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Abstract

Deep neural networks (DNNs) have been shown to
be vulnerable against adversarial weight bit-flip attacks
through hardware-induced fault-injection methods on the
memory systems where network parameters are stored. Re-
cent attacks pose the further concerning threat of finding
minimal targeted and stealthy weight bit-flips that preserve
expected behavior for untargeted test samples. This renders
the attack undetectable from a DNN operation perspective.
We propose a DNN defense mechanism to improve robust-
ness in such realistic stealthy weight bit-flip attack scenar-
ios. Our output code matching networks use an output cod-
ing scheme where the usual one-hot encoding of classes is
replaced by partially overlapping bit strings. We show that
this encoding significantly reduces attack stealthiness. Im-
portantly, our approach is compatible with existing defenses
and DNN architectures. It can be efficiently implemented on
pre-trained models by simply re-defining the output classifi-
cation layer and finetuning. Experimental benchmark eval-
uations show that output code matching is superior to exist-
ing regularized weight quantization based defenses, and an
effective defense against stealthy weight bit-flip attacks.

1. Introduction

While deep neural networks (DNNs) are becoming ubiq-
uitous in artificial intelligence applications, they also have
been proven to be highly vulnerable to a variety of ma-
licious attack paradigms. One of the most widely stud-
ied aspect is the adversarial input attack, where hardly-
perceptible and intentionally crafted input perturbations can
lead to confident incorrect decisions for DNNs [13, 33]. A
recently emerged category of attacks exposes the parame-
ter space vulnerability of DNNs by negatively influencing
the inference process at the deployment stage. It has been
shown that information stored in the form of bits on dy-
namic random-access memory (DRAM) chips can be sim-

ply manipulated by flipping any bit precisely as desired via
fault-injection techniques (e.g., row-hammer attacks [19]).
As the weight parameters of widely deployed DNNs are
generally stored on the DRAM due to their high mem-
ory demand, such hardware-induced attacks open malicious
pathways to jeopardize DNN predictions by changing vul-
nerable parameters [7, 17, 22, 41].

There has been growing interest in developing adversar-
ial weight bit-flip attack algorithms to identify vulnerable
quantized DNN bits in simulations (cf. Section 2.1), in or-
der to provide practical guidance for fault-injection attacks
towards reaching malicious goals against expected DNN
behavior. As physical bit-flipping may become time con-
suming and lead to abnormal background processes [14,36],
constraining the number of malicious bit-flips for efficient
attacks is essential for the adversary. Going forward, re-
cently proposed algorithms also consider finding minimal
bits for targeted and stealthy weight bit-flip attacks, i.e.,
having a targeted negative impact on an attacked source (a
single input sample [3] or samples belonging to a class [26])
while having almost no change in performance for the re-
maining test samples. From a DNN operation perspective,
such a scenario is far more concerning as it becomes impos-
sible to suspect any unusual activity if the network shows
expected behavior for untargeted test samples.

To date, relatively little guidance is available for how
to improve network robustness against adversarial weight
bit-flip attacks (cf. Section 2.2). Our goal in this study
is to improve robustness from a DNN architecture per-
spective, which would also be naturally compatible to po-
tential hardware-driven solutions against fault-injection at-
tacks. We particularly focus on more realistic, targeted at-
tack scenarios, where the existence of the attack also can
not be easily detected via the usual DNN behavior, i.e., tar-
geted bit-flip attack algorithms with stealthiness [3,26]. We
approach this problem using an alternative output coding
scheme for multi-class classification with DNNs, in com-
parison to the usual one-hot encoded output representations.
The proposed output code matching networks predict class-



specific partially overlapping bit strings, which constitutes
an effective defense against stealthy weight bit-flip attacks.
Contributions of this study are summarized as follows:

• We present for the first time a DNN defense mech-
anism, output code matching, to improve robustness
against stealthy weight bit-flip attacks in various tar-
geted settings. Our approach is compatible with any
DNN backbone by re-defining the output classification
layer and finetuning pre-trained model weights.

• The proposed output code matching networks outper-
form state-of-the-art defenses and scale to large DNN
architectures. Our ImageNet experiments show that
targeted stealthy attacks on a ResNet-50 require up to
20× and 5× more bits to be attacked on our models
with respect to vanilla networks, and networks trained
with the state-of-the-art defense [16], respectively.

• We empirically demonstrate that the proposed frame-
work is also applicable to networks trained with exist-
ing defenses, such as DNNs trained with regularized
weight quantization (i.e., piecewise clustering [16]).

