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Third homework set

Reinforcement learning in robotics:

● Policy gradient methods

● Reward weighted regression

Approximate inference in Bayesian networks:

● Conditional independence in Bayesian networks

● Gibbs sampling
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Policy Gradient Methods

Example behavior of a 3 link swimmer

Policy Search with a simple swimming
robot: 

• The Policy models the swimming
behavior 

• The task is to swim as fast as possible
using a minimum amount of energy 
(torques)

• Given a Matlab framework your 
task is to implement and evaluate 
different Policy Gradient algorithms.
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The swimming behavior representation
The Movement is represented as Dynamic Movement Primitive.

We need to learn the b's
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The swimming behavior representation

We now want to represent a rhythmic movement:

• Periodic phase signal

• But actually we don't care: 
 Already implemented in the 
 framework.

The Movement is represented as Dynamic Movement Primitive.

We now want to represent a rhythmic movement:

• Periodic phase signal

• But actually we don't care: 
 Already implemented in the 
 framework.
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Policy Gradient

3 Algorithms to compare: 

• Finite Differences

• REINFORCE

• Policy Gradient Theorem

3 Algorithms to compare: 

• Finite Differences

• REINFORCE

• Policy Gradient Theorem
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Algorithm 1 of 3: Finite Differences 

Noise on policy parameters
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Likelihood ratio: We need a stochastic 
policy

Noise on actions

The actions are the desired joint velocities y'
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Algorithm 2 of 3: REINFORCE
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All these quantities are given by the Matlab framework
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Algorithm 3 of 3: Policy Gradient 
Theorem
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Matlab Framework

clear all;

close all;

addpath([pwd filesep 'model']); 

E = initE();

b = [3.2928  2.5650 ­0.2796 ­3.1864 ­2.7956  1.8124...

    ­1.7125  3.7744  3.0170 ­1.3655 ­2.6099 ­0.5691];

sigma = 0;

[R, epsilon, Phi, rewards, s, a, y, dy] = E.J(b, sigma);

plotPolicy(E, b);  

Policy Parameters

Stochasticity 
of the Policy

clear all;

close all;

addpath([pwd filesep 'model']); 

E = initE();

b = [3.2928  2.5650 ­0.2796 ­3.1864 ­2.7956  1.8124...

    ­1.7125  3.7744  3.0170 ­1.3655 ­2.6099 ­0.5691];

sigma = 0;

[R, epsilon, Phi, rewards, s, a, y, dy] = E.J(b, sigma);

plotPolicy(E, b);  
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Reward Weighted Regression: Cannon Warfare

Learn how to shoot a cannon ball to different 
target positions under varying wind conditions

Parametrized Policy : 

– Initial Angle 

– Initial Velocity

Learn to choose different parameters in different initial conditions

– Target Distance x
T
, Wind Strength w

S

– Hierarchical Policy : 
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Reward Weighted Regression: Cannon Warfare

Illustration with different shoot angles

Use a stochastic Gaussian Policy
   Phi : Feature Vector (normalized RBF-network, 10x10)
   Beta : Parameter Vector, you need to learn this!
   Sigma : used for exploration (constant) 
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RWR: Formulas

In our case matrix [α
1
,v

1
; … ; α

I
,v

I
]
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RWR: Cannon Warfare

Learning Procedure : Initialize empty training set

Repeat 500 times

– Generate 10 new samples

• Choose initial state [x
T
, w

S
] randomly

• Calculate              using current policy

• Generate rollout (shoot), calculate reward r

• Add data to your training set

– Re-estimate beta with RWR (using full training set)

– Evaluate policy
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Directed Graphical Models
Probabilistic graphical models offer

1.  Simple way to visualize structure of a probabilistic model

2.  Simple analysis of model properties, e.g. conditional independence

3.  Inference and learning can be expressed in terms of graphical manipulations
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d(irected)-separation

The d-separation criterion ascertains whether a particular conditional 
independence  statement  for arbitrary non-intersecting sets of nodes A, B and C 
is implied by a given directed acyclic graph..

A is d-separated from B by C      A is conditional independent of B  given C 

A is d-separated from B by C      All paths between A and B are blocked

A ⊥ B | C
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d-separation: case 1
A path is blocked if it includes a node that is tail-to-tail and the node is in the 
set C.

A  ⊥ B | CA  ⊥ B | ⊘

P A , B∣C =
P A , B ,C 

P C 
=P A∣C P B∣C 

P A , B , C =P A∣C P B∣C  P C 

P A , B =∑C
P A∣C P B∣C P C 

≠P '  AP ' B 



      Häusler  MLB KU 708.062 WS 2010/11 20

d-separation: case 2 
A path is blocked if it includes a node that is head-to-tail and the node is in the 
set C.

