
Combining Predictions for an accurate Recommender
System

Michael Jahrer
commendo

research&consulting,
University of Technology Graz

8580 Köflach
Austria

michael.jahrer@
commendo.at

Andreas Töscher
commendo

research&consulting,
University of Technology Graz

8580 Köflach
Austria

andreas.toescher@
commendo.at

Robert Legenstein
Institute for Theoretical

Computer Science, University
of Technology Graz

8010 Graz
Austria

robert.legenstein@igi.tugraz.at

ABSTRACT
The application of ensemble learning to recommender sys-
tems is analyzed with the Netflix Prize dataset. We found
that simple linear combination of predictions is not optimal
in the sense of minimize the prediction RMSE. To predict
ratings with collaborative filtering we use a set of predic-
tions from different models (SVD, KNN, Restricted Boltz-
mann machine, Asymmetric Factor model, Global Effects).
These models are state of the art in the field of collaborative
filtering. We show that a large ensemble of blenders outper-
forms the neural network as best single blending algorithm.
Dataset and learning software is avaliable online [9].

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining, Recom-
mender Systems, Ensemble Learning, Collaborative Filter-
ing, Netflix Competition]

General Terms
Ensemble Learning, Recommender Systems

Keywords
Recommender Systems, Netflix, Supervised Learning, En-
semble Learning

1. INTRODUCTION
A recommender system helps users to navigate through

portals or web shops with a lot of content by aggregating
data generated by other users. For example, amazon.com

provides each user with a personalized shop page on login
(“your personal shop”), based on the user’s past purchase
data. A user is a unique person, which generates events,
like purchases, ratings, bookmarks or clicks. An item is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD2010 Washington DC, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

individual product or a unique piece in an online portal (e.g.
movies, jeans, watches, sunglasses). User-item predictions
are personalized item scores for a user. Item-item corre-
lations are unpersonalized relationships between items (not
user dependent). A typical recommendation system consists
of two parts, the first part is the prediction model, which is
responsible for delivering accurate user-item predictions and
item-item correlations. The prediction model should exhibit
good scaling to large number of users and items. The second
part is the recommendation module, this module is respon-
sible for presenting a set of items to the user. A typical
way of doing this is to predict for a given user all available
items and sort their scores in descending order and take the
top-K products as personalized recommendation (top-K rec-
ommendation).

u
0

u
1

u
2

u
3

u
4

u
5

u
6

u
7

i
0

i
1

i
2

i
3

u s e r s

i
t

 e

m

s 1 5

2

2 3

5 5

3

1 2

4

2

4

2

1

4

?

?

?

? ? ?

?

?

?

?

?

?

?

?

??

Figure 1: The sparse user x item matrix in an rec-
ommendation system. The data sketch here is from
a 5-star rating system. The target for the prediction
model is to accurately predict the missing values in
the matrix.

Consider the case of having a 5-star (from one the five
starts, one star means bad and 5 stars means excellent) rat-
ing system on a web portal. The problem of prediction can
be seen as a sparse user-item matrix (Figure 1). The goal is
to make accurate prediction for the missing values. In collab-
orative filtering, the system infers a model from all available
data. For example a low-rank matrix factorization leads to
an accurate prediction model. Another approach is to use
content filtering for prediction, which uses meta information

on user and item side, for example product sub-categories
or geographic user information.

Collaborative filtering is based on data analysis. Data can
be any source of user-generated information, such as pur-
chases, ratings, clicks, bookmarks, favorite-adds, whishlist-
adds, etc. Users and items become anonymous numbers in
the collaborative filtering system. A user is fully described
by the set of events (what the user does). The Netflix Prize
[1] is a benchmark for collaborative filtering algorithms. It
is the largest public available dataset, which contains about
108 ratings, collected in a time period of 7 years. Before the
Netflix Prize started in October 2006, the MovieLens dataset
with about 106 ratings was the largest dataset for applying
collaborative filtering algorithms on real world data 1.

Content filtering relies on additional data from users and
items. In general, users complete a form when they create a
login to the site, so we have the name, address, zip code, age,
gender, preferences, etc. An item can be for example a music
song, a t-shirt or a DVD. The same on item side, a shop
or a portal keeps additional information of the items, such
as main category, subcategory, price category, color, size,
language(movies), etc. A common technique is to analyze
this information by find similar users, who bought items
from the same subcategory. Another approach is to use
simple string matching to find products that the user like.

