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Abstract. The brain carries out tasks that are very demanding from13

a computational perspective, apparently powered by a mere 20 Watts.14

This fact has intrigued computer scientists for many decades, and is cur-15

rently drawing many of them to the quest of acquiring a computational16

understanding of the brain. Yet, at present there is no productive inter-17

action of computer scientists with neuroscientists in this quest. Research18

in computational neuroscience is advancing at a rapid pace, and the19

resulting abundance of facts and models makes it increasingly difficult20

for scientists from other fields to engage in brain research. The goal of21

this article is to provide — along with a few words of caution — back-22

ground, up-to-date references on data and models in neuroscience, and23

open problems that appear to provide good opportunities for theoretical24

computer scientists to enter the fascinating field of brain computation.25

1 Introduction26

We have known since antiquity1 that our brain gives rise to our perceptions,27

memories, thoughts and actions, and yet precisely how these phenomena arise28

remains the greatest scientific mystery and challenge of our time. This is despite29

massive, brilliant and accelerating progress in our understanding of the brain,30

its structure and molecular basis, its development and pathology, its neurons31

and its synapses, as well as the complex ways in which they are modified by32

experience2.33

1 In the early 5th century BCE, Alcmaeon of Croton proclaimed the brain “the seat
of intelligence,” conjectured that it is connected to sensory organs through chan-
nels, and discovered and dissected the optical nerve. Disappointingly, in his response
to Alcmaeon more than a century later, Aristotle argues instead that intelligence
springs from the heart...

2 [1] is a standard graduate and [2] a standard undergraduate textbook in Neuro-
science, while [3] is a mathematical treatment of the subject.
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How does the mind emerge from the brain? It seems very plausible, and has34

been strongly suggested over the decades [4–6], that the eventual answer to this35

question will be at least partly computational. We therefore believe that com-36

puter scientists, and theoreticians in particular, should work on this problem.37

And yet, despite important early connections between computer science and the38

study of the brain (see the brief historical account in Section 2), there is at39

present no community of computer theorists studying the brain3. Furthermore,40

there is no articulated suite of models, research questions, and early results in41

the interface between computer science and brain science, inviting computer sci-42

entists to participate in this grand quest4. This is significant, because such entry43

points have in the past marked the beginnings of successful interactions between44

computer science and other scientific disciplines, such as statistical physics [10],45

quantum physics [11, 12] and economics [13, 14].46

This is the context and thrust of this paper. In Section 2 we give a brief47

historical overview of past interactions between computer science and the study48

of computational aspects of the brain, and we articulate David Marr’s vision of49

computational research on the brain, ca. 1980. In Section 3 we discuss aspects of50

the methodology of the computational study of the brain, focusing on algorithms51

of the brain, abstract and simplified models of brain systems, and learning. In52

Section 4 we describe current work by our group on computational models for53

the formation, association, and binding of memories in the medial temporal lobe54

(MTL), a brain region believed to be involved with such activities. We conclude55

with an array of research questions and fronts.56

2 History57

The pioneers of computation were keenly interested in the brain. Turing saw58

the human brain as the archetype of computation [15], and later, famously, as59

an important challenge for computers [16]. Von Neumann in a posthumously60

published essay [17, 18] compares the brain with the computers of his time. He61

observes that the brain is larger in number of elements (still is, but it is getting62

close), but slower (much more so now); he notes the analogue nature, but digital63

operation, of neurons and synapses, acknowledges the key role played by biol-64

ogy and genes, and ponders the brain’s architecture (having himself pioneered65

the computer’s). Remarkably, he hypothesized already that the brain is likely66

to carry out computations on a statistical level with algorithms that are “char-67

acterized by less logical and arithmetical depth that we are normally used to”.68

McCulloch and Pitts [19] and later Rosenblatt [20] proposed stylized neuron-69

like elements as a possible basis of brain-inspired computation, initiating a rich70

research tradition which eventually brought us deep learning (on which more71

later).72

3 In contrast, there is a well developed theoretical field of investigation for the related
field of Machine Learning, namely the COLT community.

