
Improved Neighborhood-Based Algorithms for Large-Scale
Recommender Systems

Andreas Töscher∗
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria

toescher@sbox.tugraz.at

Michael Jahrer∗
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria

jahrmich@sbox.tugraz.at

Robert Legenstein
Institute for Theoretical

Computer Science
Technische Universitaet Graz

Inffeldgasse 16b
A-8010 Graz, Austria
legi@igi.tugraz.at

ABSTRACT
Neighborhood-based algorithms are frequently used mod-
ules of recommender systems. Usually, the choice of the
similarity measure used for evaluation of neighborhood re-
lationships is crucial for the success of such approaches. In
this article we propose a way to calculate similarities by for-
mulating a regression problem which enables us to extract
the similarities from the data in a problem-specific way. An-
other popular approach for recommender systems is regular-
ized matrix factorization (RMF). We present an algorithm –
neighborhood-aware matrix factorization – which efficiently
includes neighborhood information in a RMF model. This
leads to increased prediction accuracy. The proposed meth-
ods are tested on the Netflix dataset.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining, Recom-
mender Systems, Collaborative Filtering, Netflix Competi-
tion]

General Terms
Latent factor model, Similarity matrix, Ensemble perfor-
mance

Keywords
recommender systems, matrix factorization, KNN, Netflix,
collaborative filtering

1. INTRODUCTION
Due to the increasing popularity of e-commerce, there is
growing demand of algorithms that predict the interest of
customers (called users in the following) in some product
(called item in the following). Such interest is commonly

∗These authors contributed equally to this work.

quantified by a non negative number r which we call a rat-

ing in this article. Algorithms which predict a rating for
each user-item pair are called recommender systems [1]. The
predictions of recommender systems are in general based
on a database which contains information about users and
items. The Collaborative Filtering (CF) approach to recom-
mender systems relies only on information about the behav-
ior of users in the past. The pure CF approach is appealing
because past user behavior can easily be recorded in web-
based commercial applications and no additional informa-
tion about items or users has to be gathered. CF algorithms
for recommender systems are therefore easily portable.

More abstractly, the goal of CF is missing value estimation.
Consider a system consisting of m users and n items. We de-
fine the set of users as the set of integers {1, . . . , m} and the
set of items as the set of integers {1, . . . , n}. The m×n rat-
ing matrix R = [rui]1≤u≤m;1≤i≤n stores the ratings of users
for items where rui is the rating of user u for item i. The in-
put to a CF algorithm is a set L = {(u1, i1), . . . , (uL, iL)} of
L user-item tuples referred to as votes and the correspond-
ing ratings in the rating matrix. We assume that ratings in
the rating matrix are non-zero if they are in the training set
and zero if they are not in the training set, i.e., we assume
rui 6= 0 if (u, i) ∈ L and rui = 0 otherwise. Such ratings not
in the training set are called missing values. The goal of the
system is to predict the missing values of R.

In fall 2006, the movie rental company Netflix started a
competition, the Netflix Prize. The goal of the competi-
tion is to design a recommender system which improves on
the Netflix recommender system Cinematch by 10% with
regard to the root mean squared error (RMSE) on a pub-
lished database. This database contains training data in the
form of about 100 million ratings from about 480,000 users
on 17,770 movies. Each rating in this database is an inte-
ger between 1 and 5. A probe set is provided which can be
used to test algorithms. Furthermore, Netflix published a
qualifying set which consists of user-item pairs but no rat-
ings (the items correspond to movies in this database). The
ranking of a submitted solution is based on this data set.
The Netflix dataset captures the difficulties of large recom-
mender systems. First, the dataset is huge and therefore the
runtime and memory usage of potential algorithms become
important factors. Second, the ranking matrix is very sparse
with about 99 percent of its entries being missing such that

many users have voted for just a few movies. The algorithms
presented in this article were tested on the Netflix dataset.
However, their design is not specific to this dataset, thus the
algorithms can be applied to other CF problems as well.