Research in the field of collaborative filtering has become
popular since the 1M $ Netflix Prize was announced in 2006.
Before that, the work of researchers in this field was fo-
cused on neighborhood models, such as item-item or user-
user KNN algorithms. Herlocker et. al. give a good overview
of neighborhood based approaches in [6].

The error function is crucial in measuring the accuracy
of collaborative filtering algorithms. The Netflix Prize uses
RMSE, which is a perfect measure in a competition due to
the smooth behavior. Other error measures such as aver-
age rank or hitrate are more appropriate in evaluating the
quality in a top-K recommender system.

RMSE =

s
1

|L|
X

(u,i)∈L

(crui − rui)2 (1)

The list of ratings is denoted by L = 〈(u1, i1), ..., (uL, iL)〉,
predicted ratings are crui and the real ratings are rui. Other
error measures such as mean absolute error or ranking based
errors are discussed by Herlocker [7].

The prediction of a collaborative filtering model should lie
between a lower and an upper bound. In the case of 5-star
ratings, the bounds are 1 and 5. One can show that predic-
tions of a SVD model are not bounded, they can have values
greater or lower than the bounds. Clipping at the bound val-
ues is not correct due to the loss of ranking possibility. When
a recommendation system does top-K recommendations, it
is common to denote the predictions as “scores”. Scores can
have any scale or offset, since the ranking of the scores stays
the same.

In a web shop, there is often a lack of a rating system. The
shop operator has a large database of the customer’s con-
sumption history. In other words the webmaster has access
to data of who bought what. This is known as binary view
of the user-item rating matrix and it is similar to a “I like

1http://www.grouplens.org/node/73, in 2008 groupslens
published a 10M dataset (107 ratings)

algorithm RMSE
(ca.)

training
time

prediction
time

memory

KNNitem 0.92 O(U ·M2) O(Ulg(U)) O(M2)

KNNuser 0.93 O(M ·U2) O(Mlg(M)) O(U2)
SVD 0.90 O(|L|) O(1) O(M+U)
AFM 0.92 O(|L|) O(1) O(M)
SVDe 0.88 O(|L|) O(1) O(M+U)
RBM 0.90 O(|L|) O(1) O(M)
GE 0.95 O(|L|) O(1) O(M+U)

Blend <0.87

Table 1: A list of various collaborative filtering al-
gorithms with asymptotic training/prediction time
and memory consumption. We add approx. RMSE
values on the Netflix Prize dataset (qualifying set).
The prediction time is defined to generate a singlecrui value. M is the total number of items, U is the
total number of users and |L| the total number of
ratings. Red values are critical for large scale appli-
cations.

it” rating system. Purchase information has high-quality be-
cause the customer actually spends money on the item. The
matrix cells, which have value of 0 are potential candidates
for recommended items. Consider the case of a full-filled
matrix in the Netflix Prize dataset, the number of values in
the matrix is about 500k · 18k ≈ 9 · 109 (9 billion numbers).
The training time would be prohibitive for a SVD algorithm
based on gradient descent. Training on a full-filled matrix
would result in O(U ·M) training time (standard is O(|L|),
where |L| is the number of data points). U is the number of
users and M is the number of items in the system. We found
a simple way to do gradient descent with a SVD model on
purchase data. The idea is to use a random subset of the
zero values rather than all. Stochastic gradient descent runs
for example 30 epochs through the training list L while ap-
ply updates to the user and item features. This training can
be done effectively user-wise. Now we draw per user a new
random subset of items with target rating 0 addidionally to
the 1’s. We found that 1% of |M | works well for 0-sampling.
Hu and Koren in [8] has done analysis on implicit feedback
datasets, for example with data from IPTV 2 where users
watch films with their set-top boxes. They propose an al-
ternating least squared matrix factorization algorithm, that
overcome the problem of handling the large filled user-item
matrix by considering only the 1’s in the data.

