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Exercises

Problems marked with * are optional.

1 Conditional Independence I [2 P]

a) [1 P] Give an example for a probability distribution P (A, B, C) that dis-
proves

P (A, B) = P (A)P (B) → P (A, B|C) = P (A|C)P (B|C).

Illustrate the phenomenon of ’explaining away’.

b) [1 P] Give an example for a probability distributions P (A, B, C) that dis-
proves

P (A, B|C) = P (A|C)P (B|C) → P (A, B) = P (A)P (B).

2 Conditional Independence II [2+1* P]

a) [2 P] Consider the two networks:

For each of them, determine whether there can be any other Bayesian net-
work that encodes the same independence assertions.

b) [1* P] Give an example for a probability distribution P so that all inde-
pendence assertions that hold in P can not be represented by any (single)
Bayesian network.



3 Bayesian Networks [3 P]

Figure 1: Three possible networks for the telescope problem.

Two astronomers in different parts of the world make measurements M1 and
M2 of the number of stars N in some small region of the sky, using their tele-
scopes. Normally, there is a small possibility e of error by up to one star in each
direction. Each telescope can also (with a smaller probability f) be badly out of
focus (events F1 and F2), in which case the scientists will undercount by three
or more stars (or, if N is less than 3, fail to detect any stars at all). Consider the
three networks illustrated in Figure 1.

a) [1 P] Which of these Bayesian networks are correct (but not necessarily
efficient) representations of the preceding information?

b) [1 P] Which is the best network? Why?

c) [1 P] Write out a conditional distribution for P (M1|N), for the case N ∈
{1, 2, 3} and M1 ∈ {0, 1, 2, 3, 4}. Each entry in the conditional distribution
should be expressed as a function of the parameters e and/or f .

4 d-separation [4+1* P]

a) Prove or disprove:

1. [1P ] (X ⊥ Y,W |Z)) ⇒ (X ⊥ Y |Z).

2. [1P ] (X ⊥ Y |Z) & (X, Y ⊥ W |Z) ⇒ (X ⊥ W |Z).

3. [1P ] (X ⊥ Y,W |Z) & (Y ⊥ W |Z) ⇒ (X, W ⊥ Y |Z).

4. [1* P] (X ⊥ Y |Z) & (X ⊥ Y |W ) ⇒ (X ⊥ Y |Z,W ).



Figure 2: Bayesian network.

b) [1 P]

Apply d-seperation to determine whether the following conditional inde-
pendence statements hold for the Bayesian network illustrated in Fig. 2.

1. (X3 ⊥ X7)

2. (X3 ⊥ X7|X4)

3. (X3 ⊥ X5)

4. (X3 ⊥ X5|X7)

5 Inference in Factor Graphs [2 P]

Consider a tree-structured factor graph, in which a given subset of the variable
nodes form a connected subgraph (i.e., any variable node of the subset is con-
nected to at least one of the other variable nodes via a single factor node). Show
how the sum-product algorithm can be used to compute the marginal distribution
over that subset.

6 Factor graphs: HMM model [5 P]

Implement the sum-product algorithm for factor graphs in MATLAB to infer the
hidden states of a HMM for the following problem.

An agent is located randomly in a 10 × 10 grid world. In each of T = 20
time steps he either stays at his current location with a probability of 25% or



Figure 3: Grid world.

moves up, down, left or right, where each of these four actions is chosen with a
probability of 18.75%. Each cell in the grid world is painted with a certain color
that is chosen randomly from a set of k possible colors as shown in Fig. 3. This
color is observed by the agent at each time step and reported to us. Only these
color values are available to infer the initial location and the subsequent positions
of the agent resulting in the Hidden Markov model (HMM) illustrated in Fig. 4.

Figure 4: Hidden Markov model (HMM).

Modify the file hmmMessagePassingTask.m available for download on the
course homepage1 and implement the sum-product algorithm to solve this in-
ference problem. Investigate and discuss the dependence of the solution on the
number of different colors in the grid world (k). Hand in figures of representa-
tive results that show the actual agent trajectories, the most likely trajectories

1http://www.igi.tugraz.at/lehre/intern/MLA WS1112 HW6.zip



and the probabilities of the agent positions at each time step as infered by the
sum-product algorithm.