2. Related Work
2.1. Adversarial Weight Bit-Flip Attacks

Fault-injection attacks on memory systems [4, 19] pave
the way towards manipulating DNN weights at their stor-
age site. Several proposed hardware solutions against these
attacks are shown to be insufficient defense mechanisms to
date [8, 11, 14]. Hence it becomes important to investigate
the sensitivity of DNN parameters that can lead to a mal-
function by only a few bits of information change. Earli-
est works exposed failure modes of state-of-the-art DNNs
when only a few weights [22] or activation functions [7]
are altered, rendering the models useless by making ran-
dom predictions. Stealthy attacks, initially posed for DNNs
by [22,47], aim to make the models misbehave only for par-
ticular inputs (e.g., a single sample, or samples from a class)
and retain behavior on other inputs as expected. While these
earlier attacks were simulated for floating-point precision
DNNs, later studies extended this problem also to quantized
DNNs with compact weight representations [17, 41].

One of the first powerful algorithms to efficiently search
for vulnerable bits in quantized DNNs is the untargeted bit-
flip attack (BFA) that converts a DNN into a random output
generator with a few bit-flips [24]. BFA was later extended
in a trojan attack scheme [25] which impacts the expected
behavior only for inputs with an embedded pattern that trig-
gers the flipped bit trojans. Such trojan attacks require mod-
ification of the inputs to make the attack stealthy. Recently,
targeted stealthy bit-flip attacks on quantized DNNs that
do not require input sample modification (hence being re-

alistic, however concerning) posed a novel threat. Specifi-
cally [26] proposed a class-to-class targeted BFA (T-BFA)
in a stealthy setting, and [3] introduced a single-sample tar-
geted attack with limited bit-flips (TA-LBF) while being
stealthy for other samples. We detail these two attacks in
Section 3.2 in the scope of our work.

2.2. Robustness Against Weight Bit-Flip Attacks

Earlier explorations of adversarial weight bit-flip attacks
proposed weight quantization as a general defense mecha-
nism [17, 41]. Subsequently, a limited amount of studies
explored novel defenses for quantized DNNs by aiming to
increase the necessary number of bit-flips for an attack such
that the physical fault-injection process becomes possibly
unrealistic. Harnessing adversarial examples during train-
ing have been the most effective defense against adversarial
input attacks [23, 45], which was also translated to the do-
main of weight bit-flip attacks as a potential defense (i.e.,
random [31] and adversarial [32] bit-flip training). However
these methods were found ineffective for large DNNs with
millions of bits [16,24]. From the perspective of adversarial
input robustness and generalization, [40,48] proposed train-
ing DNNs with adversarial weight perturbations (in line
with the formal analyses on norm-bounded weight pertur-
bations [35, 38]) which was similarly found to be an insuf-
ficient defense against recent weight bit-flip attacks [26].

An earlier defense proposed a weight reconstruction ap-
proach [21] with a benign accuracy trade-off. Differently
from quantized DNNs, [27] adopted a binary DNN to in-
crease the number of required bit-flips for attacks, at a
higher cost of reduced benign accuracy for large models.
[26] proposed that simply increasing model capacity can
also provide a reasonable defense. Along this line, piece-
wise clustering of quantized weights [16] is so far shown
to be the state-of-the-art defense for quantized DNNs, as
also experimentally evaluated in the most recent attack stud-
ies [3, 26]. Piecewise clustering is a relaxation of the inher-
ent defense mechanism of binarized networks for quantized
DNNs, which exploits a regularization term to enforce the
quantized weights to have a bi-modal distribution.

2.3. Output Coding in Deep Neural Networks

Alternative output representations for multiclass classi-
fication problems were studied in the context of ensemble
models. The idea was initially implemented by encoding
class labels with error-correcting output codes [2, 9], where
the ensemble consists of multiple base classifiers that are
assigned to binary sub-problems to infer independent code
bits, -1 or 1. These models generally use Hadamard matrix
type label-to-code encoding, which are known to be opti-
mal error-correcting output codes to pool base classifiers
for minimizing empirical probability of error [43]. Another
approach decomposes the classification problem into a set



of simpler multiclass sub-problems, referred as n-ary out-
put coding [10, 49], where sparse output codes can be used,
e.g., bit strings with -1, 0, 1.

These methods were recently explored for deep ensem-
ble learning [1, 46] and shown to be successful on small-
scale datasets. DNN ensembles showed better success when
parameters were not shared across the models solving the
binary sub-problems, i.e., independent base DNNs (or with
partially shared encoder layers). Recently [37] used error-
correcting output codes to improve robustness of a DNN
ensemble against adversarial inputs. In parallel [30] used
this approach for standard DNNs with output coding which
are regularized during training to disentangle the feature en-
coder across sub-tasks, i.e., ensemble diversity, to improve
adversarial input robustness. Nevertheless, these methods
were later shown to be ineffective against adversarial inputs
crafted via adaptive attacks [34, 44]. To date, existing work
on novel DNN output coding mechanisms was neither suc-
cessfully applied to ImageNet-scale classification tasks, nor
considered for adversarial weight bit-flip attacks.