For the evaluation we use the Netflix Prize dataset. Train-
ing set size is 100M, Netflix held back a qualifying set of 2.8M
ratings, which should be predicted by the participants of the
contest. RMSE feedback was calculated on a 50% random
subset - called the quiz set. One of the largest challenges
is to handle the huge size of the data, hence we need algo-
rithms with good asymptotic runtime, both in the training
and in the prediction phase. For example user-user neigh-
borhood approaches have horrible runtime bounds. Further-
more they have O(U2) memory consumption, where U is the
total number of users. For the Netflix data set, we have 500k
users, which leads to approx. 500GB of memory consump-
tion when we store the upper triangle matrix of all user-user

2IPTV means Internet Protocol television

nr name RMSE description

1 AFM-1 0.9362 AFM, 200 features, η = 1e− 3, λ =
1e− 3, η multiplied with 0.95 from
epoch 30, 120 epochs

2 AFM-2 0.9231 AFM, 2000 features, η = 1e − 3,
λ = 2e − 3, 23 epochs, based on
residuals from KNN-5.

3 AFM-3 0.9340 AFM, 40 features, η = 1e − 4, λ =
1e− 3, 96 epochs

4 AFM-4 0.9391 AFM, 900 features, η = 1e− 3, λ =
1e− 2, 43 epochs

5 GE-1 0.9079 GE, based on residuals KNN-1
6 GE-2 0.9710 GE, on raw ratings.
7 GE-3 0.9443 GE, based on residuals KNN-5.
8 GE-4 0.9209 GE(time), on residuals AFM-2.
9 KNN-1 0.9110 KNN item, Pearson correlations,

k = 24 neighbors, based on resid-
uals AFM-1.

10 KNN-2 0.8904 KNN item, set correlation [16], k =
122, based on residuals from the
chain RBM-KNN-GE(with time).

11 KNN-3 0.8970 KNN item, Pearson corr., k = 55,
based on residuals of a RBM with
nHid = 150

12 KNN-4 0.9463 KNN item, Pearson corr., k = 21,
based on residuals GE-2.

13 RBM-1 0.9493 RBM, discrete, nHid = 10, η =
0.002, λ = 0.0002

14 RBM-2 0.9123 RBM, discrete, nHid = 250, η =
0.002, λ = 0.0004

15 SVD-1 0.9074 SVD, 300 features, 158 epochs, η =
8e− 4, λ = 0.01, item centered.

16 SVD-2 0.9172 SVD, 20 features, 158 epochs, η =
0.002, λ = 0.02, item centered.

17 SVD-3 0.9033 SVD, 1000 features, AUF [16]. 158
epochs, η = 0.001, λ = 0.015.

18 SVD-4 0.8871 SVDe, 150 features. η’s and λ’s
auto tuned on the probe set [16].

19 support - Number of ratings per user

Table 2: These predictors are the input for a
blender. The table summarizes major results from
the Netflix Prize competition. The listed RMSE is
on the probe set.

correlations in floating point accuracy. In Table 1 we list
the most useful collaborative filtering algorithms from the
Netflix Prize challenge. The RMSE column is the error that
a single algorithm can achieve with good learning param-
eters (e.g. proper learn rate and regularization constants).
Each single algorithm models the data in a different way, for
example a linear combination of all single models would lead
to a 0.87 RMSE score. Netflix own prediction algorithm,
called “Cinematch” has an RMSE of about 0.95 at the time
when the competition starts in 2006 [1]. More sophisticated
blending techniques lowers the RMSE below 0.87. In the
following section we use the word “blending” as an acronym
for combining a set of predictions.

The following list gives a technical overview of collabora-
tive filtering algorithm listed in Table 1. We focus on the
overview of each individual, not going deep into the training
process. For further detailed explanation, we recommend to

read the Netflix Prize Winner Reports [16], [10], [12].

KNN item-item
A prediction crui in an item based k-nearest neighborhood
model is made by calculating a weighted sum over k-nearest
items, the weights are proportional to the correlations cij .
Therefore a precalculated item-item correlation matrix C is
useful, due to the need of constant access time of any item-
item correlation cij . This results in a memory consumption
of O(M2) (M is the number of items). Training time is
building the item-item correlation matrix C, which is limited
toO(U ·M2) operations. For one prediction, the KNN selects
k-best correlations to the item i, this can take up to O(U)
operations. Sort the list takes O(U · log(U)), which is the
upper bound in prediction time.

