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Exercises

Problems marked with * are optional.

1 Conditional Independence I [3 P]

a) [1 P] For the probability distribution P (A,B,C,D) with the factorization

P (A,B,C,D) = P (A)P (B)P (C|A,B)P (D|C)

show that the following conditional independence assumptions hold.

(i)) A ⊥ B|∅
(ii)) A ⊥ D|C

b) [1 P] For the probability distribution P (A,B,C,D) with the factorization

P (A,B,C,D) = P (A)P (B|A)P (C|A)P (D|C)

show that the following conditional independence assumptions hold.

(i)) A ⊥ D|C
(ii)) B ⊥ D|C

c) [1* P] Find a probability distribution P (A,B,C) in form of a probability
table which fulfills A ⊥ B|∅ but not A ⊥ B|C . Proof that your probability
distribution really fulfills the two criteria.



2 Bayesian Networks [5 P]

a) [1 P] Construct a Bayesian network which represents the conditional inde-
pendence assumptions of the probability distributions from example 1 and
2.

b) [2 P] Construct two different Bayesian networks which encode exactly the
following conditional independence assumptions

A ⊥ C|B
A ⊥ D|B
C ⊥ D|B

c) [2 P] A doctor gives patients a drug based on their age and gender. So a
patients probability to recover is dependent on receiving the drug, the age
and gender. Additionally age and gender are conditionally independent if
nothing else is known about the patient.

(i) Draw the Bayesian network which describes this situation.

(ii) How does the factorized probability distribution look like?

(iii) Write down the formula to compute the probability that a patient
recovers, given that you know if the drug was given. Write down
the formula using only probabilities which are part of the factorized
probability distribution.

3 D-Separation [2 P]

[2 P] In Figure 1 you can see a Bayesian network which is used for the diagnosis
of lung cancer and tuberculosis. Check if the following conditional independence
assumptions are true or false.2

(i) tuberculosis ⊥ smoking|dyspnea

(ii) lungcancer ⊥ bronchitis|smoking

(iii) visit to Asia ⊥ smoking|lungcancer

(iv) visit to Asia ⊥ smoking|lungcancer, dyspnea



Figure 1: Bayesian network for the diagnosis of lung cancer and tuberculosis.

4 Inference in Factor Graphs [2 P]

Show how the given marginal probabilities can be computed in the factor graph
in Fig. 2 using the sum-product algorithm. Start with drawing arrows to the
factor graph which show how the messages are passed. After that write down
how each of the messages can be computed and finally write down the formula
for the marginal distribution.

a) P (A)

b) P (B)

Figure 2: Factor graph for problem 4



5 Factor graphs: HMM [5 P]

Implement the sum-product algorithm for factor graphs in MATLAB to infer the
hidden states of a HMM for the following problem.

Figure 3: Grid world

An agent is located randomly in a 10 × 10 grid world. In each of T = 20
time steps he either stays at his current location with a probability of 25% or
moves up, down, left or right, where each of these four actions is chosen with a
probability of 18.75%. Each cell in the grid world is painted with a certain color
that is chosen randomly from a set of k possible colors as shown in Fig. 3. This
color is observed by the agent at each time step and reported to us. Only these
color values are available to infer the initial location and the subsequent positions
of the agent resulting in the Hidden Markov model (HMM) illustrated in Fig. 4.

Figure 4: Hidden Markov model (HMM)



Modify the file hmmMessagePassingTask.m available for download on the
course homepage and implement the sum-product algorithm to solve this infer-
ence problem. Investigate and discuss the dependence of the solution on the
number of different colors in the grid world (k ). Hand in figures of representa-
tive results that show the actual agent trajectories, the most likely trajectories
and the probabilities of the agent positions at each time step as inferred by the
sum-product algorithm.

Present your results clearly, structured and legible. Document them in such a
way that anybody can reproduce them effortless. Send the code of your solution
to anand@igi.tugraz.at with the subject MLA SS15 HW5 - <your name>

6 Markov Networks [5 P]

a) [2 P]For the given joint probability draw an appropriate Markov network
and write down the formula for the given conditional probability. Simplify
the formula for the conditional probability as far as possible.

(i) P (A,B,C,D,E) = 1
Z
φ(A,C)φ(B,C)φ(C,D)φ(C,E) ,

P (A|C) =?

(ii) P (A,B,C,D,E) = 1
Z
φ(A,B,C)φ(C,D)φ(D,E) ,

P (A|D) =?

b) [3 P]In this example you have to write down the joint distribution for the
given Markov network and proof that a given independence assumption
holds.

(i) B ⊥ C|A

(ii) A ⊥ E|D

http://www.igi.tugraz.at/lehre/intern/MLA_WS1516_HW5.zip
mailto:anand@igi.tugraz.at


7 Junction Trees [3 P]

Consider the following distribution:

P (A,B,C,D,E, F,G,H, I) =
P (A)P (B|A)P (C|A)P (D|A)P (E|B)P (F |C)P (G|D)P (H|E,F )P (I|F,G)

a) Draw the Bayesian network for this distribution.

b) Draw the moralised graph.

c) Draw the triangulated graph. Your triangulated should contain cliques of
the smallest size possible.

d) Draw a junction tree for the above graph and verify that it satisfies the
running intersection property.

e) Write down a suitable initialization of clique potentials.

f) Find an appropriate message updating schedule.

8 Parameter Learning: Beta distribution [2 P]

You want to estimate the bias of a coin using a Bayesian approach. For that you
toss the coin ten times and get the following result

{h, t, t, t, h, t, h, t, t, t}

a) Compute the parameters of the posterior probability using a uniform Beta
distribution as prior. Plot the posterior probability density function using
the MATLAB function betapdf.

b) You do another experiment with ten tosses and this time you get the fol-
lowing result

{h, h, t, h, t, t, h, t, t, h}

Again compute the parameters of the posterior probability with (i) a uni-
form Beta distribution (ii) using the parameters you obtained after the first
experiment. Plot the two posterior probability density function.

c) Compute the probability that the next toss will be h using the results from
b).

d) Explain the different results you get in b) and c).



