
At the Edge of Chaos: Real-time Computations and
Self-Organized Criticality in Recurrent Neural Networks

Thomas Natschläger
Software Competence

Center Hagenberg
A-4232 Hagenberg, Austria

Thomas.Natschlaeger@scch.at

Nils Bertschinger
Max Planck Institute for

Mathematics in the Sciences
D-04103 Leipzig, Germany

bertschi@mis.mpg.de

Robert Legenstein
Institute for Theoretical

Computer Science, TU Graz
A-8010 Graz, Austria
legi@igi.tu-graz.ac.at

Abstract

In this paper we analyze the relationship between the computational ca-
pabilities of randomly connected networks of threshold gates in the time-
series domain and their dynamical properties. In particular we propose
a complexity measure which we find to assume its highest values near
the edge of chaos, i.e. the transition from ordered to chaotic dynamics.
Furthermore we show that the proposed complexity measure predicts the
computational capabilities very well: only near the edge of chaos are
such networks able to perform complex computations on time series. Ad-
ditionally a simple synaptic scaling rule for self-organized criticality is
presented and analyzed.

1 Introduction
It has been proposed that extensive computational capabilities are achieved by systems
whose dynamics is neither chaotic nor ordered but somewhere in between order and chaos.
This has led to the idea of “computation at the edge of chaos”. Early evidence for this
hypothesis has been reported e.g. in [1]. The results of numerous computer simulations
carried out in these studies suggested that there is a sharp transition between ordered and
chaotic dynamics. Later on this was confirmed by Derrida and others [2]. They used ideas
from statistical physics to develop an accurate mean-field theory which allowed to deter-
mine the critical parameters analytically. Because of the physical background, this theory
focused on the autonomous dynamics of the system, i.e. its relaxation from an initial state
(the input) to some terminal state (the output) without any external influences. In contrast
to such “offline” computations, we will focus in this article on time-series computations,
i.e. mappings, also called filters, from a time-varying input signal to a time-varying output
signal. Such “online” or real-time computations describe more adequately the input to out-
put relation of systems like animals or autonomous robots which must react in real-time to
a continuously changing stream of sensory input.

The purpose of this paper is to analyze how the computational capabilities of randomly
connected recurrent neural networks in the domain of real-time processing and the type
of dynamics induced by the underlying distribution of synaptic weights are related to each
other. In particular, we will show that for the types of neural networks considered in this pa-
per (defined in Sec. 2) there also exists a transition from ordered to chaotic dynamics. This
phase transition is determined using an extension of the mean-field approach described in



timesteps
ne

ur
on

 #
0 20 40

10

20

30

input

timesteps

network activity

0 20 40
timesteps

0 20 40

0.1 1 10

−0.6

−0.4

−0.2

0

0.2

0.4

σ2

µ
ordered chaotic

critical m
ea

n 
ac

tiv
ity

0.4

0.6

0.8

Figure 1: Networks of randomly connected threshold gates can exhibit ordered, critical and
chaotic dynamics. In the upper row examples of the temporal evolution of the network state
xt are shown (black: xi,t = 1, white: xi,t = 0, input as indicated above) for three different
networks with parameters taken from the ordered, critical and chaotic regime, respectively.
Parameters: K = 5, N = 500, ū = −0.5, r = 0.3 and µ and σ2 as indicated in the phase
plot below. The background of the phase plot shows the mean activity a∗ (see Sec. 3) of
the networks depending on the parameters µ and σ2.

[3] and [4] (Sec. 3). As the next step we propose a novel complexity measure (Sec. 4) which
can be calculated using the mean-field theory developed in Sec. 3 and serves as a predic-
tor for the computational capability of a network in the time-series domain. Employing a
recently developed framework for analyzing real-time computations [5, 6] we investigate
in Sec. 5 the relationship between network dynamics and the computational capabilities in
the time-series domain. In Sec. 6 of this paper we propose and analyze a synaptic scaling
rule for self-organized criticality (SOC) for the types of networks considered here. In con-
trast to previous work [7], we do not only check that the proposed rule shows adaptation
towards critical dynamics, but also show that the computational capabilities of the network
are actually increased if the rule is applied.

