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1 Introduction
Biological synapses are dynamic, i.e., their \weight" changes on

a short time scale by several hundred percent in dependence of

the past input to the synapse.

In this article we explore the consequences that this synaptic

dynamics entails for the computational power of feedforward

neural networks for computations on time series in the context

of population coding.

We present a rigorous theoretical result, which states that there

are basically no a priori limits for the computational power of

such feedforward neural networks, i.e. they can approximate

arguably every �lter that is potentially useful for a biological

organism.

However, the theoretical analysis does not address the question

how large such feedforward neural network has to be in order to

approximate a given �lter. We have investigated this problem

empirically for the case of approximating given quadratic �lters.

In addition we have studied the question of learning in the con-

text of neural networks with dynamic synapses. In this case not

only the synaptic weights known from arti�cial neural networks

but also parameters that govern the dynamics of a synapse are

subject to adaptation, which obviously has substantial impact

on the design and performance of learning algorithms.

The synapse model

Biological synapses behave like small dynamical systems (not like static weights).

Data from [Varela et al., 1997].

The dynamics of a synapse hiji is usually described by a few characteristic parameters, e.g.

the model of [Markram et al., 1998]:

Uij � initial release probability

Fij = time constant for recovery from facilitation

Dij = time constant for recovery from depression

Here we consider a continuum model which is related to several proposed previously [Varela

et al., 1997, Markram et al., 1998, Tsodyks et al., 1998]. The synaptic strength wij(t) at time

t time is modeled by

wij(t) = Wij � xj(t) � pij(t) :

Wij = static scale factor corresponding to the synaptic \potency"

xj(t) = activity of the jth presynaptic unit at time t

pij(t) � current release probability at time t

modeled as the product of a facilitation and a depression term

The detailed equations read as follows:

pij(t) = fij(t) � dij(t)
d �fij(t)

d t
= �

�fij(t)

Fij
+ Uij � (1� �fij(t)) � xj(t)

d dij(t)

d t
=

1�dij(t)

Dij
� pij(t) � xj(t)

fij(t) = �fij(t) � (1� Uij) + Uij

For the numerical results we consider a time discrete

version :

�fij(t + 1) = �fij(t)�
�fij(t)

Fij
+ Uij � (1� �fij(t)) � xj(t)

dij(t + 1) = dij(t) +
1�dij(t)

Dij
� f+

ij (t) � dij(t) � xj(t)

with dij(0) = 1 and �fij(0) = 0. �fij(t) models facilitation (with time constant Fij), whereas dij(t) models the

combined e�ects of synaptic depression (with time constant Dij) and facilitation.

The same input xj(t) can yield markedly di�erent outputs wij(t) for di�erent values of the

characteristic parameters (xj(t) � 1 in the example below).
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2 Our work

�We use a supervised learning algorithm (based on conjugate

gradient methods) to train a small neural circuit to approxi-

mate a fully speci�ed �lter, i.e. a system which maps input

time series to output time series.

�We consider feed-forward networks of sigmoidal units coupled

by dynamic synapses, called dynamic networks in the follow-

ing.

�Within that framework we address several questions:

a)Can a dynamic network learn to approximate any �lter

from a given class of �lters?

b)How large must a dynamic network be to approximate any

�lter from a given class of �lters?

c)How does a dynamic network relate to arti�cial neural net-

works?

d)Which synaptic parameters matter?

�Furthermore we give a precise mathematical characterization

of the class of �lters that can be approximated by dynamic

networks.

The dynamic network model
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The output xi(t) of the i
th unit is given by

xi(t) = �

0
@X

j

Wij � pij � xj(t)

1
A

where � is either the sigmoid function �(u) =

1=(1 + exp(�u)) (in the hidden layers) or just

the identity function �(u) = u (in the output

layer).