4 L. G. Valiant’s work starting from the 1990s [7–9] is a notable exception discussed
extensively later.
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In 1980, computational neuroscience pioneer David Marr proposed an influ-73

ential three-level approach to understanding brain computation [21]:74

• At the computational or behavioural level (today we would call it specifica-75

tional) one identifies the input-output behavior of the system being studied;76

we refer to this as the first level.77

• At the algorithmic level, one seeks to understand the organizations and dy-78

namics of the particular processes and representations used by the system;79

we refer to this as the second level.80

• Finally, the biological implementation level entails identifying the biophysical81

elements (e.g., neurons and synapses) and molecular mechanisms employed82

by the system to realize the algorithm; we refer to this as the third level.83

We shall use Marr’s taxonomy as the basic framework of our discussion of84

computational approaches to the brain.85

3 On Methodology86

Can we hope to use Marr’s method to discover the overarching algorithmic prin-87

ciple underlying all of brain computation, the coveted algorithm run by the brain?88

In articulating his three-level proposal, we believe that Marr was expecting the89

various systems in the brain (probably hundreds of them) to have each its own90

function and specification, and its own algorithm and hardware. One should ex-91

pect large-scale algorithmic heterogeneity in the brain — a plethora of principles,92

methods, procedures, and representations — and one has to be prepared for the93

long haul of understanding them one by one. (But see [22, 23] for a recent prin-94

cipled attempt at a compilation of a broad range of elementary computational95

tasks at Marr’s level.)96

There is a subtlety in Marr’s level two, where we infer the algorithm used by97

the system: We know from the theory of computation that there are infinitely98

many algorithms for the same task, and furthermore classical universality results99

[24, 25] imply that neuron-like systems can in principle implement any process100

and algorithm whatsoever. Showing that one particular algorithm accomplishing101

the level-one task can be implemented in the hardware of level three, or that a102

class of algorithms can be so implemented (see for example [26]), constitutes no103

evidence whatsoever that this algorithm or class is actually used at level two.104

To solve the second level problem, one needs to rely on experimental results105

revealing properties of the hardware (level three), and use these to restrict the106

unlimited repertoire of possible algorithms.107

In fact, one may speculate that the algorithmic second level may in many108

cases end up being simply the computational behavior of the hardware/third109

level: The algorithm vanishes, essentially because the hardware is well adapted110

to (probably has co-evolved with) the task, and the inputs (from sensors or111

other parts of the brain) as well as the parameters of the chemical environment112

are adequate for driving the hardware in an essentially “algorithm-free” way.113

In other cases, the algorithm may be disappointingly opaque and lacking in a114

3
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meaningful explanation, perhaps because it is the result of a long evolutionary115

process of parameter setting though trial and error; recurrent neural networks116

often appear to be like this.117

Computational work of the brain must get inspiration from, and be meticu-118

lously cognizant5 of, the tremendously rich and informative current experimental119

work in neuroscience. In fact, one particular strand of this work seems especially120

well suited to enlighten the computational study of of the brain: Connectomics121

[27, 28], the ongoing herculean effort to create detailed large-scale maps of all ac-122

tual neurons and synapses of animal brains. Would this project, once successful,123

facilitate — even obviate — the computational study of the brain? In ponder-124

ing this question, it is useful to remember deep learning: We currently have125

at our disposal a wide variety of artificial neural network architectures solving126

sophisticated problems, and we know to the last detail the precise structure,127

connectivity, and vast array of numerical parameters of these networks. And yet128

we are lacking a meaningful explication of how each of these systems solves the129

problem at hand. Further, one should keep in mind that a static connectome of130

the brain does not exist, at least for higher vertebrates such as mice. Instead131

synaptic connections in the brain are known to rewire themselves on a time132

scale of hours to days [29–31]. Hence, any connectome can only be a momentary133

snapshot of a dynamically changing brain structure, and brain computation has134

to be understood in the context of this dynamics.135

Models. The study of the brain often employs models of the brain (or, more136

commonly, of parts thereof). Models are important and useful, but must be137

created and used with care. Abstract models create mathematical abstractions138

— that is, generalizations — of the realities of the brain or a subsystem thereof.139