An obvious way to generate predictions of ratings is to cal-
culate similarities between users and deduce a rating of some
user u for an item i from ratings of that item by users with
high similarity to user u. Similarly, a rating for some item i
by user u can be predicted from ratings by that user for simi-
lar items. Such approaches have successfully been applied to
the Netflix dataset. We deal with pure neighborhood-based
approaches in Section 2. It turned out that they benefit from
simple preprocessing where the ratings are first cleaned from
so called global effects [2]. Global effects are linear relation-
ships between the ratings and some simple variables like the
time of the rating (which is provided in the Netflix dataset).
We introduce in Section 2.1 four global effects which have
not been considered before.

One problem of neighborhood-based approaches is the choice
of the metric, or in other words, the measure of similarity
between users or items.1 A common way to measure the
similarity between two users is the Pearson correlation be-
tween ratings of items which both users voted for. However,
if two users have just a few common ratings (which is often
the case in the Netflix dataset), the Pearson correlation is a
bad estimate for their similarity. In Section 2.2 we propose a
method where the similarities between items themselves are
learned by gradient descent. Thus, the choice of a similarity
measure is passed from the designer to the algorithm. One
drawback of this method is the huge number of parameters
which are fitted (the whole n × n matrix of item similari-
ties has to be estimated) and thus its tendency to overfit
the training data. This problem is tackled by a factorized
version described in Section 2.3. This algorithm does not
compute the whole similarity matrix but a low rank approx-
imation in a linear latent factor model. This reduces the
number of parameters significantly. A further advantage of
factorized similarities is its memory efficiency. While the
whole similarity matrix between users cannot be precom-
puted because of memory restrictions of computers to date,
the online computation of correlations can be very time de-
manding. This makes näıve neighborhood-based approaches
infeasible for large sets of elements like the set of users in the
Netflix database. The factorized similarity model overcomes
this problem. First, for a reasonable number of factors per
user, the factor matrix can easily be held in memory, and
second, for any two users the similarity is computed by just
the inner product of two vectors. This model can also easily
be extended to include information about unknown ratings
(i.e., user-item pairs for which one knows that this user rated
that item but the actual rating is unknown). The inclusion
of unknown ratings in the prediction was first discussed in
[7].

A regularized matrix factorization (RMF) produces a rank
K approximation of the m × n rating matrix by factorizing
it into a m × K matrix of user features and a K × n ma-
trix of item features. RMF models are easy to implement
and achieve good performance. Consequently, they are of-

1Obviously, one can also define a similarity measure for user-
item pairs, an approach which is not discussed in this article.

Nb. Side Effect RMSE
10 both Previous effects 0.9659
11 item average movie year 0.9635
12 user movie production year 0.9623
13 user STD of movie ratings 0.9611
14 item STD of user ratings 0.9604

Table 1: Preprocessing for neighborhood models.
The table shows the RMSE on the probe set of the
Netflix dataset when accounting for 10 to 14 global
effects (i.e., the row with Nb. i shows the error when
one accounts for global effects 1 to i). The second
column (“Side”) specifies whether the effect defined
in the third column (“Effect”) needs the estimation
of parameters for the users or for the items.

ten used in CF algorithms. Overspecialization on the data
points can be avoided by careful use of regularization tech-
niques. We show in Section 3 that a hybrid approach which
is partly neighborhood-based and RMF-based is a very ef-
fective CF method. This method performs slightly better
than well-tuned RMF methods or restricted Boltzmann ma-
chines (RBMs). Additionally, the model can be trained very
quickly.

2. NEIGHBORHOOD-BASED MODELS
Neighborhood-based models for recommender systems com-
monly compute the similarity between users or items and
use these similarities to predict unknown ratings. It is diffi-
cult to pre-calculate correlations between users for the Net-
flix database because the user correlation matrix can not
be held in main memory of current computers. This makes
the evaluation of näıve user-based neighborhood approaches
very slow and therefore unpractical. We will discuss an ef-
ficient algorithm which is based on user similarities in Sec-
tion 2.4. Before that, we discuss our algorithms for the case
of item-based similarities and note that the principles ap-
ply to user-based similarities in the same way. The sim-
ilarity cij between two items i and j is often estimated
by the Pearson correlation between common ratings of that
items, i.e., the correlation between the list of ratings of users
U(i, j) = {u|(u, i) ∈ L and (u, j) ∈ L} which voted for both
items i and j. The full neighborhood information is stored
in the symmetric similarity matrix C = [cij]1≤i,j≤n. Other
similarity measures like the mean squared error (MSE) or a
distance derived from the movie titles can also be used.