3. Improving Robustness Against Stealthy
Weight Bit-Flip Attacks

3.1. Quantized Deep Neural Networks

Weight quantization in DNNs refers to the process of
representing the dense and convolutional layer weights with
reduced precision, in order to meet memory constraints for
deployment and implement efficient integer-arithmetic op-
erations [18]. We focus on the layer-wise uniform weight
quantization scheme in accordance with [3,26]. For a DNN
with original floating-point weights Wl

f ∈ Rdl at layer l,
where l ∈ {1, . . . , L} and L being the output dense layer
index, Q-bit quantization corresponds to symmetrically dis-
cretizing the weights to 2Q−1 levels such that the quantized
weights Wl can be represented by Q-bits via:

Wl = round(Wl
f / δ

l) · δl , (1)

δl = max(|Wl
f |) / (2Q−1 − 1) , (2)

where δl is the step-size of the layer-wise weight quantizer.
Weights can then be stored in Q-bits signed-integer format
by representing Wl /δl in two’s complement form in the
memory as Bl (i.e., b = [bQ−1; bQ−2; . . . ; b0] ∈ {0, 1}Q
for an individual weight w in Wl), and independently stor-
ing the list of layer-wise δl constants. For any w in Wl, b
can be converted to the quantized weight by:

w =
(
− 2Q−1 · bQ−1 +

Q−2∑
i=0

2i · bi
)
· δl, (3)

We consider the networks to be also trained in quantized
form. During training we use the straight-through estima-
tor [5] for backpropagation of the rounding in Eq. (1).
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Figure 1. Inference illustrations under stealthy T-BFA attack [26],
which targets a whole class (here: “dog”→“cat”) and TA-LBF at-
tack [3], which targets single examples (here: last dog→“cat”).

3.2. Stealthy Weight Bit-Flip Attacks

Stealthy attacks aim at the misclassification of some set
of samples while preserving expected behavior for all oth-
ers. The attacker is assumed to have physical access to the
stored binary representation of weights Bl ∈ {0, 1}dl×Q,
as well as knowledge of the quantization step-sizes δl and
the DNN architecture such that quantized weights Wl can
be calculated. To facilitate stealthiness the attacker is also
assumed to have an auxiliary set Daux = {(x(i), y(i))}naux

i=1

of test samples and their correct labels, and the goal is to
identify the vulnerable stored bits to be flipped, i.e., obtain-
ing B̂. Figure 1 illustrates the state-of-the-art attacks in our
scope, namely stealthy T-BFA [26] and TA-LBF [26].

Stealthy T-BFA [26]: The aim is the misclassification
of all samples belonging to a source class s as a target
class t, while test examples outside the attacked source
class are not impacted. Using a set of auxiliary samples
Daux = {(x(i), y(i)) | y(i) ∈ {1, . . . , C} \ {s}}naux

i=1 and a
set of source class samples Dsrc = {(x(i), s)}nsrc

i=1, stealthy
T-BFA aims to solve the following objective:

min
B̂

EDsrc

[
L(f(x; B̂); t)

]
+ EDaux

[
L(f(x; B̂); y)

]
, (4)

with f(x; B̂) being the quantized DNN inference output
and L the training loss function. In practice, another con-
straint on this objective is also that the Hamming distance
between the pre- and post-attack binary tensors dH(B, B̂)
is at most equal to the allowed number of bit-flips. The
objective (4) is approximated in [24, 26] using a heuristic
progressive inter- and intra-layer bit search algorithm based
on ranking the gradient of the loss function. The adversary
can target vulnerable bit-flips in any network layer.

Stealthy TA-LBF [3]: The aim of this attack is to find
minimal bit-flips specifically in the final layer that lead to



the misclassification of a single sample x as a target class
t while not changing the decisions for remaining samples
by exploiting Daux = {(x(i), y(i))}naux

i=1. Note that different
from T-BFA, Daux can contain samples with any class label
including s. This renders TA-LBF to have a different real-
world applicability (e.g., sneaking past a facial recognition
system). The overall objective of TA-LBF is as follows:

min
B̂

L
Leff +γ EDaux

[
L(f(x; B̂); y)

]
, dH(B, B̂) ≤ k, (5)

where L is the training loss, k is the number of maximum
bit-flips and γ is the trade-off parameter between stealthi-
ness and the effectiveness loss Leff, which aims to maximize
the marginal difference between the target class and source
class logits for input x (see Section 3 of the Supplementary
for details). [3] approaches this optimization objective as a
binary integer programming problem with cardinality con-
straints, solved via lp-box ADMM [39]. Parameters γ and
k are chosen from a set of values using greedy search.