In employing an abstract model, one must remember that it is a generalization;140

this means that some but not all of its specializations will be reasonable models141

of the brain. In addition, an abstract model may not be sufficiently abstract,142

in the sense that models of biological neural networks that take into account143

experimentally verified and functionally relevant features of biological neurons144

or synapses may not be specializations of the abstract model. For example, we145

know that weights of synapses are subject to use-dependent short-term plasticity;146

apparently every biological synapse has an individual short-term plasticity, which147

implies that its effective weight for the second spike in a spike train is smaller148

or larger than for the first one, and assumes yet another value for the third149

spike, depending on the interspike intervals and the specific type of synapse (see150

Section 1 of [32] for references). This feature of biological synapses does appear151

to be functionally relevant, and provides clues about the types of algorithms152

that can be implemented by biological networks of neurons. On the other hand,153

it sets such networks apart from Boolean circuits and artificial neural networks,154

which require that the parameters of the units remain stable between steps.155

5 The use of “killer adjectives” such as biologically plausible is a poor substitute for
computational models and results informed by experimental knowledge.
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Another genre of models are simplified models. Brain systems are often of156

tremendous complexity, and it is difficult and unwieldy to include all that is157

known from experiments in a single manageable model. In such cases, a sim-158

plified model can be invaluable for capturing the system’s salient aspects, disre-159

garding effects and interactions which seem largely inconsequential. However, in160

employing a simplified model one must remember what was thrown away, and161

in the end of the analysis go back to determine, for which kinds of predictions is162

the model suitable, and for which it is not. Simplified models are often further163

modified and implemented as brain-inspired computational engines for solving164

actual computational problems. This is of course valuable, but again one must165

remember that the success (or failure) of such engines may have little to teach166

us about the way brains work (deep learning comes again to mind).167

Learning, Environments, and Language. One cannot engage in a computational168

study of the brain without considering how the brain is changed by the animal’s169

experience — that is to say, how learning6 happens in the brain. By “learning”170

one means changes occurring in the brain through interactions with other parts of171

the brain and, importantly, with the surrounding environment. Processes that172

implement learning are part of a large repertoire of plasticity processes that173

take place in the brain simultaneously at many different time scales, and whose174

function is only partially understood. Further, one cannot claim to understand175

the brain without also considering the brain’s environment and its challenges.176

One subtlety here is that the environment is affected by the brain’s activity —177

in the short term through motor action and animal interactions, in the longer178

term through design of the environment (dwellings, signs, etc.).179

Language is itself an important environment (since utterances are the input to180

a specialized yet overarching brain activity). This environment was designed from181

scratch, and, in evolutionary terms, extremely recently [34], at a time when the182

human brain had already been developed essentially to its present form. Human183

language is, so to speak, a last-minute adaptation. Furthermore, it has undergone184

its own vigorous evolutionary process over a window of very few thousands of185

generations. It seems natural to posit then that language has evolved to be well186

adapted to the human brain’s strengths — for example, so it can be learned easily187

by babies. We believe that language is an especially important and opportune188

arena for the computational study of the brain and the mind.189

4 Models of Memories and Cognitive Computation190

Much current experimental work explores the nature and function of memories:191

the representation in the brain of distinct concepts, such as persons we know,192

places where we have been, or words we use. It is estimated that many tens of193

thousands of such memories are represented in the human brain, along with asso-194

ciations between them. We believe that memories, because of their discrete and195

6 In fact, Poggio [33] proposes that learning is so fundamental for brain computation
so as to constitute an extra top level of Marr’s hierarchy.
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symbolic nature, and their close relationship with language, are an interesting196

place for theoretical computer scientists to start thinking about the brain.197

Valiant’s model. Leslie Valiant’s neuroidal model was proposed in 1994 as a pos-198

sible basis of a computational theory of the brain, and ultimately of cognition.199