A  ⊥ B | CA  ⊥ B | ⊘

A  ⊥ B | CA  ⊥ B | ⊘

P  A , B=∑C
P  A , B ,C 

=P  A∑C
P B∣C  P C∣A

≠P ' AP ' B

P A , B∣C =
P A , B ,C 

P C 

=
P C∣AP A

P C 
P B∣C 

=P A∣C P B∣C 

P A , B ,C =P B∣C P C∣AP A
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d-separation: case 3 
A path is blocked if it includes a node such that the arrows on the path meet 
head-to-head and neither the node nor its descendants are in the set C.

 

A  ⊥ B | CA  ⊥ B | ⊘

P A , B , C =P C∣A , BP AP B

P A , B =∑C
P  A , B ,C 

=P A P B 

P  A , B∣C =
P A , B ,C 

P C 

=
P  A P B P C∣A , B

P C 
≠P '  A∣C P ' B∣C 

A ⊥ B | ⊘ A  ⊥ B | C
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Examples: d-separation

                        (a)                                              (b)

a) Path from A to B is neither blocked by F nor by E.

b) Path from A to B is blocked by F and by E.
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Examples: d-separation

A BAAAAAAAA C

A EAAAAAAAD F

A IAAAAAAAH J

A LAAAAAAAK

G

M
A  G⊥  | B,M ?
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Assignment 11

...



      Häusler  MLB KU 708.062 WS 2010/11 25

Assignment 11

...

...
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Approximate Inference in Bayesian 
Networks

Given:

Inference:  =

e … evidence  
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Sampling without evidence:
Ancestral sampling
Basic idea

Sample a value for each variable in topological order using the specified 
conditional probabilities
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Sampling with evidence:
Markov chain Monte Carlo methods
One designs a Markov chain, whose states  s are all possible assignments of 
values                        to the random variables                      and whose stationary 
distribution p(s) defined by

is the distribution for which one wants to carry

out probabilistic inference. 

Entering evidence e amounts to a restriction of 

The dynamics of the Markov chain to a subgraph. 

Then probabilistic inference             can be 
reduced to observing the dynamics of this Markov chain.

P x1∣e 

' '
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Simple MCMC sampling:
Gibbs Sampling

i … is chosen randomly from {1,... ,M}

ii

x
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Important issues

1) For Gibbs sampling the condition prob. distributions can be obtained by

2) Only factors of the joint distribution involving x
j
 have to be calculated.

    Calculate for each value of x
j 
the product of these factors, normalize these

    values (one for each value of x
j 
) to obtain a correct prob. distr. and draw x

j
 

    according to this distribution.

3) Burn in time: 
    Consecutive samples in the Markov chain are not independent. The burn in    
    time is the number of steps between two samples to make them independent 
    (steps required to forget initial conditions of the sampler)
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Assignment 10
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Verify explaining away

Explaining away:
If John and Mary call the observation of an earthquake has an effect on the
probability of a burglary (variables are not independent anymore)
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Estimate the burn-in time

Insurance domain:

the network attempts to relate variables like the age and driving history of the individual to the 
cost and likelihood of property damage or bodily injury.
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Explore the convergence properties of 
Gibbs sampling
Theoretically, Gibbs sampling will converge to the correct stationary probability 
distribution asymptotically, that is, as the number of iterations becomes very 
large. However, in practice, it is not always clear how many iterations actually 
suffice, as this example demonstrates.

The leader selects a bit at random (0 or 1 with equal probability), and then all of the followers choose 
their own bits, each one copying the leader’s bit with 90% probability, or choosing the opposite of the 
leader’s bit with 10% probability. Analyze leader-follower networks with k = 5, 10, 15, 20 followers have 
been provided in the files.
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Data format for the Bayesian networks

Variables:

var(1).name: 'Leader'

var(1).nvalues: 2

var(1).Values: {'0' '1'}

Probability factors:

p(1).of: 1

p(1).cond_on: [2 3]

p(1).p: [2x2 double]         

Indexing of probability tables:

p.p(index of the value variable 12, index of the value variable 1, …
      index of the value variable 3)

var =

1x21 struct ar ray with fields:

    name

    nvalues

    Values

p(12)

         of: 12

    cond_on: 1

          p: [2x2 double]

var =

1x21 struct ar ray with fields:

    name

    nvalues

    Values

p(12)

         of: 12

    cond_on: 1

          p: [2x2 double]
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Complete the MATLAB code
    for ns = 1:nsamples

       % choose a variable to resample (not the evidence)

    ...

       % find factors where this variable appears

    ...

        % calc prob of all factor for each value of the selected variable

     ...

       % normalize the obtained prob values f 

       nf = f/sum(f);

       % draw a value for the selected random variable 

       nvidx = find(rand < cumsum(nf),1);

       x(...) = nvidx;

       % store the state

       X(:,ns) = x;

   end
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