Algorithms in the flavor of the k-nearest neighbor (kNN)
algorithm produce ratings based on the ratings of the k most
similar items, i.e., the predicted rating r̂ui of an user u for
item i is computed as

r̂ui =

P

j∈Nk(u,i) cij ruv
P

j∈Nk(u,i) cij

, (1)

where Nk(u, i) denotes the set of the k items most similar
to item i that were rated by user u.

2.1 Preprocessing
In [2], so called ”global effects”of the data were discussed and
the removal of such effects from the data was proposed as
an effective preprocessing step for the Netflix dataset. Such

simple preprocessing turns out very useful if applied prior to
kNN methods. As defined by [2], a global effect is a linear re-
lationship between the ratings and some simple property of
the votes. For each of the effects, the goal is to estimate one
parameter per user or per item (see [2] for details). We found
four effects not described before which lower the RMSE on
the probe set to 0.9604, see Table 1. The effects considered
are the effect of the average production year of the movies
the given user voted for (”average movie year”), the produc-
tion year of the given movie (”movie production year”), the
standard deviation of the ratings for the given movie (”STD
of movie ratings”) and the standard deviation of the ratings
of the given user (”STD of user ratings”).

The algorithms described below are tested for different pre-
processings in order to facilitate comparison with other al-
gorithms.

2.2 Regression on similarity
One problem of approaches based on the Pearson correlation
between item ratings is that for many item pairs, there are
only a few users which rated both items. For any two items
i, j, we define the support sij for these items as the number
of users which rated both items. The reliability of the es-
timated correlation grows with increasing support sij . For
the Netflix dataset most correlations between movies are
around 0. In order to decrease the influence of estimated
correlations with low support on the prediction, we found
it useful to weight correlations according to their support
such that the similarity cij between item i and j is given by
cij = c̃ij

sij

sij+α
where c̃ij is the Pearson correlation between

common ratings of the two items and α is a constant in the
range of 100 to 1000 (this procedure was introduced in [3]).

In any case, the choice of the similarity measure is critical for
the success of neighborhood-based algorithms. In this sec-
tion we describe an alternative approach where the matrix
of similarities C between items is learned by the algorithm
itself. The matrix can be initialized with small random val-
ues around 0 or with Pearson correlations 2. A prediction
of the rating of user u for item i is calculated similar to
equ. (1), but over the set N(u, i) = {j 6= i|(u, j) ∈ L} of all
items different from i which user u voted for in the training
set

r̂ui =

P

j∈N(u,i) cij ruj
P

j∈N(u,i) |cij |
. (2)

Since similarities can become negative, we normalize by the
sum of absolute similarities.

The objective function to minimize is given by the MSE with
an additional regularization term

E(C,L) =
1

2

X

(u,i)∈L

(r̂ui − rui)
2 + γ

X

j<k

c
2
jk,

where γ is a regularization constant. The model is trained
by stochastic gradient descent on the objective function. For
each training example we update only those similarities rel-
evant for the example, i.e., for example (u, i) we update cij

2We used a uniform distribution in [−0.1, 0.1] or Pearson
correlations, with similar results.

Preprocessing probe RMSE qual. RMSE
Raw data 0.9574 0.9487
1GE 0.9458 0.9384
2GE 0.9459 0.9384
6GE 0.9372 0.9281
10GE 0.9349 0.9256
14GE 0.9331 0.9239

Table 2: The RMSE of the similarity regression
model on the probe set (middle column) and the
qualifying set (right column) of the Netflix dataset
for preprocessings that accounted for 0 to 14 global
effects (GE).

if j ∈ N(u, i). The update of similarity cij is then given by

c
new
ij = c

old
ij − η · sign

„

(r̂ui − rui)
∂r̂ui

∂cij

«

− η γ c
old
ij . (3)

We opted to use the sign of the error gradient in (3) because
this update turned out to be much more stable than the gra-
dient itself. This choice was inspired by the sign-sign LMS
rule (see, e.g., [5]). The number of trainable parameters
in this model for the Netflix dataset is around 157 million
which is very large. Hence training of the model is prone to
early overfitting. Typical values of γ and η are 0.01. Results
on the Netflix data are shown in Table 2. At a single epoch,
approximately L · sM similarities are updated, where L is
the size of the training set L and sM is the average number
of votes per user (sM is around 200 for the Netflix dataset).
The training time for one epoch is in the range of one hour
on a standard PC and usually a single epoch suffices.