Relation to previous work: In [5], the so-called liquid state machine (LSM) approach was
proposed and used do analyze the computational capabilities in the time-series domain of
randomly connected networks of biologically inspired network models (composed of leaky
integrate-and-fire neurons). We will use that approach to demonstrate that only near the
edge of chaos, complex computations can be performed (see Sec. 5). A similar analysis for
a restricted case (zero mean of synaptic weights) of the network model considered in this
paper can be found in [4].

2 The Network Model and its Dynamics

We consider input driven recurrent networks consisting of N threshold gates with states
xi ∈ {0, 1}. Each node i receives nonzero incoming weights wij from exactly K randomly
chosen nodes j. Each nonzero connection weight wij is randomly drawn from a Gaussian
distribution with mean µ and variance σ2. Furthermore, the network is driven by an exter-
nal input signal u(·) which is injected into each node. Hence, in summary, the update of

the network state xt = (x1,t, . . . , xN,t) is given by xi,t = Θ(
∑N

j=1 wij · xj,t−1 + ut−1)



which is applied to all neurons in parallel and where Θ(h) = 1 if h ≥ 0 and Θ(h) = 0
otherwise. In the following we consider a randomly drawn binary input signal u(·): at each
time step ut assumes the value ū + 1 with probability r and the value ū with probability
1 − r. This network model is similar to the one we have considered in [4]. However it
differs in two important aspects: a) By using states xi ∈ {0, 1} we emphasis the asymmet-
ric information encoding by spikes prevalent in biological neural systems and b) it is more
general in the sense that the Gaussian distribution from which the non-zero weights are
drawn is allowed to have an arbitrary mean µ ∈ R. This implies that the network activity
at = 1

N

∑N

i=1 xi,t can vary considerably for different parameters (compare Fig. 1) and
enters all the calculations discussed in the rest of the paper.

The top row of Fig. 1 shows typical examples of ordered, critical and chaotic dynamics (see
the next section for a definition of order and chaos). The system parameters corresponding
to each type of dynamics are indicated in the lower panel (phase plot). We refer to the
(phase) transition from the ordered to the chaotic regime as the critical line (shown as the
solid line in the phase plot). Note that increasing the variance σ2 of the weights consistently
leads to chaotic behavior.

3 The Critical Line: Order and Fading Memory versus Chaos
To define the chaotic and ordered phase of an input driven network we use an approach
which is similar to that proposed by Derrida and Pomeau [2] for autonomous systems:
consider two (initial) network states with a certain (normalized) Hamming distance. These
states are mapped to their corresponding successor states (using the same weight matrix)
with the same input in each case and the change in the Hamming distance is observed. If
small distances tend to grow this is a sign of chaos whereas if the distance tends to decrease
this is a signature of order.

Following closely the arguments in [4, 3] we developed a mean-field theory (see [8] for
all details) which allows to calculate the update dt+1 = f(dt, at, ut) of the normalized
Hamming distance dt = |{i : xi,t 6= x̃i,t}|/N between two states xt and x̃t as well as the
update at+1 = A(at, ut) of the network activity in one time step. Note that dt+1 depends
on the input ut (in contrast to [3]) and also on the activity at (in contrast to [4]). Hence the
two-dimensional map Fu(dt, at) := (dt+1, at+1) = (f(dt, at, ut), A(at, ut)) describes
the time evolution of dt and at given the input times series u(·).

Let us consider the steady state of the averaged Hamming distance f ∗ as well as the steady
state of the averaged network activity a∗, i.e. (f∗, a∗) = limt→∞ 〈F t

u〉.
1 If f∗ = 0 we

know that any state differences will eventually die out and the network is in the ordered
phase. If on the other hand a small difference is amplified and never dies out we have
f∗ 6= 0 and the network is in the chaotic phase. Whether f ∗ = 0 or f∗ 6= 0 can be decided
by looking at the slope of the function f(·, ·, ·) at its fixed point f ∗ = 0. Since at does not
depend on dt we calculate the averaged steady state activity a∗ and determine the slope α∗

of the map rf(d, a, ū + 1) + (1 − r)f(d, a, ū) at the point (d, a) = (0, a∗). Accordingly
we say that the network is in the ordered, critical or chaotic regime if α∗ < 1, α∗ = 1 or
α∗ > 1 respectively. In [8] it is shown that the so called critical line α∗ = 1 where the
phase transition from ordered to chaotic behavior occurs is given by