3.3. Output Code Matching with Bit Strings

Protecting the output layer weights was recently sug-
gested as a promising hardware-based defense [26]. We re-
visit conventional DNNs to realize this from an architectural
aspect. Our defense goal is to increase the required number
of bit-flips for stealthy attacks, while enforcing a larger pre-
and post-attack accuracy gap to break stealthiness, such that
a truly stealthy attack via physical fault-injection becomes
practically unrealistic. To date, no effective defense tailored
against stealthy weight bit-flip attacks existed.

Notation: We define the quantized DNN output f(x;B)
as a composition of g(x; {Bl}L−1

l=1 ), the output dense layer
with quantized weights WL, and output activation φ(.). We
will use BL and WL alternatively considering Eq. (3). In
standard DNNs φ(z) denotes a softmax activation, z de-
notes the logits (class scores), and softmax assigns the high-
est probability to the largest logit. For simplicity of illustra-
tions, we will consider a stealthy attacker targeting BL [3].

Modifying DNN Output Representations: Our output
code matching (OCM) framework is motivated by the idea
that for any bit-flip in BL (hence a change in WL) to be
non-stealthy, ideally all class scores should change their
values for any input. Conventional one-hot encoding of
DNN outputs combined with a softmax activation counter-
acts to this motivation and benefits stealthy attacks. Fig-
ure 2a illustrates an example for standard DNNs with one-
hot output encoding. For a correct decision with a high pre-
softmax logit and probability estimate p(“dog” |x)=0.96,
finding minimal bit-flips for parameters from row c of
WL can simply increase the “cat” score without interfering
much with other predictions. Similarly an attacker can tar-
get row d of WL to reduce only the “dog” score of any input

-1.0

-0.5

0

0.5

1.0

∇WL logits[“dog” |x] ∇WL logits[“cat” |x]

g(x; {Bl}L−1
l=1 ) BL

0.00
0.01
0.96
0.02
.
.
.
.

0.00

0
0
1
0
.
.
.
.
0

f(x;B) target

φ(z)

(a) Standard one-hot output encoding.
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(b) Proposed output code matching (OCM) framework.

Figure 2. Illustration of one-hot class encoding vs OCM. Gradi-
ents of the output probability scores with respect to WL are visu-
alized from a ResNet-20 trained on CIFAR-10 (#columns: input
dimensionality of final layer = 64, #rows: (a) C=10, (b) N=16).

(see Fig. 2a bottom). This independency structure creates a
wide search space for vulnerable bits to stealthy attacks.

Figure 2b illustrates our approach to this problem. For
each class y ∈ {1, . . . , C}, we define a bit string Sy ∈
{−1, 1}N of length N . The goal of the network is to predict
this bit-string instead of the usual one-hot encoded target
vector (i.e., output dimensionality becomes N ). Accord-
ingly, we replace the usual softmax output layer of the net-
work by a layer of N neurons with tanh activation functions.
During inference, ideally the output φ(z) becomes equiva-
lent to Sy for a sample from class y. In order to reduce
attack stealthiness, we use output codes that are partially
overlapping across classes. As illustrated at the bottom part
of Figure 2b, in this case an attacker has to target multiple
rows of BL for bit-flips (hence changing WL) to influence
the score of one class towards misclassification, which how-
ever will also lead to changes in the scores for other classes
due to the use of overlapping codes. As a result, the ef-
fectiveness of our defense comes from using overlapping
output codes at test time, and thus increasing uncertainty
across several classes in the face of adversity.



Bit String Code Design: We design output codes of length
N using Hadamard matrices with optimal row separation,
constructed via Sylvester’s method for matrices of order
2k [29,43] (i.e., the overlap between any given pair of class
codes is N/2, see Section 1.3 of the Supplementary). For
C-class problems where C is not a power of 2, we ran-
domly select C rows of length N out of the N rows of the
Hadamard matrix. We denote a DNN trained via output
code matching with a length-N bit string code by OCMN .

Optimization Objective: We train OCM networks under
the objective of minimizing the l1-norm of the distance be-
tween the network output and the target bit strings:

LOCM = E(x,y)∼Dtrain

[
|f(x;B)− Sy|

]
, (6)

which is equivalent to the training objectives previously
used in the context of error-correcting output codes [37,46].

Decision Criterion: We perform the classification based
on how much the predicted output is positively corre-
lated with the predefined codes, i.e., argmaxy[Sy·f(x;B)],
which is analogous to a minimum Hamming distance de-
coding principle. Accordingly, we define the class scores
for OCM as the dot product between the class code and
network output. One can also normalize these correla-
tions to obtain per-class probability estimates in the form of
p(y|x) = max(Sy·f(x;B), 0) /

∑
c max(Sc·f(x;B), 0).