He posits a random directed graph of neuroids (model neurons with discrete200

internal states) as nodes, and synapses as directed edges. Parameters of the neu-201

roids and the synapses (e.g., internal state, threshold, strength, etc.) are modified202

in clocked discrete steps in a distributed, automaton-like manner. Valiant used203

this model to develop his theory of memory based on items. An item is a set of204

neurons whose simultaneous firing is coterminous with the subject thinking one205

particular thought (such as “apple”); items may or may not overlap, yielding two206

different models. Valiant defines Boolean-style operations on items: Join (e.g.,207

“apple” may be joined with “green” to form a new item which will fire every208

time the two constituent items fire together) and Link (e.g., “apple” linked to209

the item representing the class “fruit”). The operations of Join and Link can210

be implemented within the neuroidal model by deterministic algorithms that211

switch between states of neurons and synapses, including synaptic weights and212

thresholds — the algorithms must switch rather arbitrarily between states in or-213

der to achieve the desired functionality — and by exploiting the random nature214

of the underlying directed graph to recruit and manipulate new neurons.7215

Valiant’s model was a brave and inspiring early attempt to make computa-216

tional sense of the brain. In the two decades since the publication of [7], experi-217

mental neuroscience has provided much insight into various details of computa-218

tion and plasticity (learning) of networks of neurons in the brain; some of these219

findings align well with the premises and predictions of Valiant’s model, but220

others do not. Even though the complete rules for synaptic plasticity (the ways221

in which synaptic weights change in response to neural activity, effecting learn-222

ing) are still not known, we now understand that Hebbian plasticity (changes223

in synaptic weights resulting from the near-simultaneous firing of neurons) can224

increase synaptic weights by some limited amount within a given time window,225

say, by 100% within a day; see e.g. [37], and furthermore there is a lot of vari-226

ability in this respect among different synapses, and within the same synapse227

over time. Hence it cannot be assumed that synaptic weights can be set to an228

arbitrary and precise value during learning.229

Similarly, as we discuss below, neural recordings both from the animal and the230

human brain [38] suggest that salient concepts are indeed encoded in the brain231

through distributed “assemblies” of neurons, so that a fair portion of the neurons232

in an assembly will fire whenever the corresponding concept is invoked. However,233

these assemblies are not static entities, since the concrete set of firing neurons234

7 Recently, Valiant’s theory was extended by the introduction of the predictive join, or
PJoin [35], a more algorithmically apt version of Join, which however is subject to
the same criticism. It is an interesting question as to whether the conceptual primi-
tives of Join, Link, PJoin, which enable rich computation [36], can be implemented
in more realistic models.
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varies substantially from trial to trial, presumably in dependence on the context,235

and, as we discuss below, the underlying set can be changed by experience. Also,236

even though, as we shall see, there is now evidence that associations somewhat237

akin to the ones predicted by Valiant’s Join do happen in the human brain, such238

associations appear to be of a different nature and form than Join: Associations239

seem to be recorded by the assemblies “bleeding” into each other, as opposed to240

collaborating to create an altogether new assembly8.241

The Ison et al. experiment. In a very recent experiment [40], the formation of242

associations between memories in the human medial temporal lobe (MTL, a243

brain region with about a billion neurons in humans long thought to be crucial244

to the representation of memories) has been documented. They recorded from a245

few neurons9 in the MTL of a human subject to whom many (over a hundred)246

pictures of known people and places were shown in a precise protocol. They247

found a particular neuron that fired every time the Eifel tower was shown, but248

not when Barack Obama was shown10. Then a combined image of the two was249

presented, and the neuron duly fired (as it always did when the Eifel tower was250