KNN user-user
The model is exactly the same as in the KNN item-item, but
items and users are flipped. Hence the prediction and train-
ing bounds are also flipped. See Table 1 for the complete
list. For the Netflix Prize dataset this method is unpracti-
cal due to the huge memory consumption. Here, we want
to mention the possibility of learning an implicit factoriza-
tion of the full user-user correlation matrix, this reduces the
amount of required memory down to O(U ·K) where K is
the dimensionality of the factor matrices. This enables us
to keep all the user-user correlations in memory by storing
the factorized version, one particular correlation is then just
a dot product of the corresponding features. For details see
[17].

SVD (matrix factorization)
This is probably the most popular collaborative filtering
technique. A prediction is given by the dot product of a
user feature pu and an item feature qi: crui = pT

u qi, hence
O(1) runtime per prediction. The SVD learns two factor
matrices, user features P = [p1, ...,pU] and item features
Q = [q1, ...,qM] via stochastic gradient descent. In prac-
tice this means the whole training needs a few ten epochs
over the whole dataset until convergence - therefore O(|L|)
training time. The model parameterizes two matrices with f
rows, this leads to O(M +U) memory consumption. We as-
sume the number of f is a constant, in practice usual values
are e.g. f = 50. Both, training and prediction time have op-
timal asymptotic runtime behavior, this makes the SVD an
excellent candidate for large scale recommendation applica-
tions. As an extention to the excellent prediction capability
of SVD models, item-item and user-user correlations can be
calculated efficiently with a normalized euclidean distance
measure between user or item feature vectors [15].

AFM (asymmetric factor model)
In the plain SVD model, a user is represented by the feature
qu. The AFM model represents a user by the items he has
rated, this means that no explicit user feature is stored as pa-
rameter. In other words, the AFM model parameterizes only
item features. A so called “virtual user feature” yu is given

by yu = |N(u)|−1/2 P
i∈N(u) pi. The set of items, which

was rated by the user u is N(u). pi are item-dependent
features. One can show that the special normalization of
the item feature sum is necessary when assuming normal-
distributed feature values. This representation offers several

benefits, for example integration of new data and new users
without retraining the whole model [11]. The prediction
time is constant (like SVD), because we can store the pre-
calculated virtual user features after training, crui = yT

u qi.
Training time is similar to SVD, because the AFM is trained
with stochastic gradient descent and a batch update on the
virtual features pi. Further explanation can be found in [16].

SVD extended
The Netflix Prize dataset comes with rating date informa-
tion, this enables us to add additional user and item fea-
tures, based on the time and rating frequency. We define
as frequency the number of votes a user gives on a partic-
ular day t. Integration of this information is not straight
forward, because for each additional feature the learn rate
and regularization parameters has to be set correctly by op-
timizing them on a validation set. Training time rises by
a constant, therefore the same asymptotic complexity as
plain SVD: O(|L|). The same applies for prediction time and
memory consumption. Large extended SVD models, (called
SBRAMF and extensions in [16]), have shown outstanding
accuracy over the rest of collaborative filtering algorithms.
They are specialized SVD models and need a lot of effort in
training and tuning various meta-parameters.

RBM (Restricted Boltzmann Machine)
In general, a Boltzmann machine is a stochastic generative
model. The restricted Boltzmann machine [13] is a neural
network with one input layer and one hidden layer. Neither
the visible nor the hidden units have connections to itself,
which means that the net has no recurrences. For collabo-
rative filtering, the number of visible units are the number
of items in the system. The number of hidden units rep-
resents the number of features, each user is mapped to a
low-dimensional representation in the hidden layer. Learn-
ing works well with contrastive divergence learning [13] and
has O(|L|) training time. Prediction complexity is constant,
because the probabilities of the hidden layer can be precal-
culated user-wise, hence O(1). This leads to a simple dot
product enclosed by a sigmoid function for generating rec-
ommendations. The accuracy of RBMs applied on collab-
orative filtering problems are superior compared to AFMs
because of the non-linearity. Training is performed user-
wise and converges after a few ten epochs.