4. Experiments
4.1. Experiment Design

Datasets & Models: We performed benchmark experi-
ments with CIFAR-10/100 [20] and ImageNet [28]. We
used ResNet-20 [15] models for CIFAR-10, consistently
with previous work [3, 16]. We used WideResNet [42]
models with depth 28 for CIFAR-100, and ResNet-50 [15]
models for ImageNet. For all networks, layer-wise uniform
weight quantization was used as described in Section 3.1.

Stealthy Attack Configurations: We evaluated robustness
of our models with the two state-of-the-art attacks, namely
T-BFA [26] to examine stealthy source class attacks, and
TA-LBF [3] to examine stealthy single sample attacks. We
performed white-box attacks on the defended models until
successful, anticipating an adversary with full knowledge of
our defense (i.e., bit string codes and loss function) [6].
Stealthy T-BFA: The attacker requires a set of source class
samples Dsrc and auxiliary samples from other classes Daux.
Size of the sets Dsrc and Daux were both determined as
in [26]. For CIFAR-100 and ImageNet, we only consid-
ered the first 50 classes as a target or source class in the
attacks. In total, we performed 500 experiments for each of
these datasets which differed in the source and target class,
the random choice of the auxiliary set Daux, and the sam-
ples drawn from the source class for Dsrc. For CIFAR-10,

we performed T-BFA similarly using all 10 classes as the
source or target in a total of 100 experiments. Further details
on attack settings and compute budgets of these experiments
are provided in Sections 1.4 and 2 of the Supplementary.

Stealthy TA-LBF: Proposed OCM defense trivially renders
the original TA-LBF attack in [3] to be non-applicable. This
is the case since Leff in Eq. (5) measures the effectiveness
based on individual logits of the output softmax, which does
not exist in the OCM network. To allow comparisons we
adjusted the TA-LBF optimization objective to consider in
Leff instead the average of the binary cross-entropies across
the output units (see Section 3 of the Supplementary for at-
tack details). Our experiments with this adjusted TA-LBF
revealed same evaluation results for ResNet-20 models on
CIFAR-10 as reported in [3]. However, the larger networks
used for CIFAR-100 and ImageNet in our study were not
considered in [3], and we could not obtain successful at-
tacks for them. Hence we only report TA-LBF evaluations
on CIFAR-10. We used 1000 single sample attacks in to-
tal [3], where each one of the 10 classes is the target class
for 100 different source images belonging to any other class.
An auxiliary set of size 64 was used, and a similar parame-
ter search as in [3] was performed for k and γ in Eq. (5).

Evaluation Metrics: We quantify robustness under
stealthy attacks based on the following metrics in accor-
dance with previous studies: (1) clean accuracy on the test
set, (2) attack success rate (ASR), (3) post-attack test accu-
racy (PA-ACC), (4) total number of bit-flips needed for the
attack. For T-BFA, ASR (%) is calculated as the proportion
of successfully misclassified source class samples among
the held-out source class test set samples that were not used
by the attacker. We report ASR for TA-LBF (on CIFAR-
10) as the proportion of successful misclassifications among
1000 attacks. For T-BFA attacks, PA-ACC (%) is calculated
on the test set except the samples belonging to the attacked
source class and the auxiliary samples. For TA-LBF, PA-
ACC is calculated on the test set only except the single at-
tacked source sample and the auxiliary samples. A stealthy
attack aims for a high PA-ACC and ASR, while requiring as
few bit-flips as possible [3, 26]. Our aim is to train models
that will ideally increase the number of bit-flips needed for
the attacks, as well as increase the gap between the clean
test accuracy and PA-ACC to break stealthiness.

Implementations: We used stochastic gradient descent
with momentum for parameter optimization in all mod-
els. For CIFAR-10/100 experiments, OCM networks were
trained end-to-end from scratch for 160 epochs with a
batch size of 128. For ImageNet, we optimized OCM net-
works with a batch size of 256 by finetuning vanilla mod-
els (which were trained for 100 epochs) for 60 epochs,
starting from random initialization of the final dense layer
with the new output dimensionality. Further details on



Table 1. Evaluations of 8-bit and 4-bit quantized ResNet-20 models under stealthy weight bit-flip attacks for CIFAR-10. Test set clean
accuracy, ASR and PA-ACC percentages (%) are presented alongside # bit-flips needed for the attack. Stealthy T-BFA attacks [26] are run
until all source class set examples used by the attacker are misclassified, and all stealthy T-BFA evaluation metrics are averaged across 100
targeted attack experiments. Stealthy TA-LBF attacks [3] are performed for 1000 single sample attacks, where each one of the 10 classes
is the target class for 100 different source images that belong to any other class.