in sight). Remarkably, when a picture of Obama was presented, the neuron also251

fired: the subject had learned the connection, or association, between Obama252

and the Eifel tower! And the recorded neuron was a part of the representation253

of this association. The principle that associations between memory items are254

accompanied by overlaps in the corresponding assemblies was confirmed more255

recently also for longterm representations of associations [41].256

Neural network models of memory. Memories and their associations, especially257

in view of the experimental results just described, constitute a very concrete de-258

scription at the first (specificational) level of Marr’s framework, begging impor-259

tant questions about the third and second levels: How are memories represented260

in the animal MTL, how are these representations created, and how are they261

altered to record associations between memories?262

We start by proposing an answer to the third-level problem: There are by263

now ample reasons to believe that assemblies of neurons play an important role264

in answering these questions. A neuronal assembly is a set of neurons that are265

likely to fire together, or at proximal times. It has not been established that the266

neurons in an assembly are interconnected by strong synaptic connections, but267

this is a reasonable hypothesis (in Valiant’s model, intra-item connections do not268

matter). Assemblies were conjectured by Hebb [42] already in 1949 (who depicted269

them as Hamilton paths of strong synaptic connections). Since researchers have270

discovered in human subjects neurons responding to the Eifel tower or Jennifer271

8 Earlier experiments with rodents and monkeys did however find neurons that only
responded to a specific combination of stimulus features but not to any of these
features in isolation, see e.g. [39], supporting in this case Valiant’s version.

9 There were many human subjects, and a total of hundreds of recorded neurons, see
[40] for details, but here we focus in this exposition on one subject and one neuron.

10 Illustrating example.
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Aniston [43, 40] by recording from only a few hundreds of randomly chosen neu-272

rons in MTL, and presenting a few hundreds of familiar stimuli, it is plausible273

that many more neurons (in the tens of thousands at least) respond consistently274

to this same stimulus. Further, it is tempting to assume that the reason these275

groups of neurons fire together after the image presentation is because they form276

an assembly. Neural computation in the rodent brain has also been found to be277

dominated by activations of assemblies of neurons, and in fact transiently active278

assemblies of neurons seem to have replaced attractors as the putative tokens of279

neural network activity, providing a link between single neurons and entities on280

the cognitive level [38]. However, a theory of neural computation with assemblies281

is still missing at this point.282

How exactly does an assembly, corresponding to a particular memory, mate-283

rialize in the MTL? And how are associations between two assemblies formed, in284

a way that explains the experiment in [40] (Obama causing the Eifel neuron to285

fire)? Ongoing simulations [44] demonstrate that a model neuronal system, with286

parameters for synaptic connectivity and plasticity of synaptic weights that are287

compatible with what we know about the MTL exhibits similar behavior:288

• when presented with particular input patterns for long enough, neurons tend289

to form groups that fire consistently when the same pattern appears later;290

and291

• when presented simultaneously with two such previously encountered pat-292

terns, some of the neurons in the two corresponding groups subsequently293

respond to both patterns.294

Hence the formation of assemblies and the creation of associations between them295

can be reproduced in silico.296

A theoretical model. It is difficult to model synaptic plasticity in a neural network297

so that the model (a) is consistent with experimental findings and (b) remains298

theoretically tractable. One approach used in the past is to analyze equilibrium299

points of the dynamics of synaptic weights in a network, see [45]. We have found300

that equilibrium analysis of a simplified model, along with a novel variant of301

random graph theory, can be applied to elucidate mathematically the emergence302

of assembly codes, and the formation of associations, in recurrent neural networks303

[46].304

Equilibrium analysis of a linearized model of plasticity deals with the expected305

behavior of the synaptic weights and neurons in the system, predicting that306

the neurons in the assembly will be chosen at random, but with the neurons307

most affected by the stimulus assigned higher probability (such behavior was308

recently observed [47] in the formation of olfactory memories in the piriform309

cortex). To predict concrete behavior of the system and the formation of a stable310

assembly, we assume that the neural network (of pyramidal cells) is randomly311

and sparsely connected. This appears to be a reasonable simplified model in312

view of experimental data [48]. It appears that a plausible model is a Gn,p [49]313

directed graph with an added bias for “pattern completions” [50] (such a model314

had been proposed for different purposes in [35]): Conditioned on the existence315