Pbf =
K−1
∑

n=0

(

K − 1

n

)

a∗n(1 − a∗)n(rQ(1, n, ū + 1) + (1 − r)Q(1, n, ū)) =
1

K
(1)

where Pbf denotes the probability (averaged over the inputs and the network activity) that
1F t

u denotes t-fold composition of the map Fu(·, ·) where in the k-th iteration the input uk is
applied and 〈·〉 denotes the average over all possible initial conditions and all input signals with a
given statistics determined by ū and r.



0.1 1 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

σ2

µ

K = 5

N
M

−
S

ep
ar

at
io

n

0

0.02

0.04

0.06

0.08

0.1

0.1 1 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

σ2

µ

K = 10

N
M

−
S

ep
ar

at
io

n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 2: NM -separation assumes high values on the critical line. The gray coded image
shows the NM -separation in dependence on µ and σ2 for K denoted in the panels, r = 0.3,
ū = −0.5 and b = 0.1. The solid line marks the critical values for µ and σ2.

a node will change its output if a single out of its K input bits is flipped.2 Examples of
critical lines that were calculated from this formula (marked by the solid lines) can be seen
in Fig. 2 for K = 5 and K = 10.3

The ordered phase can also be described by using the notion of fading memory (see [5] and
the references therein). Intuitively speaking in a network with fading memory a state xt is
fully determined by a finite history ut−T , ut−T+1, . . . , ut−1, ut of the input u(·). A slight
reformulation of this property (see [6] and the references therein) shows that it is equivalent
to the requirement that all state differences vanish, i.e. being in the ordered phase. Fading
memory plays an important role in the “liquid state machine” framework [5] since together
with the separation property (see below) it would in principle allow an appropriate readout
function to deduce the recent input, or any function of it, from the network state. If on
the other hand the network does not have fading memory (i.e. is in the chaotic regime)
a given network state xt also contains “spurious” information about the initial conditions
and hence it is hard or even impossible to deduce any features of the recent input.

4 NM-Separation as a Predictor for Computational Power

The already mentioned separation property [5] is especially important if a network is to
be useful for computations on input time-series: only if different input signals separate
the network state, i.e. different inputs result in different states, it is possible for a readout
function to respond differently. Hence it is necessary that any two different input time
series for which the readout function should produce different outputs drive the recurrent
network into two sufficiently different states.

The mean field theory we have developed (see [8]) can be extended to describe the
update dt+1 = s(dt, ...) of the Hamming distance that result from applying differ-
ent inputs u(·) and ũ(·) with a mean distance of b := Pr {ut 6= ũt}, i.e. the separa-
tion. In summary the three-dimensional map Su,ũ(dt, at, ãt) := (dt+1, at+1, ãt+1) =
(s(dt, at, ãt, ut, ũt), A(at, ut), A(ãt, ũt)) fully describes the time evolution of the Ham-
ming distance and the network activities. Again we consider the steady state of the averaged
Hamming distance s∗ and the network activities a∗, ã∗, i.e. (s∗, a∗, ã∗) = limt→∞

〈

St
u,ũ

〉

.

2The actual single bit-flip probability Q depends on the number n of inputs which are 1 and the
external input u and is given by Q(1, n, u) =

∫

−u

−∞
φ(ξ, nµ, nσ2)

(

1 − Φ(−u − ξ, µ, σ2)
)

dξ +
∫

∞

−u
φ(ξ, nµ, nσ2)Φ(−u− ξ, µ, σ2)dξ where φ, Φ denote the Gaussian density and cumulative den-

sity respectively (see [8] for a detailed explanation).
3For each value of µ = −0.6 + k ∗ 0.01, k = 0 . . . 100 a search was conducted to find the value

for σ2 such that α∗ = 1. Numerical iterations of the function A were used to determine a∗.