Vanilla Piecewise
Clustering [16]

Ours

OCM16 OCM32 OCM64

R
es

N
et

-2
0

(8
-b

it)

Clean Acc. on CIFAR-10 92.25 91.11 90.67 90.72 90.26

Stealthy
T-BFA [26]

ASR (↘) 99.10 99.46 99.48 99.56 99.58
PA-ACC (↘) 84.38 (3.39) 76.78 (7.45) 53.22 (21.5) 50.01 (18.2) 46.39 (16.7)
# bit-flips (↗) 27.91 (8.70) 74.93 (26.7) 95.65 (32.4) 127.88 (54.0) 281.75 (115.6)

Stealthy
TA-LBF [3]

ASR (↘) 100.00 100.00 97.60 98.20 72.40
PA-ACC (↘) 88.06 (2.55) 87.64 (2.09) 86.45 (3.31) 86.07 (3.26) 84.08 (3.18)
# bit-flips (↗) 5.42 (0.91) 18.14 (7.05) 31.12 (10.3) 47.52 (13.7) 73.65 (15.67)

R
es

N
et

-2
0

(4
-b

it)

Clean Acc. on CIFAR-10 91.87 90.72 89.97 89.83 89.29

Stealthy
T-BFA [26]

ASR (↘) 99.33 99.57 99.44 99.40 99.65
PA-ACC (↘) 80.70 (9.39) 74.21 (12.5) 53.73 (20.5) 51.34 (20.2) 45.27 (18.5)
# bit-flips (↗) 27.91 (10.2) 71.96 (28.6) 97.11 (38.2) 138.23 (39.8) 278.48 (110.9)

Stealthy
TA-LBF [3]

ASR (↘) 100.00 100.00 96.90 98.20 87.20
PA-ACC (↘) 87.88 (2.36) 87.50 (2.06) 85.24 (3.42) 83.41 (3.35) 83.27 (3.08)
# bit-flips (↗) 5.41 (1.20) 16.75 (6.20) 22.91 (8.59) 34.81 (7.63) 66.20 (13.93)

the experimental settings are provided in Section 1 of
the Supplementary. Our implementations are available at:
https://github.com/IGITUGraz/OutputCodeMatching.

4.2. Evaluating Robustness to Stealthy Attacks

Experiments on CIFAR-10: We evaluate our approach
in comparison to the piecewise clustering defense, which is
widely studied as the state-of-the-art defense method [3,26].
We trained models with the quantized weight regularization
term proposed in [16] using varying regularization strengths
λ and reported best models (e.g., λ = 0.001 for CIFAR-10
as in [16]). Table 1 depicts attack evaluations on quantized
ResNet-20 models (2.16M bits in total with 8-bit quantiza-
tion) trained on CIFAR-10. Results show that stealthy T-
BFA requires up to 10× more (281.75 vs. 27.91) and 3.7×
more (281.75 vs. 74.93) bits to be attacked on OCM models
(8-bit) with respect to undefended vanilla networks and net-
works trained with piecewise clustering. Our method trades
off less than 1% decrease in clean accuracy with respect to
piecewise clustering, and breaks the stealthiness of attacks
significantly better with up to 30% more decrease in PA-
ACC (as low as 46.39% with OCM64) for stealthy T-BFA.

Against TA-LBF our method also increases the num-
ber of necessary bit-flips significantly (up to 14× and 4×
with respect to vanilla models and piecewise clustering de-
fense), while yielding state-of-the-art resistance for ResNet-

20 (see [3]). By using longer output codes, e.g., OCM64,
ASR for TA-LBF attacks significantly reduced. For both
attacks, similar results were also observed with ResNet-20
models at 4-bit quantization (see bottom half of Tab. 1).

Experiments on CIFAR-100: Table 2 presents our ex-
periments on CIFAR-100 with 8-bit quantized WideRes-
Net models. Our OCM128 and OCM256 models again sig-
nificantly outperform vanilla and piecewise clustering de-
fended (λ = 0.001) models by requiring ∼14× more
(143.63 vs. 10.11) and ∼1.5× more (143.63 vs. 88.39) bits
to be attacked on WRN-28-4 models (47M bits in total).
With a 5% drop in clean accuracy, OCM256 model can de-
crease PA-ACC by 10% compared to piecewise clustering.

Increasing the model capacity was demonstrated as an
alternative defense approach by [3, 26]. To investigate this
we trained 2× wider vanilla WRN-28-8 models to test the
viability of using larger models as a defense. Results show
that using a WRN-28-4 with OCM is already a significantly
better defense than using a vanilla WRN-28-8 with 187M
bits. This observation confirms that simply increasing the
bit search space (4× larger) without any explicit defense
mechanism does not truly improve robustness to adversar-
ial bit-flip attacks. We also investigated the impact of OCM
for models with larger width by performing OCM128 on a
WRN-28-8 (rightmost column in Table 2). While increas-
ing the width of a vanilla network was only 1.6× effective

https://github.com/IGITUGraz/OutputCodeMatching


Table 2. Stealthy T-BFA [26] evaluations with WRN-28-4 and WRN-28-8 (×2 width) for CIFAR-100. Attacks are run until all source
class set examples used by the attacker are misclassified. Test set clean accuracy, ASR and PA-ACC (%) are presented alongside # bit-flips
needed to attack. All evaluation metrics are averaged across 500 targeted attack experiments.