8
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of edges (a, b) and (b, c), for example, edges (b, a) or (a, c) are many times more316

likely to exist than by chance defined by the baseline parameter p. Preliminary317

analysis indicates that such a model may succeed in predicting the formation of318

stable assemblies, and their modification (two assemblies shifting their support319

to form a large intersection) through the formation of associations in response320

to mixed stimuli.321

Binding. A fundamental capability of the brain, especially the human brain, is322

to form and apply abstract rules. Such a rule could specify how to behave in a323

particular social context, how to pick up an object, or how to form a syntactically324

correct sentence. Applying such rules requires to bind temporarily a variable in325

an abstract rule to a concrete context. For example, a simple sentence may326

consist of a subject, a patient, and a verb, and these must be bound to specific327

words during sentence formation. Recently, evidence has been emerging from328

fMRI imaging of the human brain [51] about the processes that occur during329

this binding process. Binding is related to Valiant’s Link operation. However,330

that operation connects coequal memories, whereas binding involves an abstract331

concept (such as “verb,” possibly represented not by an assembly but by a whole332

brain area as suggested by the results in [51]) bound to an ordinary memory.333

We propose that assemblies also play a prominent role during the binding334

of a variable to a context. Recent simulations [52] suggest that such binding335

operation can be implemented in a realistic neural model through so-called as-336

sembly pointers. Such pointer would connect an assembly representing “go” to337

a newly formed assembly within the intended brain area that represents the338

concept “verb”, in a process similar to the assembly formation discussed above339

(with the “go” assembly now playing the role of the input stimulus).340

Association Graphs. Occasionally, computational research on the brain will yield341

an interesting theoretical problem worthy of scrutiny through the methodology342

of theoretical computer science; we next describe briefly one such instance. As343

more and more memories and associations will be formed through life, an in-344

tricate network will be created [41], with intersections that are initially larger345

and then appear to shrink, and it would be of some interest to develop a theory346

of this aspect of cognition. It appears safe to assume that synaptic connections347

between the neurons of two assemblies A and B get strengthened when an asso-348

ciation between the corresponding concepts is learned; this provides a plausible349

explanation for the previously described finding that both assemblies extend so350

that their intersection becomes larger (estimates range between a 4% and 40%351

of the size of a single assembly [41]). In an abstract model one can focus solely352

on these overlaps between associated assemblies, and ignore synaptic weights353

altogether. Such a network can be represented as an edge-weighted undirected354

graph (V,E,w) such that each vertex v is a memory, each edge [u, v] is an asso-355

ciation between memories u and v, and its weight wuv represents the strength356

of this association, say the proportion of the neurons in the two assemblies that357

also lie in their intersection. We call such graphs association graphs.358

9
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One immediate question is, are all weighted graphs association graphs? The359

answer is trivially “yes” if no further assumptions are made, which can be shown360

through a straightforward modification of the Erdős construction of intersection361

graphs [53]. However, this construction may require that the size (number of362

neurons) of the assemblies/vertices differ considerably and that intersections are363

very small. What if we also insist that the assembly sizes are kept the same,364

or approximately so? This gives rise to an interesting theoretical problem. The365

requirement that the association graph be realized by intersecting assemblies by366

approximately equal size can be expressed as a linear program, whose variables367

are real numbers xS representing the (normalized) number of neurons belonging368

to precisely all the assemblies in the set S ⊆ V . The constraints correspond to369

the vertices and the edges of the graph. One seeks to minimize the maximum rel-370

ative difference between sizes of nodes. Interestingly, a related but more general371

problem had been addressed during the 1990s by philosophers [54].372

It turns out that solving this linear program through the dual ellipsoid373

method is related to the cut norm ([55]), a well known deep subject in com-374

binatorics. In collaboration with Nima Anari and Amin Saberi we have shown375

that the problem is in fact NP-hard, even to approximate within some nα fac-376

tor, but can be approximated in certain interesting special cases [56]. Another377