A B C

0.01 0.1 1 10 100
−0.6

−0.4

−0.2

0

0.2

0.4

σ2

µ

3bit parity (K = 5)

M
C

 (
M

I)

0

1

2

3

4

5

0.01 0.1 1 10 100
σ2

3bit parity (K = 10)

M
C

 (
M

I)

0

1

2

3

4

0.01 0.1 1 10 100
σ2

5bit random boolean functions

m
ea

n 
M

I

0

0.2

0.4

0.6

0.8

Figure 3: Real-time computation at the edge of chaos. A The gray coded image (an in-
terpolation between the data points marked with open diamonds) shows the performance
of trained networks in dependence of the parameters µ and σ2 for the delayed 3-bit par-
ity task. Performance is measured as the memory capacity MC =

∑

τ I(v, y(τ)) where
I(v, y(τ)) is the mutual information between the classifier output v(·) and the target func-

tion y
(τ)
t = PARITY(ut−τ , ut−τ−1, ut−τ−2) measured on a test set. B Same as panel A

but for K = 10. C Same as panel A but for an average over 50 randomly drawn Boolean
functions f of the last 5 time steps, i.e. yt = f(ut, ut−1, ..., ut−4).

The overall separation for a given input statistics (determined by ū, r, and b) is then given
by s∗. However, this overall separation measure can not be directly related to the computa-
tional power since chaotic networks separate even minor differences in the input to a very
high degree. The part of this separation that is caused by the input distance b and not by the
distance of some initial state is therefore given by s∗ − f∗ because f∗ measures the state
distance that is caused by differences in the initial states and remains even after long runs
with the same inputs (see Sec. 3). Note that f ∗ is always zero in the ordered phase and
non-zero in the chaotic phase.

Since we want the complexity measure, which we will call NM -separation, to be a
predictor for computational power we correct s∗ − f∗ by a term which accounts for
the separation due to an all-dominant input drive. A suitable measure for this “imme-
diate separation” i∗ is the average increase in the Hamming distance if the system is
run for a long time (t → ∞) with equal inputs u(·) = ũ(·) and then a single step
with an input pair (v, ṽ) with an average difference of b = Pr {v, 6= ṽ} is applied:
i∗ = limt→∞

∑1
v,ṽ=0 rv(1−r)1−vb|v−ṽ|(1−b)1−|v−ṽ|

〈

s(·, ·, ·, v, ṽ) ◦ St
u,u

〉

−f∗. Hence
a measure of the network mediated separation NMsep due to input differences is given by

NMsep = s∗ − f∗ − i∗ (2)

In Fig. 2 the NM -separation resulting from an input difference of b = 0.1 is shown in
dependence of the network parameters µ and σ2.4 Note that the NM -separation peaks
very close to the critical line. Because of the computational importance of the separation
property this also suggests that the computational capabilities of the networks will peak at
the onset of chaos, which is confirmed in the next section.

5 Real-Time Computations at the Edge of Chaos
To access the computational power of a network we make use of the so called “liquid state
machine” framework which was proposed by Maass et.al. [5] and independently by Jaeger

4For each value of µ = −0.6 + k ∗ 0.05, k = 0 . . . 20, 10 values for σ2 where chosen near
the critical line and 10 other values where equally spaced (on a logarithmic scale) over the interval
[0.02,50]. For each such pair (µ, σ2) extensive numerical iterations of the map S where performed
to obtain accurate estimates of s∗, f∗ and i∗. Hopefully these numerical estimates can be replaced
by analytic results in the future.



[6]. They put forward the idea that any complex time-series computation can be imple-
mented by composing a system which consists of two conceptually different parts: a) a
properly chosen general-purpose recurrent network with “rich” dynamics and b) a read-
out function that is trained to map the network state to the desired outputs (see [5, 6, 4]
for more details). This approach is potentially successful if the general-purpose network
encodes the relevant features of the input signal in the network state in such a way that
the readout function can easily extract it. We will show that near the critical line the net-
works considered in this paper encode the input in such a way that a simple linear classifier
C(xt) = Θ(w · xt + w0) suffices to implement a broad range of complex nonlinear fil-
ters. Note that in order to train the network for a given task only the parameters w ∈ R

N ,
w0 ∈ R of the linear classifier are adjusted such that the actual network output vt = C(xt)
is as close as possible to the target values yt.