WRN-28-4 (8-bit) WRN-28-8 (8-bit)

Vanilla Piecewise
Clustering [16]

Ours
Vanilla

Ours

OCM128 OCM256 OCM128

Clean Acc. on CIFAR-100 78.44 76.11 75.43 71.72 80.22 77.25

Stealthy
T-BFA [26]

ASR (↘) 94.38 91.16 94.38 94.87 94.86 94.38
PA-ACC (↘) 74.32 (1.98) 64.02 (10.9) 62.12 (12.3) 53.77 (12.5) 77.33 (1.92) 59.88 (15.6)
# bit-flips (↗) 10.11 (4.60) 88.39 (71.6) 121.43 (65.7) 143.63 (115.2) 16.14 (4.89) 323.11 (295.1)

in terms of # bit-flips (with an increase from 10.11 to 16.14),
for OCM128 the increase in network width led to 2.7× more
bit-flips required by the attacker, corresponding to >300
bit-flips for stealthy T-BFA. Increasing network width for
OCM128 also marginally contributed to enlarge the gap be-
tween clean accuracy and PA-ACC by 5%.

Experiments on ImageNet: Table 3 presents our Ima-
geNet experiments with ResNet-50. We performed OCM
by finetuning pre-trained vanilla models after re-initializing
the final layer with the new length N output dimensional-
ity. This saves a lot of computation time for our defense
to be adapted to large-scale models. Our vanilla network
evaluations confirm previous studies that stealthy and tar-
geted misclassification can be enforced by flipping only ∼7
bits among the 204M bits stored on memory for an 8-bit
quantized ResNet-50, while only having a 7.3% decrease
in PA-ACC. Our OCM evaluations with ResNet-50 (8-bit)
show that stealthy attacks require up to 20× more (145.05
vs. 7.69) and 3× more (145.05 vs. 48.65) bits to be attacked
with respect to vanilla networks and networks trained with
piecewise clustering (see Sec. 5 of the Supplementary for
the T-BFA impact when the maximum allowed # bit-flips
increase gradually). Our defense yields significantly higher
clean accuracies (∼73%) for more robust models than exist-
ing defenses, and greatly impacts stealthiness by dropping
PA-ACC to 50% for an 8-bit quantized ResNet-50.

For 4-bit quantized ResNet-50 models with OCM, a
larger increase in # bit-flips was observed with respect to
piecewise clustering (up to 5× more with OCM1024: 143.82
vs. 28.60), with no significant differences in PA-ACC. In
Tab. 3 we report piecewise clustering defense with two dif-
ferent λ values to depict the robustness trade-off gap. Our
observations presented in Sec. 4 of the Supplementary con-
clude that reducing the piecewise clustering regularization
strength to e.g., λ = 0.0001, or finetuning models with
piecewise clustering as opposed to the end-to-end regu-
larized training, leads to relatively higher clean accuracies
however not showing any further robustness benefits.

4.3. Combining OCM with Piecewise Clustering

We tested the compatibility of piecewise clustering with
the proposed OCM. Table 4 presents CIFAR-10 experi-
ments with ResNet-20 using OCM16 and piecewise cluster-
ing (λ = 0.0005). In comparison to OCM16 alone, stealthy
T-BFA requires 17 and 65 more bits to be flipped for 8-bit
and 4-bit quantized ResNet-20 models, and lead to 5–6%
less PA-ACC to impact stealthiness. For TA-LBF, PA-ACC
decreases to its lowest around 80%, while again requiring
more bits to be flipped. We conclude that higher robust-
ness gains can be obtained when both defense methods are
combined in an end-to-end regularized training pipeline.

4.4. Further Experiments

Ablation Study with Non-Hadamard Rand-OCM: We
performed an ablation study on replacing the Hadamard-
type output code bit strings with randomly generated bi-
nary codes (Rand-OCM), i.e., when the overlap between
any given pair of codes is not necessarily N/2. To generate
feasible random codes such that DNNs can still be success-
fully trained, we had to ensure that at least r indices of each
length-N bit string were -1, where r was uniformly sam-
pled between N/4 and 3N/4 for each class. Remaining
indices of the bit string were set to 1. On CIFAR-10 with
ResNet-20, Rand-OCM16 and Rand-OCM64 yielded 90.0%
and 90.5% test accuracies. Under TA-LBF these models re-
quired 24.5 and 69.9 bit-flips respectively, as opposed to the
31.1 and 73.6 with OCM16 and OCM64 (see Tab. 1). On
ImageNet, the Rand-OCM1024 model yielded 65.7% clean
accuracy with 91.1 bit-flips required for stealthy T-BFA, as
opposed to the 72.7% clean accuracy and 121.2 bit-flips re-
quired for OCM1024 (see Tab. 3). Overall, we concluded
that the proposed code design contributes to both benign
accuracy and robustness to stealthy attacks as expected.