interesting variant is the one in which only the unweighted graph is given, with378

edges representing intersections of size above a threshold, while non-edges stand379

for intersections of size below a lower threshold. These first results suggest that380

not all association graphs can easily be embedded into the neural networks of381

the brain without causing missing or spurious associations. If this is the case,382

one might be able to relate this difficulty to particular deficiencies of the actual383

association graphs that are formed in the human brain.384

There are many more questions and directions in connection to the graph-385

theoretic modeling of associations that seem worth exploring.386

5 Open Questions387

The purpose of the previous section was to describe ongoing work in just one388

possible direction — an important and opportune one, in our view — where389

methods that are common in theoretical computer science can support modeling,390

analyzing, and ultimately understanding brain function. The intended message391

of this article is that there are several such opportunities, not just in connection392

with memories but also with many other important questions and directions of393

research on brain computation; below is an assortment of such opportunities,394

starting with the ones closest to the described work.395

• Given that cell assemblies seem central to our computational understanding396

of memory, defining them formally is of some importance. What exactly is397

a cell assembly? Is it a set of neurons whose connections through strong398

synapses cause them to fire simultaneously (and consistently in response to399

an input, or range of inputs), is it a pattern of firing activity of a set of400

10

10 LNCS-10000-Theories, 006, v1: ’Brain Computation: A Computer Science Perspective’



neurons, or is it simply a distribution over a set of neurons? And, in each of401

these cases, in what sense and manner, and to what extent, is it transient?402

Obviously these questions require more experimental data.403

404

• Neurons tend to have surprisingly different levels of activity (measured for405

example through their long-term average firing rate); this is true even for406

neurons of the same general type, e.g. pyramidal cells. Furthermore a few407

neurons are connected by really strong synapses while most are not [57].408

These differences show up in statistical analyses as heavy-tailed distributions409

(often approximated by a log normal) of measurements such as long-term410

firing rates, synaptic weights, see e.g. [58, 59]11. The question arises: what411

do these differences between neurons imply for the organization of neural412

computation? Do they point to an implicit hierarchical organization of neu-413

rons even within a single brain area, where more frequently firing neurons414

remember, process and transmit information in a coarser way — possibly415

even initialized through the genetic code — while less frequently firing neu-416

rons contribute refinements in a more flexible and experience-based manner?417

418

• Another surprising invariant of neural activity in the awake brain is the419

scale-free (power law) distribution of avalanches of neural activity, i.e., of420

continuous episodes of neural activity within a patch of a brain area, or421

within larger brain areas, see e.g. [60, 61]. Scale-free distributed activity is422

commonly interpreted as a sign that the brain computes in a critical or near-423

critical regime [62]. Criticality of network dynamics could be an important424

clue for the large-scale organization of neural computations in the brain.425

However, several pieces of the puzzle are missing. Criticality is typically426

studied in deterministic dynamical system, while the brain is best modeled427

as a stochastic one; and we are not aware of a rigorous, computational un-428

derstanding of criticality in dynamical systems. See [63, 64], and also [32],429

for references to first steps in this direction.430

431

• A further surprising feature of brain activity is that it is not input driven:432

the brain is almost as active when there is (seemingly) nothing to compute.433

For example, the neurons in the primary visual cortex (area V1) are almost434

as active as during visual processing as they are in complete darkness [65].435

Since brain activity consumes a fair portion of the energy budget of an or-436

ganism, it is unlikely that this spontaneously ongoing brain activity is just437

an accident, and highlights a clear organizational difference between com-438

puters and brains. A challenge for theoretical work is to understand the role439

of spontaneous activity in brain computation and learning.440

441

• Another ubiquitous and mysterious feature of neural network activity in442

the brain is the prominence of stereotypical spatio-temporal firing patterns443

11 In fact, such lognormal distribution of synaptic weights can be predicted theoretically
from a simplified model of plasticity.
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of neurons that occur both during active processing of sensory stimuli and444