To access the computational power in a principled way networks with different parameters
were tested on a delayed 3-bit parity task for increasing delays and on randomly drawn
Boolean functions of the last 5 input bits. Note that these tasks are quite complex for
the networks considered here since most of them are not linear separable (i.e. the parity
function) and require memory. Hence to achieve good performance it is necessary that a
state xt contains information about several input bits ut′ , t′ < t in a nonlinear transformed
form such that a linear classifier C is sufficient to perform the nonlinear computations.

The results are summarized in Fig. 3 where the performance (measured in terms of mutual
information) on a test set between the network output and the target signal is shown for
various parameter settings (for details see [4]). The highest performance is clearly achieved
for parameter values close to the critical line where the phase transition occurs. This has
been noted before [1]. In contrast to these previous results the networks used here are
not optimized for any specific task but their computational capabilities are assessed by
evaluating them for many different tasks. Therefore a network that is specifically designed
for a single task will not show a good performance in this setup. These considerations
suggest the following hypotheses regarding the computational function of generic recurrent
neural circuits: to serve as a general-purpose temporal integrator, and simultaneously as a
kernel (i.e., nonlinear projection into a higher dimensional space) to facilitate subsequent
(linear) readout of information whenever it is needed.

6 Self-Organized Criticality via Synaptic Scaling

Since the computational capabilities of a network depend crucially on having almost critical
dynamics an adaptive system should be able to adjust its dynamics accordingly.

Equ. (1) states that critical dynamics are achieved if the probability Pbf that a single bit-
flip in the input shows up in the output should on average (over the external and internal
input statistics given by ū, r and a∗ respectively) be equal to 1

K
. To allow for a rule that

can adjust the weights of each node a local estimate of Pbf must be available. This can be
accomplished by estimating Pbf from the margin, i.e. the distance of the internal activation
from the firing threshold, of each node. Intuitively a node with an activation that is much
higher or lower than its firing threshold is rather unlikely to change its output if a single bit
in its input is flipped. Formally P i

bf of node i is given by the average (over the internal and
external input statistics) of the following quantity:

1

K

N
∑

j=1,wij>0

Θ (wij(1 − 2xj,t−1)(1 − 2xi,t) − mi,t) (3)

where mi,t =
∣

∣

∣

∑N

j=1 wijxj,t−1 + ut−1

∣

∣

∣
denotes the margin of node i (see [8] for details).

Each node now applies synaptic scaling to adjust itself towards the critical line. Accord-



A

timesteps

ne
ur

on
 #

100 200 300 400 500 600 700

50

100

150

200

B C

0 100 200 300 400 500 600 700
0

0.5

1

1.5

timesteps

K
*P

bf

0 100 200 300 400 500 600 700
0

0.5

1

1.5

timesteps

K
*P

bf

Figure 4: Self-organized criticality. A Time evolution of the network state xt starting
in a chaotic regime while the SOC-rule (4) is active (black: xi,t = 1, white: xi,t = 0).
Parameters: N = 500, K = 5, ū = −0.5, r = 0.3, µ = 0 and initial σ2 = 100. B
Estimated Pbf . The dotted line shows how the node averaged estimate of Pbf evolves over
time for the network shown in A. The running average of this estimate (thick black line) as
used by the SOC-rule clearly shows that Pbf approaches its critical value (dashed line). C
Same as B but for K = 10 and initial σ2 = 0.01 in the ordered regime.

ingly we arrive at the following SOC-rule:

wij(t + 1) =

{ 1
1+ν

· wij if P esti

bf (t) > 1
K

(1 + ν) · wij(t) if P esti

bf (t) < 1
K

(4)

where 0 < ν � 1 is the learning rate and P esti

bf (t) is a running average of the formula
in Equ. (3) to estimate P i

bf . Applying this rule in parallel to all nodes of the network is
then able to adjust the network dynamics towards criticality as shown in Fig. 45. The upper
row shows the time evolution of the network states xt while the SOC-rule (4) is running.
It is clearly visible how the network dynamics changes from chaotic (the initial network
had the parameters K = 5, µ = 0 and σ2 = 100) to critical dynamics that respect the
input signal. The lower row of Fig. 4 shows how the averaged estimated bit-flip probability
1
N