2.3 Regression on factorized similarity
Gradient descent on the elements of the symmetric item sim-
ilarity matrix C leads to early overfitting because of the huge
number of trained parameters. In this section, we show that
one can overcome this problem by learning a factorized ver-
sion of C. In other words, the algorithm learns two K × n
matrices P and Q with K ≪ n and C is computed as

C = PT Q. (4)

Hence, we learn a rank-k approximation of C which dras-
tically reduces the number of parameters. Only the upper
triangle of PT Q is used to calculate similarities, since sim-
ilarities are assumed to be symmetric, i.e., cij = cji. The
similarity cij between items i and j is then given by

cij =

(

pT
i qj , if i < j

pT
j qi, if i > j,

(5)

where pi and qi denote the ith column of P and Q respec-
tively. Ratings are predicted as in the previous section by
equ. (2).

The training schedule is similar to the direct similarity re-
gression model with the difference that for every similar-
ity cij (with i < j) we have to update the 2K parameters
p1i, . . . , pKi and q1j , . . . , qKj . Hence the training is slowed
down by a factor of K as compared to direct similarity re-
gression. Results on the Netflix data are shown in Table
3. The results are marginally better compared to the non-
factorized version.

Preprocessing K RMSE
10GE 80 0.9324
14GE 100 0.9313

Table 3: The RMSE of the factorized item similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

Preprocessing K RMSE
Raw 10 0.9951
2GE 10 0.9539
6GE 10 0.9469
14GE 20 0.9371

Table 4: The RMSE of the factorized user similar-
ity regression model on the probe set of the Netflix
dataset for various preprocessings.

2.4 Factorized user similarity matrix
An advantage of the factorized similarity model is that simi-
larities between large sets of elements can be stored in mem-
ory. This enables us to store similarities between users in
the factor matrices. In order to learn user similarities we
perform gradient descent on the factorized user similarity
matrix. All calculations and update rules are mirrored ver-
sions of those discussed above for the item similarity ma-
trix. For the Netflix dataset the training time increases by
a factor of 30 compared to the training time of the factor-
ized item similarity model since there are approximately 30
times more users than items in the database.

The results of the model for a few different preprocessings
of the data are shown in Table 4.3 Although the results are
similar the those of the factorized item similarity model, the
algorithm is still useful since the information extracted from
user similarities is different from that when item similarities
are used. This contributes to the performance if the models
are finally combined for a single prediction.

2.5 Incorporating unknown ratings
The model can be extended to include unknown ratings.
This helps in general on users with few ratings in the training
set. Let L′ denote the set of votes for which the rating is
unknown (for the Netflix dataset, our set L′ consisted of
votes in the probe set as well as those in the qualifying set).
Let N ′(u, i) = {j 6= i|(u, j) ∈ L′} denote the set of items
different from i user u has voted for with unknown rating.
Then, the prediction r̂ui of a rating for user u on item i is
given by

r̂ui =

P

j∈N(u,i) cij ruj +
P

j∈N′(u,i) cij r̃uj
P

j∈N(u,i) |cij | +
P

j∈N′(u,i) |cij |
, (6)

where r̃uj are estimates of the unknown ratings (they are pa-
rameters of the model which are trained, see below). Train-

3Because of the time demands of this algorithm, training was
stopped after the presentation of only 30% of the training
set.

ing of the similarities is done as in the basic model (see
equ. (3)) with the difference that for training example (u, i)
we update all cij for j ∈ N(u, i) ∪ N ′(u, i). The unknown
ratings r̃uj are trained simultaneously with gradient descent.
One can initialize each unknown rating with the mean rat-
ing of the corresponding item. Slightly better performance
can be obtained if one initializes the unknown ratings with
predictions of a neighborhood-based approach, see equ. (1)
(the reported results were obtained in this manner). On
the Netflix dataset, this model achieved a RMSE of 0.9278
on the probe set with a preprocessing that accounted for
14 global effects. This is an improvement of 0.053 over the
model without unknown ratings (see Table 2).