GE (global effects)
Global effects [16] are based on user and item features, such
as support (number of votes), mean rating, mean standard
deviation, mean rating date, etc. The idea of global effects
is to calculate “hand-designed” dependent features, which
is equivalent to a SVD with either fixed item or fixed user
features. The RMSE of 16 global effects applied to the Net-
flix Data is about 0.95. Global effects can be effective when
applied to residuals of other algorithms. A detailed expla-
nation can be found in the Netflix Prize Winner Report [16].

Combinations
A popular way of combining algorithms is residual training.
This means the raw ratings are subtracted by the prediction
from a model when they are used. We found that item-
item KNNs are most effective, when they are applied on
residuals of RBMs. When constructing such a residual chain,
the ensemble of collaborative filtering (CF) results becomes

more diverse, which is good for the final blend. The final
blender has access to all the predictors generated by various
CF models on various residuals of other models.

2. BLENDING
Combining different kinds of CF algorithms is the motiva-

tion of the next chapters (acronym “blending”). We use 18
predictors and the logarithm of the support (Table 2) from
the Netflix Prize dataset as input. Many machine learn-
ing models are not directly applicable because of the huge
number of samples. Evaluation is done on the probe dataset
(1.4M samples), which is a hold-out set of the 100M training
set. The probe set is not a random subset of the training
data, it reflects the optimization goal by taking per user the
latest ratings. Furthermore every user was sampled with
equal probability. The probeset was divided by us in two
random halfs, the train and the test set. We begin with
simple methods like linear blending, then we move to binned
blending, which is the application of learners on structured
subsets. Gradient boosted decision trees and neural net-
works deliver most accurate results when they are combined
with bagging [2]. Additionally, the computational costly k-
nearest neighbors and the kernel ridge regression algorithm
are applied to blend predictions by averaging multiple mod-
els trained on small random subsets. Finally we compare
the results.

Parameter selection
Every blending algorithm has dataset dependent parameters
(e.g. regularization in linear regression, number of training
epochs in neural networks). In order to select to correct one
we use eiter cross validation or bagging [2]. With cross val-
idation we train k copies of the model and use the RMSE
on the whole training set (merged leave out sets) as feed-
back for parameter selection. Prediction of new samples can
be done by retraining the whole model with found parame-
ters on all data (called “retraining”) or the mean prediction
of the k models in the k-fold cross validation can be used
to generate predictions (called “cross validation mean”). In
validation with bagging we use the out-of-bag estimate as
feedback. Bagging many copies of the model on slightly dif-
ferent training data delivers superior accuracy compared to
retraining or cross validation mean. Cross validation mean
delivers better results than retraining in complex models.

Notation
Blending predictions is a supervised machine learning prob-
lem. The features are X, aNxF matrix of predictions, where
N is the number of samples and F the number of predictors.
Target values are Y, a Nx1 vector, in our case: Integer rat-
ings from 1 to 5. The blending algorithm is formally a func-
tion Ω(x) : RF 7→ R. The input x is a vector of individual
predictions, the output is a scalar. We want to minimize the
prediction RMSE on a test set.

RMSE =
1

N

NX
i=1

(Ω(xi)− yi)
2 (2)

Linear Regression - LR
Assuming a quadratic error function, optimal linear combi-
nation weights w (vector of length N) can be obtained by

solving the least squares problem.

X ·w = Y (3)

For any input vector x, the prediction is Ω(x) = xT w.
Weights x are calculated with ridge regression, x = (XT X+
λI)−1XT Y. Cross-validation is used in order to select proper
ridge regression constant λ.

Histogram based Linear Regression
Due to the huge size of the training set one can divide the set
into disjoint B bins and calculate separate blending weights
per bin. With linear regression, the blending weights w
become wb, where b is the corresponding bin to the predicted
rating crui. Each bin should approximately have the same
number of ratings. The training set can be split by using a
histogram on one of the following criteria.

• Support : The number of votes from a user. The
blender can now overweight particular predictions de-
pendent on how many rating the user gave. RBMs are
prone to receive high weight when the user has only
a few votes in the data. SVDs are overweighted when
many information from a user is available.