9 Beta distribution [2* P]

Show that the mean, variance, and mode of the beta distribution are given re-
spectively by

E[µ] =
a

a+ b

var[µ] =
ab

(a+ b)2(a+ b+ 1)

mode[µ] =
a− 1

a+ b− 2
.

10 Parameter Learning: Naive Bayes Classifiers

[5 P]

Implement an algorithm for learning a naive Bayes classifier and apply it to a
spam email data set. You are required to use MATLAB for this assignment. The
spam dataset is available for download on the course homepage.

a) Write a function called nbayes learn.m that takes a training dataset for a
binary classification task with binary attributes and returns the posterior
Beta distributions of all model parameters (specified by variables a′i and b′i
for the i th model parameter) of a naive Bayes classifier given a prior Beta
distribution for each of the model parameters (specified by variables ai and
bi for the i th model parameter).

b) Write a function called nbayes predict.m that takes a set of test data vectors
and returns the most likely class label predictions for each input vector
based on the posterior parameter distributions obtained in a).

c) Use both functions to conduct the following experiment. For your assign-
ment you will be working with a data set that was created a few years ago
at the Hewlett Packard Research Labs as a testbed data set to test different
spam email classification algorithms.

(i) Train a naive Bayes model on the first 2500 samples (using Laplace
uniform prior distributions) and report the classification error of the
trained model on a test data set consisting of the remaining examples
that were not used for training.

(ii) Repeat the previous step, now training on the first 10, 50, 100, 200,
... , 500 samples, and again testing on the same test data as used in
point 1 (samples 2501 through 4601). Report the classification error
on the test dataset as a function of the number of training examples.
Hand in a plot of this function.



(iii) Comment on how accurate the classifier would be, if it would randomly
guess a class label or it would always pick the most common label in
the training data. Compare these performance values to the results
obtained for the naive Bayes model.

Present your results clearly, structured and legible. Document them in such a way
that anybody can reproduce them effortless. Send the code of your solution to
griesbacher@tugraz.at with subject ”[MLA A10] code submission” before
19th January 2016 2pm.

11 K-means: Image compression [3 P]

Apply the k-means algorithm for lossy image compression by means of vector
quantization.

� Download the 512× 512 image mandrill.tif (available for download on the
course website). Each pixel represents a point in a three dimensional (r,g,b)
color space. Each color dimension encodes the corresponding intensity with
an 8 bit integer.

� Cluster the pixels in color space using k-means with k ∈ {2, 4, 8, 16, 32, 64, 128}
clusters and replace the original color values with the indices of the closest
cluster centers. You can use the MATLAB function kmeans to do the clus-
tering. Determine the compression factor for each value of k and relate it
to the quality of the image. Apply an appropriate quality measure of you
choice.

Present your results clearly, legibly and in a well structured manner. Docu-
ment them in such a way that anybody can reproduce them effortlessly. Send
the code of your solution to anand@igi.tugraz.at with the subject MLA SS15
HW11 - <your name>.

12 EM Algorithm for Gaussian Mixture Model

[5 P]

In this task you have to implement the EM algorithm for Mixture of Gaussians.
The algorithm can be found in the slides or in Bishop p.438,439.

1. Write the function em which takes the dataset and the number of clusters
K as arguments. Make sure that you initialize the parameters ( µk , Σk ,
πk ) appropriately.

http://www.igi.tugraz.at/lehre/intern/MLA_WS1516_HW11.zip
mailto:anand@igi.tugraz.at


2. Download the dataset provided on the course website. It contains the com-
plete dataset where x contains the data and z contains the correct classes.
You can use z to check if the correct clusters are found.

Let the algorithm run several times with K = 5 but with different initial
cluster centers to see how it performs. Show some plots and describe the
behaviour of the algorithm. Does it always find the correct clusters? Does
the algorithm have any problems?

3. Now use different values for K and analyze what the algorithm does for K
being lower or bigger than the correct amount of clusters.

Present your results clearly, legibly and in a well structured manner. Docu-
ment them in such a way that anybody can reproduce them effortlessly. Send
the code of your solution to anand@igi.tugraz.at with the subject MLA SS15
HW12 - <your name>.

13 EM Algorithm for Mixture of Lines [3* P]

Assume that the training examples xn ∈ R2 with n = 1, ..., N were generated
from a mixture of K lines

P (xn,2|zn,k = 1) = N (xn,2|θk,1xn,1 + θk,2, σk) (1)

where

N (x|µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(2)

and the hidden variable zn,k = 1 if xn is generated from line k and 0 otherwise.

1. [1* P] Derive the update equations for the M-step of the EM algorithm for
the variables θk and σk .

2. [2* P] Implement the EM algorithm for Mixture of Lines using the update
equations you derived in 1. Use the dataset provided on the course website
to evaluate your implementation. Show some plots of intermediate steps
and describe what is happening.

Present your results clearly, legibly and in a well structured manner. Docu-
ment them in such a way that anybody can reproduce them effortlessly. Send
the code of your solution to anand@igi.tugraz.at with the subject MLA SS15
HW13 - <your name>.

http://www.igi.tugraz.at/lehre/intern/MLA_WS1516_HW12.zip
mailto:anand@igi.tugraz.at
http://www.igi.tugraz.at/lehre/intern/MLA_WS1516_HW13.zip
mailto:anand@igi.tugraz.at
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