3. NEIGHBORHOOD-AWARE MATRIX FAC-
TORIZATION

In this section we present an algorithm – neighborhood-
aware matrix factorization (NAMF) – which efficiently in-
corporates a linear regularized matrix factorization (RMF)
in a neighborhood-based model. More specifically, for a
given vote (u, i), the algorithm computes three predictions:
a prediction r̂MF

ui which is based on a RMF, a prediction
r̂user

ui is based on a user-neighborhood model, and a predic-
tion r̂item

ui which is based on a item-neighborhood model.
Both neighborhood-based models utilize predictions from
the RMF model if needed. The final prediction of the al-
gorithm is a combination of the three predictions.

3.1 Regularized matrix factorization model
A RMF computes a rank K approximation R′ = ABT of
the rating matrix R, where A ∈ R

m×K is the user factor
matrix and B ∈ R

n×K is the item factor matrix. The en-
tries of these matrices are determined such that rui ≈ r′ui for
all votes (u, i) ∈ L. After the factor matrices A and B have
been determined by the training algorithm, the prediction
r̂MF

ui for a vote (u, i) is given by r̂MF
ui = r′ui =

PK

k=1 aukbik.
Because the rating matrix is usually sparse, additional reg-
ularization is needed. Using a regularization as proposed in
[8], [6] leads to the error function

E(A,B,L) =
X

(u,i)∈L

(rui − r̂
MF
ui)2 +

λ

2
(‖A‖2

F +‖B‖2
F), (7)

where || · ||F denotes the Frobenius norm and λ is the reg-
ularization parameter. We use stochastic gradient descent
to minimize this error function. The update equations for a
training example (u, i) are therefore

a
new
uk = a

old
uk + η · (euib

old
ik − λa

old
uk) (8)

b
new
ik = b

old
ik + η · (euia

old
uk − λb

old
ik), (9)

for k = 1, . . . , K and

eui = rui −

K
X

k=1

a
old
uk b

old
ik . (10)

3.2 User-neighborhood model
The similarity of two users can be measured by the Pearson
correlation ρ̃user

uv between the list of ratings for items which
were rated by both users. In order to decrease the influence
of correlations with low support we shrink each correlation

according to their support suv [3]:

ρ
user
uv =

suvρ̃user
uv

suv + αuser
, (11)

where the parameter αuser is determined as discussed be-
low (in order to facilitate readability we denote all variables
and parameters of the user-neighborhood model by a “user”
superscript and those of the item-neighborhood model by a
“item” superscript). However, the use of the Pearson corre-
lation may be problematic in some cases. The most severe
problem occurs if the number of common ratings is small for
most user pairs (i.e., the support for most user pairs is low).
In this case, the Pearson correlation between these ratings is
a very unreliable measure of similarity. For many datasets
however there exist for most users other users such that the
number of common rated items is large, and reliable corre-
lations can be calculated for these pairs. We will make use
of this observation below. Another problem of employing
correlations between users is the size of the correlation ma-
trix. For the Netflix dataset where the number of users is
around 480,000, the whole matrix needs about one TByte of
memory. We overcome this problem by storing for each user
u only the correlations with the J users with highest corre-
lation to u. A rating prediction r̂user

ui is then computed as
the weighted sum over the ratings of these best correlating
users where the rating rvi is given by the predicted rating
of the RMF model or a rating from a training example if it
exists

r̂
user
ui =

P

v∈UJ (u) cuser
uv rvi

P

v∈UJ (u) cuser
uv

, (12)

where UJ (u) denotes the set of J users with highest cor-
relation to u. Each weighting coefficient cuser

uv is computed
from the Pearson correlation ρuser

uv by applying a squashing
function

c
user
uv = (σ (suser

ρ
user
uv − b

user))γuser

, (13)

where the scaling factor suser, the bias buser, and the expo-
nent γuser are global parameters which were determined as
described below. The sigmodial squashing function σ(·) is
given by

σ(x) =
1

(1 + exp (−x))
. (14)