• Time : The day, when the rating rui was performed.
Predictions are mixed together with time dependency.
When using this binning criteria, the blender can easily
model time-dependent blending.

• Frequency : The number of ratings from a user at day
t. This criteria enables the blender to be selective,
based on the user’s rating day frequency. The blender
has the ability to give predictions other weights when a
user votes many times on a particular day. The expla-
nation in different number of votes on one day can be
that all people in a household using the same account.

A prediction is given bycrui = xT wb (4)

This means we calculate B separate blending weights wb.
For example, when we divide the Netflix probe-set into 5
support-bins (approximately equal sized bins), following for-
mula gives the bin b. |N(u)| denotes the number of ratings
of a user u.

b =

8>>>>><>>>>>:

1, |N(u)| < 34

2, 35 ≤ |N(u)| < 70

3, 71 ≤ |N(u)| < 146

4, 147 ≤ |N(u)| < 321

5, else

(5)

Neural Network - NN
A neural network is a function approximator. Small nets can
be trained efficiently on huge data sets, therefore it is very
suitable for a nonlinear blending algorithm. The training of
neural nets is performed by stochastic gradient descent. The
output neuron has again a sigmoid activation function with
an output swing of −1...+ 1, to generate rating predictions
in the range of 1...5 we use a simple output transformation.
For example the output is multiplied by 3.6 and the constant
3.0 is added (works well on our experiments). The learning

rate is η and every epoch the constant η(−) is subtracted,
which helps to find a good local minima. No weight decay
or batch update is used.

Bagged Gradient Boosted Decision Tree - BGBDT
Decision trees are known as a good supervised learning tool.
The main drawback of a single decision tree is the moderate
accuracy. Breiman [2] shows how bagging can be applied
to improve the accuracy of decision trees. The discretized
output function of a tree limits the ability of modelling a
smooth function. A tree is a rule-based learner, a simple
linear combination of inputs is not possible in a decision tree.
The number of possible output values of a tree corresponds
to the number of leafs. For regression problems, such as
blending predictions, this is a big disadvantage. Blending
predictions should result in a smooth function. In 1999,
Jerome Friedman introduced an interesting idea to improve
the accuracy of a learning machine. He called his technique
“Stochastic Gradient Boosting” [4], [5]. The core idea is to
train multiple learner in a chain. Each model learns only
a fraction of the desired function Ω, controlled by the learn
rate η. Stochastic gradient boosting has a distinct similarity
to train on residuals.

N
boost

N
bag

Gradient Boostingparallel
(independent)

serial (chain)

Figure 2: Bagged Gradient Boosted Decision Tree.
A prediction from the BGBDT consists of results
from Nbag ·Nboost single decision trees. Both, Bagging
and Boosting improves the accuracy.

A single tree is trained recursively by splitting always the
largest node, up to K leafs are in a single tree. Addition-
ally we found it useful to add the random subspace idea in
the determination of the optimal split on each node (like
in random forests [3]). The subspace size K is the num-
ber of features considered in each node to find the optimal
split. The learning rate η is the learned fraction per tree
in each cascade layer. Random splits are a random tar-
get value taken as treshold when building the tree. Finally,
we end up with a tree blending technique that combines
the benefits from Bagging, Gradient Boosting and Random
Subspace selection. The algorithm is called now BGBDT -
Bagged Gradient Boosted Decision Tree (see Figure 2). The
prediction of a BGBDT is much smoother than from a single
tree. We use the bagging size Nbag and the number Nboost

of boosting steps in the chain.

Kernel Ridge Regression Blending - KRR
The learning algorithm is described in [16], Sec. 5.14.1.
There is only one step required to train the model.

W = (kdot(XT ,X) + λI)−1Y (6)

X is the training set, Y are the training targets. The weights
W are needed for prediction. The notation kdot(·, ·) denotes
the kernelized dot product of two matrices, this means that
the point-wise dot product is calculated with a kernel func-
tion. The Gauss kernel k(x,y) = exp(−(||x − y||2)/σ2)
works best on our experiments. A single prediction is given
by

Ω(x) = kdot(x,XT)W (7)

KRR has a training time complexity of O(N3) (invert the
Gram matrix) and space requirements of O(N2), hence it
is impossible to train on all data points. To make it work,
we use a small subset of the data to train the KRR model.
Doing this multiple times and average all outcomes, we ob-
tain an accurate blending model. We evaluate the impact
of the subset size with respect to the accuracy measured in
RMSE on the test set. We tune the kernel width σ and the
regularization constant λ with cross validation.