∑N

i=1 P esti

bf (t) approaches its critical value for the case of the above network and one
that started in the ordered regime (K = 10, µ = 0, σ2 = 0.01).
Since critical dynamics are better suited for information processing (see Fig. 3) it is ex-
pected that the performance on the 3-bit parity task improves due to SOC. This is con-
firmed in Fig. 5 which shows how the memory capacity MC (defined in Fig. 3) grows for
networks that were initialized in the chaotic and ordered regime respectively. Note that the
performace reached by these networks using the SOC-rule (4) is as high as for networks
where the critical value for σ2 is choosen apriori and stays at this level. This shows that
rule (4) is stable in the sense that it keeps the dynamics critical and does not destroy the
computational capabilities.

5Here a learning rate of ν = 0.01 and an exponentially weighted running average with a time-
constant of 15 timesteps were used.



A B

0 500 1000 1500 2000
0

1

2

3

4

5

SOC steps

M
C

 [b
its

]

K = 5, start σ2 = 100 (chaotic)

0 500 1000 1500 2000
0

1

2

3

4

SOC steps

M
C

 [b
its

]

K = 10, start σ2 = 0.01 (ordered)

Figure 5: Time evolution of the performance with activated SOC-rule. A The plot shows
the memory capacity MC (see Fig. 3) on the 3-bit parity task averaged over 25 networks (±
standard deviation as error-bars) evaluated at the indicated time steps. At each evaluation
time step the network weights were fixed and the MC was measured as in Fig. 3 by training
the corresponding readouts from scratch. The networks were initialized in the chaotic
regime. B Same as in A but for K = 10 and networks initialized in the ordered regime.

7 Discussion
We developed a mean-field theory for input-driven networks which allows to determine the
position of the transition line between ordered and chaotic dynamics with respect to the
parameters controlling the network connectivity and input statistics. Based on this theory
we proposed a complexity measure (called NM -separation) which assumes its highest
values at the critical line and shows a clear correlation with the computational power for
real-time time-series processing. These results provide further evidence for the idea of
“computation at the edge of chaos” [1] and support the hypothesis that dynamics near
the critical line are expected to be a general property of input driven dynamical systems
which support complex real-time computations. Therefore our analysis and the proposed
complexity measure provide a new approach towards discovering dynamical principles that
enable biological systems to do sophisticated information processing.

Furthermore we have shown that a local rule for synaptic scaling is able to adjust the
weights of a network towards critical dynamics. Additionally networks adjusting them-
selves by this rule have been found to exhibit enhanced computational capabilities. Thereby
systems can combine task-specific optimization provided by (supervised) learning rules
with self-organization of its dynamics towards criticality. This provides an explanation
how specific information can be processed while still being able to react to incoming sig-
nals in a flexible way.

References
[1] C. G. Langton. Computation at the edge of chaos. Physica D, 42, 1990.
[2] B. Derrida and Y. Pomeau. Random networks of automata: A simple annealed approximation.

Europhys. Lett., 1:45–52, 1986.
[3] B. Derrida. Dynamical phase transition in non-symmetric spin glasses. J. Phys. A: Math. Gen.,

20:721–725, 1987.
[4] N. Bertschinger and T. Natschläger. Real-time computation at the edge of chaos in recurrent

neural networks. Neural Computation, 16(7):1413–1436, 2004.
[5] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new

framework for neural computation based on perturbations. Neural Computation, 14(11), 2002.
[6] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy

in wireless communication. Science, 304(5667):78–80, 2004.
[7] S. Bornholdt and T. Röhl. Self-organized critical neural networks. Physical Review E, 67:066118,

2003.
[8] N. Bertschinger and T. Natschläger. Supplementary information to the mean-

field theory for randomly connected recurrent networks of threshold gates, 2004.
http://www.igi.tugraz.at/tnatschl/edge-of-chaos/mean-field-supplement.pdf.