3.3 Item-neighborhood model
For the item side the same principle can be applied. Corre-
lations ρ̃item

ij between common rated items are shrunk

ρ
item
ij =

sij ρ̃
item
ij

sij + αitem
. (15)

For each item i only the correlations with the J items with
highest correlation to i are stored. A rating prediction is
then computed as the weighted sum over the ratings of these
best correlating items IJ(i). The weighting coefficients are
given by

c
item
ij =

“

σ
“

s
item

ρ
item
ij − b

item
””γitem

, (16)

where ρitem
ij denotes the Pearson correlation between the

ratings of users that rated both items i and j, and αitem,
sitem, bitem, and γitem are constants. The rating prediction

r̂item
ui for a vote (u, i) is given by

r̂
item
ui =

P

j∈IJ (i) citem
ij ruj

P

j∈IJ (i) citem
ij

. (17)

3.4 Combining the information
The predictions from the RMF model, the user neighbor-
hood model and the item neighborhood model are combined
in a single rating. The obvious way to archive this is an
optimal linear combination of the three predictions. Ex-
periments have shown that the predictive accuracy of the
models strongly depends on the support and the number of
ratings from the training data (as opposed to those from the
RMF model) used in the neighborhood models. So we use
a weighted sum, based on this information to combine the
predictions:

r̂ui =
S̃(u, i)δ · r̂MF

ui + β̂Ŝ(u, i)δ̂ · r̂user
ui + β̄S̄(u, i)δ̄ · r̂item

ui

S̃(u, i)δ + β̂Ŝ(u, i)δ̂ + β̄S̄(u, i)δ̄

(18)

S̃(u, i) = min{Nu, Ni}. (19)

In the equation above, Nu = |{i|(u, i) ∈ L}| denotes the
number of votes of user u, and Ni = |{u|(u, i) ∈ L}| de-
notes the number of votings for item i. S̄(u, i) = |{v ∈

UJ (u)|(v, i) ∈ L}| and Ŝ(u, i) = |{j ∈ IJ(i)|(u, j) ∈ L}|
denote the number of votes from the training set used to
calculate the corresponding ratings.

The training schedule can be summarized as follows. First,
correlations ρ̃user

uv between users and correlations ρ̃item
ij be-

tween items are computed. The best correlating users/items
are computed according to the shrunken correlations (we
used αuser = 10 for user correlations and for item correla-
tions αitem = 30) and the corresponding correlations (not
shrunk) are stored. This step is the computationally most
demanding one. Then the RMF is computed. Once this
is done, the predictions of the neighborhood models can be
computed very efficiently. Then, good values for the 13 con-
stants αuser, αitem, β̄, β̂, suser, sitem, buser, bitem, γuser,
γitem, δ, δ̄, and δ̂ in the model are determined with a ge-
netic algorithm. Because the evaluation of individuals is
very fast, this optimization step can be done quite efficiently
(on a standard PC this step needed 1-2 hours). Once the
model is trained, predictions can be generated very quickly.

3.5 Experimental results
The RMF model was trained on the residuals of the first
global effect (movie effect) described in [2]. The use of of
this effect slightly improves RMF performance whereas the
use of all global effects decreases the performance of the
RMF model. All RMF models were trained with stochas-
tic gradient descent using η = 0.002 and λ = 0.02. The
weights were initialized to small values sampled from a nor-
mal distribution with zero mean and standard deviation
0.001. The neighborhood models were trained on prepro-
cessed data that incorporated 10 global effects.

In comparison, a restricted Boltzmann machine on the Net-
flix probe data achieved a RMSE of 0.907 (see Fig. 4 in [7]).
Another approach which combines a neighborhood model

Features K of the RMF RMSE
10 0.9175
50 0.9069
100 0.9056
300 0.9046
600 0.9042

Table 5: RMSE of different neighborhood-aware ma-
trix factorizations on the Netflix probe data. Pre-
processing for the neighborhood model was done on
10 global effects, the neighborhood size was J =50.

with a RMF was described in [2]. This algorithm obtained
a RMSE of 0.9071 on the Netflix probe set.