K-Nearest Neighbors Blending - KNN
The template-based KNN algorithm is very slow in predict-
ing new samples when the training set is large. All distances
are calculated on the fly, training and prediction time rise
with O(N2). The model is given by the following formula.

Ω(x) =

P
k∈D yk · d(x,xk)P

k∈D |d(x,xk)| (8)

The set D consists of indices of the k-nearest neighbors
to x in the training samples. The distance d(·, ·) is the in-
verse of the euclidean distance. The neighborhood size is
adjusted by cross-validation. We use again a small subset
of the train set to build the model. Averaging over many
random subsets delivers our final prediction. Again, we in-
vestigate the impact of the size of the subset. We found
out that KNN has very bad accuracy compared to all other
blending techniques. One possible explanation is that pre-
dictions on new test samples are based on a weighted average
of the features from the training set, which are themselves
predictions. KNN is not able to deliver a successful blending
model.

3. RESULTS
In the first step of training the collaborative filtering al-

gorithms, we remove the probe set from the dataset. The
probe is a hold out set and is a very reliable performance
measure during training, because of its huge size of 1408395
ratings.

We decide to evaluate blending methods based on a 50%
random subset probe. The probe set is splited into two
halves, one half for training and the other half for testing.
All reported RMSE values in the next Figures and Tables
are evaluated on this test set. It is never touched during
training the blending models.

The previously described algorithms are now trained on
704197 and tested on 704198 samples. The Netflix Prize con-
test awards the winner for 10% improvement in RMSE. The
baseline was set by Netflix’s internal collaborative filtering
system “Cinematch” with a RMSE of 0.9525 on the Netflix

quiz set. The 10% improvement is equivalent to an RMSE
of 0.8563. The leaderboard shows the submission feedback
with an accuracy of 4 digits after the comma. Which means
that a RMSE of 0.8600 or 0.8599 makes a difference. At the
end of the Netflix Prize contest, the winning team has the
better score on a hidden test set. The second placed team
“The Ensemble” shows in his blog 3 that the rounded RMSE
score of both teams were the same, the first-submitter rule
determines the winner (both teams had a test set RMSE of
0.8567, which corresponds to 10.06% improvement).

Our reported RMSE values have at least 4 digit accuracy,
a significance improved blending technique lowers the RMSE
score at 0.0001. Linear regression with RMSE = 0.87525
is used as baseline. A marginal improvement results in a
0.0001...0.0002 lower RMSE. For example the KNN algo-
rithm has significantly inferior performance (RMSE 0.884),
this shows that KNN is the wrong supervised learning tech-
nique for blending CF predictions.

All reported runtimes are measured on an Intel i7 machine
running at 3.8GHz with 12GB of main memory.

Linear Regression
The linear regression technique is used to have a baseline
estimate of the RMSE on the test set. This is done with
regularized linear regression, the ridge regression constant
λ = 5e − 6 is set to minimize the RMSE on the cross-
validation set.

A
F

M
-1

(0
.9

3
6
2
)

A
F

M
-2

(0
.9

2
3
1
)

A
F

M
-3

(0
.9

3
4
0
)

A
F

M
-4

(0
.9

3
9
1
)

G
E

-1
(0

.9
0
7
9
)

G
E

-2
(0

.9
7
1
0
)

G
E

-3
(0

.9
4
4
3
)

G
E

-4
(0

.9
2
0
9
)

K
N

N
-1

(0
.9

1
1
0
)

K
N

N
-2

(0
.8

9
0
4
)

K
N

N
-3

(0
.8

9
7
0
)

K
N

N
-4

(0
.9

4
6
3
)

R
B

M
-1

(0
.9

4
9
3
)

R
B

M
-2

(0
.9

1
2
3
)

S
V

D
-1

(0
.9

0
7
4
)

S
V

D
-2

(0
.9

1
7
2
)

