybody can reproduce them effortless.

13 Planning with Approximate Inference [3 P]

In this example we consider a 2-link planar arm. In this task you have to plan
an optimal path from an initial joint-position to a given endeffector-position 9 by
Gibbs sampling.

The length of the links l1 and l2 is given by 0.5 meters. We will restrict the
first joint position of our arm model to be in the range of [0; π/2] and the second
to be in the range of [−π/2; π/2].

9The endeffector position is given by [x, y]T = [l1sin(q1)+l2sin(q1+q2), l1cos(q1)+l2cos(q1+
q2)], where qi denotes the joint angle of the ith joint.

Figure 9: Dynamic Bayesian Network for task-space planning. The task-space is
defined as cartesian coordinates of the endeffector position.

We will first discuss how to construct a Bayesian Network where we can
sample from. We want to reach our target within T = 10 time steps, i.e. we get
a dynamic Bayesian Network with one node per time step (11 nodes), see Figure
9.

Each node t represents the joint positions qt at time t. For simplicity, we will
use a discrete representation of the joint positions. Therefore we use a uniform
11 × 11 grid to discretize the joint space. We will use a Gaussian motion prior
in order to define the transition probabilities of P (q

(j)
t |q

(i)
t−1) from the ith discrete

joint position at time t− 1 to the jth joint position at time t. Let q(j) be the j

joint position vector (in radians), then P (q
(j)
t |q

(i)
t−1) ∝ N (q

(j)
t |q

(i)
t−1,W), where W

equals diag([0.0125, 0.05]). The motion prior encodes our laziness, meaning that,
if not necessary, we do not want to move away from qt−1.

In order to plan a trajectory to a certain end-effector position we still need to
define our kinematic task space mapping. We will also use a discrete represen-
tation for task space (Cartesian coordinates of the hand). Here, we use again a
11×11 uniform grid over the range [0; 1] for x and y. The probability of reaching
the jth discrete task space position when being in the ith discrete joint space
position is given by P (x

(j)
t |q

(i)
t) ∝ N (x

(j)
t |Φ(q

(i)
t),C), where Φ is the non-linear

mapping from the joint positions to the endeffector coordinates. The covariance
matrix C is set to diag([0.004, 0.004]).

13.1 Task Space Planning

We will first start with task space planning. Therefore we add an ’mental ob-
servation’ of reaching the jth discrete position in task space xT = x(j) at time
T = 10 to our Bayesian network (see Figure 9). We will set our desired target
position to be [0.2, 0.2], the index j denotes the discrete index of this position.
In addition, we also observe our current state q0 which is [π/4, 0]T . Our task is
to estimate a trajectory q1:T using Gibbs-sampling.

• Your main task is to generate the state transition probabilities Pqq as well

Figure 10: Dynamic Bayesian Network for planning with obstacles.

as the kinematic task mapping Pqx as described in the text.

• Initialize your trajectory q1:T with random discrete indices. Use 5000 Gibbs
sampling steps to estimate the true distribution. Plot 5 independent sam-
ples of q1:T from the sampling process. We assume that two samples are
independent at least after 100 Gibbs Sampling steps.

• Now we want to calculate the marginals P (qt = q(i)) for all i and t. There-
fore count the number of of times in which the variable qt equals q(i) during
the last 3000 Gibbs sampling steps. Plot the marginals for each time step,
use a visualization which you find appropriate. How does the estimated
solution look like?

• Repeat the experiment at least 10 times using different initial positions for
the Gibbs sampler. Are the marginals always similar (up to a certain noise
level...)? If not, why not?

13.2 Task Space Planning with Obstacle Avoidance

Now we want to add an obstacle to our environment. The obstacle is located
at [0.5, 0.5] in Cartesian space. For simplicity, we assume that only the end-

effector can collide with the obstacle. The collision probability P (ct = 1|q(j)
t) for

joint position q(j) is given by exp(−1/2||Φ(q(j)) − [0.5, 0.5]T ||2/0.152). We want
our robot to avoid the obstacle for the whole trajectory, therefore we add the
observation of not colliding with the obstacle P (ct = 0|q(j)

t) for each time step t
to our Bayesian network (see Figure 10, ct notes).

• Generate the collision probability Pqc

• Use Gibbs sampling the same ways as before, visualize the marginals P (qt =
q(i)). How has the estimated solution changed?

13.3 Pseudo-Dynamic Planning with Obstacle Avoidance
(Optional Task)

Try the approach also on a dynamic task.
Now we also want to add the velocities q̇ of the joints to our planning scenario.

Therefore, we will also incorporate controls u of the robot in our model. The con-
trols u directly represent the accelerations of the joints. The control-dependent
state transitions are now given by

P (qt, q̇t|qt−1, q̇t−1,ut−1) = N ([qt; q̇t]|[qt−1 + 0.1q̇t−1; q̇t−1 + 0.1ut−1],W),

where W is set to diag([10−5, 10−5, 10−3, 10−3]). Now, in difference to the previous
tasks we incorporated controls to our model. For each dimension we will use 5 dis-
crete actions u1,2 ∈ [−4,−2, 0, 2, 4], resulting in a action space of 25 actions. The
actions are unknown, and hence, like every unknown hidden variable, they can
be integrated out : P (qt, q̇t|qt−1, q̇t−1) =

∑25
i=1 P (qt, q̇t|qt−1, q̇t−1,u

(i)
t−1)P (u

(i)
t−1).

The term P (u
(i)
t−1) denotes the action prior, similarly to the previous exam-

ple we again use it to code our laziness, i.e. we prefer doing no action at all
P (u

(i)
t−1) = N (u

(i)
t−1|0,H), where H is set to 16I.

As we can see the controls are excluded from the inference process, however,
they can be easily calculated from an estimated trajectory [q1:T , q̇1:T]. We will
again use a discretization of the state space with a 11 × 11 × 11 × 11 uniform
grid. Valid velocities are in the range of [−1; 1]

• Create the state transition probabilities Pqq for the dynamic case. Also
create the task space mapping Pqx and the collision mapping (both do not
depend on the velocities). Use the same intial state and target end-effector
position as before, but set the velocity to zero.

• Again use Gibbs sampling to sample from valid trajectories. Now use 50000
Gibbs sampling steps and 1000 steps between two independent samples.
Again calculate the marginals and visualize the marginals of the positions
qt for each time step.

• In addition, plot the expected positions and velocities for each joint over
time.