Present your results clearly, structured and legible. Document them in such
a way that anybody can reproduce them effortless. Hand in printouts of your
MATLAB code.

7 Message passing in Gaussian Bayesian net-

works [3 P]

Consider the Bayesian network illustrated in Fig. 5 with the probabilities

P (x0) = N (x0|a0,Q0) (1)

P (xt+1|xt) = N (xt+1|Atxt + at|Qt) (2)

P (yt|xt) = N (yt|Dtxt + dt|Ct) (3)

where N (x|µ,Σ) denotes the multivariate Gaussian distribution with mean µ
and covariance Σ.

Figure 5: Gaussian Bayesian network.

Prove that the forward messages have again the form of a Gaussian distribu-
tion

α(xt) = N (xt|S−1
t st,S

−1
t ) (4)

with mean S−1
t st and covariance S−1

t as defined on the slides for the exercise hour
(slide 23). (Hint: Use the three properties of Gaussian distributions discussed in
the exercise hour.)



8 Factor graphs: Robot Localization [5 P]

Implement the sum-product algorithm for factor graphs in MATLAB for the
Gaussian Bayesian network illustrated in Fig. 5 with the probabilities given in
Eq. 1 - 3.

Figure 6: Robot control task.

Modify the files mainTemplate.m, kalmanFilter.m and kalmanSmoother.m

available for download on the course homepage2 and implement a) the Kalman
filter algorithm and b) the Kalman smoother algorithm. The task is to infer the
trajectory of a robot that starts at position x0 and moves according to the linear
transition model

xt+1 = Axt + But +N (0|Q) (5)

for given actions at from the observations (green dots)

yt = Dxt + d +N (0|C) (6)

as illustrated in Fig. 6. The environment and the parameters for the linear state
transition and observation model are already provided in the file mainTemplate.m.

Investigate and discuss the results for both algorithms. Hand in figures of
representative results that show the actual robot trajectories and the most likely
robot trajectories for both algorithms as infered by the sum-product algorithm.

2http://www.igi.tugraz.at/lehre/intern/MLA WS1112 HW8.zip



Present your results clearly, structured and legible. Document them in such
a way that anybody can reproduce them effortless. Hand in printouts of your
MATLAB code.

9 Beta distribution [2* P]

Show that the mean, variance, and mode of the beta distribution are given re-
spectively by

E[µ] =
a

a + b

var[µ] =
ab

(a + b)2(a + b + 1)

mode[µ] =
a− 1

a + b− 2
.

10 EM Algorithm Applet [3 P]

Go to Olivier Michel’s applet Gaussian Mixture Model EM Algorithm at
http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html and an-
swer questions 1-6 [1 P]. Additionally do the following:

a) [1 P]

Create points from two intersecting lines and run the algorithm with option
LineMix and 2 clusters. Click repeatedly on EM 1 Step to run the algorithm.
Repeat this experiment with different cutting angles of the lines and analyze
if this has an effect on the number of iterations until convergence.

b) [1 P]

Create points in a ring around the center with the button RingPts. Try
to fit a mixture of lines model (with EM Run) to this distribution and
analyze what happens when you change the number of lines. Do the same
experiment with mixtures of Gaussians and describe what you find.

11 EM Algorithm for Mixtures of Lines [3 P]

Assume that the training examples xn ∈ R2 with n = 1, ..., N were generated
from a mixture of K lines

P (xn,2|zn,k = 1) = N (xn,2|θk,1xn,1 + θk,2, σk) (7)



where

N (x|µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(8)

and the hidden variable zn,k = 1 if xn is generated from line k and 0 otherwise.
Derive the update equations for the M-step of the EM algorithm for the variables
θk and σk.