4. ENSEMBLE PERFORMANCE
The final goal of each team that participates in the Netflix
contest is the prediction of unknown ratings with optimal
accuracy. In order to achieve maximal prediction accuracy,
it is a common strategy to combine predictions of different
algorithms into a final one. We did linear blending on the
probe set, which was not used for training, similar to [4].
Whether an algorithm is particularly powerful on a given
data point (u, i) depends strongly on the support of the vote,
i.e., the number of votes of user u and the number of votes
for item i. Consequently, a linear combination of predictions
for data points with low support will be quite different from
a linear combination for data points with high support. We
therefore divided the probe set into slots based on the sup-
port of the data points. To obtain a single value from the
user support and the item support we combined them by
taking the minimum of both. This procedure is called “slot
blending” [4]. The slot boundaries were chosen such that the
number of ratings in the slots was approximately uniform.

For each slot, the final prediction is then computed as a
linear combination of the predictions of the individual algo-
rithms. Suppose one wants to combine the predictions of N
algorithms. These predictions are first stored in a predictor
matrix P ∈ R

l×N where l is the number of votes in the slot
and pij is prediction of algorithm j for the i-th vote in the
slot. The interpolation weights w are computed with the
pseudo-inverse of P as w = (PT P)−1PT q where q is the
column vector of probe ratings of the slot. The final predic-
tion for a vote from the qualifying set which falls – according
to its support – into this slot is then given by the linear com-
bination of the individual predictions with the interpolation
weights w.

Using this method, we calculated the ensemble performance
of the algorithms proposed in this article. The RMSE of
the ensemble on the probe set was 0.8981 which results
in a RMSE of 0.8919 on the qualifying set (for predictors
which were re-trained after blending with the probe ratings
included). This is an improvement of 6.25% over the Cine-
match system. The proposed methods can well be combined
with other powerful algorithms like different kinds of matrix
factorizations and restricted Boltzmann machines to further
improve prediction accuracy.

5. CONCLUSIONS
In this article, we proposed several neighborhood-based al-
gorithms for large-scale recommender systems. An impor-
tant property of these algorithms is that their memory usage
scales linearly with the number of users or items as com-
pared to a quadratic scaling of most other neighborhood-
based approaches. This makes the algorithms scalable to
large-scale problems. To date it seems that powerful solu-
tions for collaborative filtering problems need to combine
the predictions of a diverse set of single algorithms. This
procedure is able to combine the specific advantages of sin-
gle algorithms. The standard approach is linear blending,
where the predictions are simply combined in a linear way
after training. The neighborhood-aware matrix factoriza-
tion algorithm tries to combine the advantages of two pow-
erful methods – a RMF approach and neighborhood-based
approach – in a more direct way: The predictions of one al-
gorithm are used to estimate unknown variables in the other
ones. One can therefore hope that the combination of them
is more than the (weighted) sum of its parts. Such hybrid
models are promising candidates for future research.

6. ACKNOWLEDGMENTS
We thank Netflix for providing this nice dataset. We also
thank the participants of the previous KDD workshop in
2007 for providing their inspiring ideas in the field of recom-
mender algorithms. Also thanks to the active Netflix com-
munity for discussing all kind of things regarding various
implementation details on proposed algorithms.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.

on Knowl. and Data Eng., 17(6):734–749, 2005.

[2] R. Bell and Y. Koren. Scalable collaborative filtering
with jointly derived neighborhood interpolation
weights. In IEEE International Conference on Data

Mining. KDD-Cup07, 2007.

[3] R. Bell, Y. Koren, and C. Volinsky. Modeling
relationships at multiple scales to improve accuracy of
large recommender systems. In KDD ’07: Proceedings

of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 95–104,
New York, NY, USA, 2007. ACM.

[4] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor
solution to the Netflix prize. Technical report, AT&T
Labs - Research, October 2007.

[5] S. Dasgupta, C. R. Johnson, and A. M. Baksho.
Sign-sign LMS convergence with independent stochastic
inputs. IEEE Transactions on Information Theory,
36(1):197–201, 1990.

[6] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. Proceedings of

KDD Cup and Workshop, 2007.

[7] R. Salakhutdinov, A. Mnih, and G. E. Hinton.
Restricted boltzmann machines for collaborative
filtering. In ICML, pages 791–798, 2007.

[8] M. Wu. Collaborative filtering via ensembles of matrix
factorizations. Proceedings of KDD Cup and Workshop,
2007.