The learning algorithm

The synaptic parameters Wij, Dij, Fij and Uij are chosen so that, for each pair of in-

put/output times series in the training set, the network minimized the mean-square error

E[z; zF ] =
1

N

N�1X
t=0

(z(t)� zF (t))
2

between the network output z(t) and the desired output zF (t) = (Fx)(t) speci�ed by the

target �lter F .
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To achieve this minimization, we use a conjugate gradient algorithm (see e.g. [Hertz et al.,

1991]);
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In order to apply such a conjugate gradient algorithm ones has to calculate the partial deriva-

tives
Æ E[z;zF ]
Æ Uij

,
Æ E[z;zF ]
Æ Dij

,
Æ E[z;zF ]
Æ Fij

and
Æ E[z;zF ]
ÆWij

for all synapses hiji in the network.
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3 Learning Experiments

Learning �lters from a class of quadratic �lters

We consider the classQm of quadratic �lters Q whose output (Qx)(t) in response to the input

time series x(t) is de�ned by some symmetric m�m matrix HQ = [hkl] of �lter coeÆcients

hkl 2 R , k = 1 : : : m, l = 1 : : : m.

(Qx)(t) =
mX
l=1

mX
k=1

hkl x(t� k) x(t� l) :

A small network with 10 hidden units (5 excitatory, 5 inhibitory) can learn (all parametersWij,

Uij, Dij, and Fij adapted) to approximate a randomly chosen �lter Q 2 Qm (m = 2 : : : 16).

The coeÆcients hkl were generated randomly by subtracting �=2 from a random number

generated from an exponential distribution with mean � = 3.
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Comparison with the model of Back and Tsoi (BT)

We have analyzed the performance of our dynamic network model (DN) for the same learning

task as in [Back and Tsoi, 1993]. The goal of this task is to learn a �lter F with (Fx)(t) =

sin(u(t)) where u(t) is the output of a linear �lter applied to the input time series x(t).
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Which parameters matter?

We compared network performance when di�erent parameter subsets were optimized using the

conjugate gradient algorithm, while the other parameters were held �xed. In all experiments,

the �xed parameters were chosen to ensure heterogeneity in presynaptic dynamics.

randomly chosen quadratic �lters Q 2 Q6
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The area of a square (the \learning impact") is proportional to the inverse of the mean squared

error averaged over N = 100 trials.

Multiple neurons and multiple synapses

To address the question whether more synapses can replace neurons with little loss of com-

putational power we tested a modi�ed architecture with just two hidden units in which each

axon made several (5) synapses (see \Learning �lters from a class of quadratic �lters" for

details).
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4 A universal approximation

theorem
Theorem Assume that X is the class of functions from R into [B0; B1] which satisfy

jx(t) � x(s)j � B2 � jt � sj for all t; s 2 R , where B0; B1; B2 are arbitrary real-valued

constants with 0 < B0 < B1 and 0 < B2. Let F be an arbitrary �lter that maps vectors

of functions x = hx1; : : : ; xni 2 Xn into functions from R into R . Then the following

are equivalent:

(a) F can be approximated by dynamic networks

(b) F can be approximated by dynamic networks with just a single layer of sigmoidal

neurons

(c) F is time invariant and has fading memory

(d) F can be approximated by a sequence of (�nite or in�nite) Volterra series.

The proof of this Theorem relies on the Stone-Weierstrass Theorem, and is contained as the

proof of Theorem 3.4 in [Maass and Sontag, 2000].

An arbitrary �lter F is called time invariant if a shift of the input functions by a constant

t0 just causes a shift of the output function by the same constant t0.

Informally speaking a �lter F has fading memory if the output at time t primarily depends

on inputs within a certain time interval [t� T; t], i.e. it has essentially �nite memory.

The class of �lters that can be represented by Volterra series has been investigated for quite

some time in neurobiology [Rieke et al., 1996]. A Volterra term of order k is given by

y(t) =

Z
1

0
: : :

Z
1

0
x(t� �1) � : : : � x(t� �k)h(�1; : : : ; �k)d�1 : : : d�k :

5 Summary

�We have analyzed the computational power of dynamic net-

works (see \The dynamic network model"), which represent

a new paradigm for neural computation on time series that is

based on biologically realistic models for synaptic dynamics

(see also [Zador, 2000]).

�Our analytical results show that the class of nonlinear �lters

that can be approximated by dynamic networks is remark-

ably rich. It contains every time invariant �lter with fading

memory, i.e. any �lter that can be approximated by Volterra

series.

�Our computer simulations show that rather small dynamic

networks are able to perform interesting computations on time

series.

�The performance of dynamic networks is comparable to that

of previously considered arti�cial neural networks that were

designed for the purpose of yielding eÆcient processing of

temporal signals.
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