Random Bit Error Robustness: We addressed another re-
alistic parameter vulnerability setting by investigating fault
tolerance of these models under random bit errors that may
occur due to, e.g, low-voltage operation of DNN accelera-



Table 3. Stealthy T-BFA [26] evaluations with 8-bit and 4-bit quantized ResNet-50 models on ImageNet. Attacks are run until all source
class set examples used by the attacker are misclassified. Test set clean accuracy, ASR and PA-ACC percentages (%) are presented
alongside # bit-flips needed to attack. All evaluation metrics are averaged across 500 targeted attack experiments.

Vanilla
Piecewise Clustering [16] Ours

λ = 0.0001 λ = 0.0005 OCM1024 OCM2048

R
es

N
et

-5
0

(8
-b

it)

Clean Acc. on ImageNet 75.92 74.64 68.73 72.71 73.25

Stealthy
T-BFA [26]

ASR (↘) 94.74 91.29 89.32 91.35 92.37
PA-ACC (↘) 68.64 (9.25) 57.64 (11.4) 54.81 (10.2) 50.93 (10.9) 50.63 (11.3)
# bit-flips (↗) 7.69 (3.88) 26.24 (13.8) 48.65 (17.0) 121.26 (297.3) 145.05 (366.4)

R
es

N
et

-5
0

(4
-b

it)

Clean Acc. on ImageNet 72.56 70.26 65.36 70.98 71.02

Stealthy
T-BFA [26]

ASR (↘) 91.81 92.57 90.49 89.68 90.20
PA-ACC (↘) 70.50 (4.58) 65.87 (7.52) 59.14 (7.75) 59.87 (7.20) 59.86 (7.23)
# bit-flips (↗) 8.97 (3.63) 14.88 (4.69) 28.60 (9.38) 143.82 (299.29) 122.06 (347.96)

Table 4. Evaluations on CIFAR-10 for ResNet-20 models trained
both with OCM and piecewise clustering (PC). ∆OCM16 shows the
difference of the metric mean with respect to OCM16 models.

ResNet-20 (8-bit) ResNet-20 (4-bit)

OCM16

+PC
∆OCM16

OCM16

+PC
∆OCM16

Clean 87.55 -3.12 87.17 -2.80

T-
B

FA

ASR 99.45 -0.03 99.47 -0.11
PA-ACC 47.88 -5.34 47.66 -6.07
# bit-flips 113.24 +17.59 162.76 +65.65

TA
-L

B
F ASR 100.00 +2.30 100.00 +3.10

PA-ACC 81.39 -5.06 80.90 -4.34
# bit-flips 37.23 +6.11 32.95 +10.04

tors with on-chip scratchpad memory where DNN weights
may be stored [12, 31]. Here we introduce randomly occur-
ring bit-flips only to the output layer BL by sampling from
a uniform distribution, as opposed to the previously consid-
ered adversarial scheme. Figure 3 presents the impact of
random bit errors on CIFAR-10 and ImageNet test accura-
cies. Results clearly show superior resistance of our out-
put representation mechanism to such bit-flips, as the faulty
percentage of bits in BL increases. Specifically for ResNet-
50, OCM1024 maintains the benign performance of 72.71%
even if 30% of the 16.8M output layer bits are faulty.

5. Conclusion
We have presented OCM, a defense approach to im-

prove DNN robustness against stealthy weight bit-flip at-
tacks that exploit parameter vulnerabilities of DNNs. Our
results show that the simple method of an alternative output
coding scheme is a very effective defense against such at-
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Figure 3. Impact of random bit errors at the output layer on test ac-
curacy. Results are averaged across 5 and 3 repetitions for CIFAR-
10 and ImageNet respectively (shading: ±0.5 standard deviation).

tacks. Our results on various benchmark datasets and archi-
tectures show that OCM increases the number of necessary
bit-flips by at least an order of magnitude over vanilla net-
works and by 1.5–5× compared to the best known previous
defense. In addition, OCM significantly reduces stealthi-
ness and typically reduces post-attack accuracy.

One advantage of OCM is that the output code length can
be scaled. Our results indicate that longer output codes gen-
erally improve robustness to attacks and reduce stealthiness
of the attack with only a small decrease in clean accuracy
(compare e.g., OCM16 to OCM64 in Table 1). Another ben-
eficial feature of OCM is that models trained in the standard
manner can easily be adopted. For a pre-trained model, only
the output layer has to be replaced followed by a finetuning
phase, as we performed for our ImageNet experiments.
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