spontaneously, see e.g. [66–68]. These experimental data undermine theoret-445

ical models that are based on an orderly bottom-up organization of encoding446

and computational transformation, where individual neurons report through447

their firing the presence of a specific feature of a sensory stimulus, or a spe-448

cific value of an analog feature (for example in so-called population codes).449

These puzzles are nicely described in [69] for the case of area V1, which is450

one of the brain areas where neural coding has been studied the most. The451

presence of stereotypical spatio-temporal firing patterns of neurons points to452

a more implicit coding and computing mechanisms, and better computing453

paradigms and computational models are needed.454

455

• As we have discussed briefly, language appears to be a most attractive re-456

search arena for the computational study of the brain. Can we define a457

biologically plausible small set of primitives sufficient for language learning458

and generation? We feel that assemblies, associations, and binding may be459

of some relevance to this quest.460

461

• Visual invariants are one of the mysteries of vision: How is it possible that a462

plethora of very different images and sensations (an object such as a person’s463

face, and its various translations, rotations, zoom-ins and -outs, occlusions,464

etc., not to mention the person’s last name, or voice) are mapped instan-465

taneously and unambiguously to the same “memory”? We suspect that the466

processes of assembly formation and association may provide insight to this467

problem, see [70, 71] for experimental data and related theories.468

469

• Randomness, its nature and utility, is one of the beloved research themes of470

Theoretical Computer Science. Valiant believes that random synaptic con-471

nections are an essential ingredient of the brain’s power and versatility. Ran-472

domness is also ubiquitous everywhere in neural activity, resulting to a wide473

range of trial-to-trial variation in almost any brain experiment. It is essential474

to incorporate randomness in computational models of brain systems, and475

to understand its origins and function in the brain. We refer to sections 3476

and 4 of [32] for references to related experimental data.477

478

• The foundational understanding of the apparent power of deep learning is479

an important current challenge for Theoretical Computer Science. How does480

this quest relate to the brain? We refer to [72] for a discussion of related481

literature. Deep learning of some sort does happen in the brain (consider the482

visual cortex and the hierarchical processing through its areas, from V1 to483

V2 and V4 all the way to MT and beyond). But there are differences, and484

perhaps the most fundamental among them is the existence of lateral and485

backward connections between brain areas. What is their function, and how486

do they enhance learning?487

488
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• A complementary question is, what replaces backpropagation in brain cir-489

cuits? The famous backpropagation algorithm that is used to efficiently op-490

timize deep neural networks is incompatible with our understanding of brain491

connectivity, as it requires reciprocal connections with weight updates that492

are maintained to levels identical to those of the forward connections. An493

intriguing recent finding in this regard is the surprising learning capability494

of (rather shallow) neural networks in which, instead of backpropagation,495

feedback is carried out with fixed random weights [73].496

6 Summary497

We sketched the history, current status, and prospects of research interaction498

between computer scientists and neuroscientists in the quest of unraveling the499

organization of brain computation. We then focused on the specific question,500

how are memories and a web of associations between memories implemented501

in networks of neurons in the brain. This question appears to be especially well502

suited for contributions by theoretical computer scientists, since (a) a theory that503

is consistent with recent recordings from the human brain is missing; and (b)504

scaling and asymptotic analysis of model data structures and algorithms seem505

essential for understanding how the human brain can create and maintain an as-506

sociation web of tens of thousands of concepts. We concluded with a sprinkling507

of open questions, each accompanied by references to some of the most recent508

research articles and review papers in neuroscience. Since for most domains one509

cannot extract from the literature a single model or set of assumptions, famil-510

iarity with a diversity of models and experimental results is a prerequisite for511

any lasting contribution to our understanding of brain computation. Ultimately,512

an informed and fruitful dialogue and collaboration between computer scientists513

and neuroscientists may be the brightest hope we have for finally unraveling the514

mysteries of brain computation.515
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