12 Clustering: Face recognition [3 P]

In this homework example you should cluster images derived from the Olivetti
face database with the cluster algorithms ’k-means’ and ’k-medoids’. You can
download the dataset and its description from the course homepage.3

• Normalize the pixels in each 50 by 50 image (each column of the design
matrix) to have mean 0 and variance 0.1.

• Apply k-means and k-medoids to the dataset. For k-means use the MAT-
LAB function kmeans. For k-medoids you have to write your own MATLAB
function. For both algorithms use the squared Euclidean distance. Analyze
the dependence of the average squared error on the number of clusters.

• Analyze for k ∈ {2, 5, 10, 30} the cluster centers and outliers (points with
the largest squared errors) for both algorithms. Explain the differences in
the results.

13 Clustering: Image compression [3 P]

Apply the k-means algorithm for lossy image compression by means of vector
quantization.

• Download the 512 × 512 image mandrill.tif.4 Each pixel represents a
point in a three dimensional (r,g,b) color space. Each color dimension
encodes the corresponding intensity with an 8 bit integer.

• Cluster the pixels in color space using k ∈ {2, 4, 8, 16, 32, 64, 128} clusters
and replace the original color values with the indices of the closest cluster
centers. Determine the compression factor for each value of k and relate it
to the quality of the image. Apply an appropriate quality measure of you
choice.

3http://www.igi.tugraz.at/lehre/intern/MLA WS1112 HW12.zip
4http://www.igi.tugraz.at/lehre/intern/MLA WS1112 HW13.zip



14 Mixture distributions [2* P]

Consider a density model given by a mixture distribution

p(x) =
K∑

k=1

πkp(x|k) (9)

and suppose that we partition the vector x into two parts so that x = (xa,xb).
Show that the conditional density p(xb|xa) is itself a mixture distribution and
find expressions for the mixing coefficients and for the component densities.

15 Parameter Learning for Naive Bayes Classi-

fiers [3* P]

Implement an algorithm for learning a naive Bayes classifier and apply it to a
spam email data set. You are required to use MATLAB for this assignment. The
spam dataset is available for download on the course homepage5.

a) [1/2* P]

Write a function called nbayes learn.m that takes a training dataset for a
binary classification task with binary attributes and returns the posterior
Beta distributions of all model parameters (specified by variables a′i and b′i
for the ith model parameter) of a naive Bayes classifier given a prior Beta
distribution for each of the model parameters (specified by variables ai and
bi for the ith model parameter).

b) [1/2* P]

Write a function called nbayes predict.m that takes a set of test data
vectors and returns the most likely class label predictions for each input
vector based on the posterior parameter distributions obtained in a).

c) [1* P]

Use both functions to conduct the following experiment. For your assign-
ment you will be working with a data set that was created a few years ago
at the Hewlett Packard Research Labs as a testbed data set to test different
spam email classification algorithms.

1. Verify the naive Bayes assumption for all pairs of input attributes.

5http://www.igi.tugraz.at/lehre/intern/MLA WS1112 HW15.zip



2. Train a naive Bayes model on the first 2500 samples (using Laplace
uniform prior distributions) and report the classification error of the
trained model on a test data set consisting of the remaining examples
that were not used for training.

3. Repeat the previous step, now training on the first {10, 50, 100, 200,
... , 500} samples, and again testing on the same test data as used in
point 1 (samples 2501 through 4601). Report the classification error
on the test dataset as a function of the number of training examples.
Hand in a plot of this function.

4. Comment on how accurate the classifier would be if it would randomly
guess a class label or it would always pick the most common label in
the training data. Compare these performance values to the results
obtained for the naive Bayes model.

d) [1* P] Train a feedforward neural network with one sigmoidal output unit
and no hidden units with backpropagation (use the algorithm traingdx

and initialize the network with small but nonzero weights) on the first {10,
50, 100, 200, ... , 500} samples and test on the same test data as used in
point 1 (samples 2501 through 4601). Report the classification error on the
test dataset as a function of the number of training examples and compare
the results to the one obtained for the naive Bayes classifier. Hand in a plot
of this function.

Present your results clearly, structured and legible. Document them in such a
way that anybody can reproduce them effortless.