S
V

D
-3

(0
.9

0
3
3
)

S
V

D
-4

(0
.8

8
7
1
)

lo
g
(s

u
p
p

o
rt

)

co
n
st

.
1

−
0
.0

8
3

−
0
.0

8
4

−
0
.0

7
7

+
0
.0

8
8

+
0
.0

9
8

−
0
.0

0
3

−
0
.0

8
1

+
0
.1

7
6

+
0
.0

2
9

+
0
.2

7
2

−
0
.0

9
4

+
0
.0

1
0

+
0
.0

2
5

+
0
.0

6
6

−
0
.0

0
8

+
0
.0

9
4

+
0
.0

8
0

+
0
.2

2
7

−
0
.0

0
8

+
3
.6

7
3

Table 3: Blending weights of an optimal linear com-
bination. This leads to 0.875258 RMSE on the
test set. The RMSE on the cross validation set is
0.87552. The number in the brackets is the probe
RMSE per model.

The Table 3 shows the weights, from each of the predic-
tors (from Table 2) including the support and the constant
input. The largest weight has the constant 1 input because
of the uncentered target values, the weight of 3.673 corre-
sponds to the mean value of the targets. The second largest
weight has the strongest KNN model, KNN-2 with weight
of 0.272. Due to the nature of linear regression, the weights
are not restricted to be positive. Some of the predictors re-
ceive negative weights, this can be interpreted as negative-
compensation of a particular effect in the data.

Binned linear regression
This is linear regression on predefined subsets of the training
data. For each of the training and test samples we have the
support (number of ratings), the date (day of the rating) and

3http://www.the-ensemble.com/

the frequency (number of ratings per day). Based on this
information we split the data into 2, 5, 10 or 20 nearly equal
sized bins. We select the proper regularization constant per
bin with cross validation.

type 2 bins 5 bins 10 bins 20 bins

support 0.874877
(V:0.87517)

0.874741
(V:0.8750)

0.874744
(V:0.87499)

0.87485
(V:0.87513)

date 0.875212
(V:0.87545)

0.875195
(V:0.87541)

0.87527
(V:0.87544)

0.87537
(V:0.87558)

frequency 0.87518
(V:0.87537)

0.87510
(V:0.87521)

0.87512
(V:0.8752)

0.87517
(V:0.87531)

Table 4: RMSE values obtained with binned linear
regression on the test set. The small values in the
brackets are RMSEs from the cross validation.

We get best results with the support binning. Too many
bins increase the RMSE. The best results are obtained by 5
bins.

Neural Network Blending
We investigate different number of neurons in the hidden
layer and two hidden layers. Table 5 shows the outcome.
We tried one and two hidden layer, the RMSEs with one
hidden layer are slightly better. For one hidden layer we get
the best results with 100 neurons (RMSE = 0.87xxx). The
performance can be enhanced by apply bagging, this lowers
the RMSE to 0.87xxx (generated by a 1-layer net with 100
neurons).

net setup validation
type

RMSE
validation

train
time

RMSE
test

19-30-1 retraining
8-CV

0.87363 xh 0.873361

19-30-1 cross valid.
mean 8-CV

0.87363 xh 0.873313

19-30-1 bagging
size=32

0.87347 xh 0.873191

19-30-1 bagging
size=128

xh

19-50-1 bagging
size=128

xh

19-100-1 bagging
size=128

xh

19-200-1 bagging
size=128

xh

19-50-30-1 bagging
size=128

xh

Table 5: Results from different neural network
blends. We use in all nets the same η = 5e − 4,
η(−) = 5e− 7.

Bagged Gradient Boosted Decision Tree
The analysis of the Bagged Gradient Boosted Decision Tree
is done by varying the bagging size Nbag, the subspace size
S, the number of leafs K and the learning rate η in the gra-
dient boosting approach. Additionally we found that ran-
dom splits further improve the accuracy. Bagging size is the
number of model copies trained simultaneously.

Our results suggest that smaller learning rates and larger
bagging sizes improve the RMSE. The optimal subspace size
dependens on the data, a good value to start with is the
square root of the number of features.

fixed:
Nbag = 32
K = 300
S = 2

η = 0.1
0.874783
0.87437
2249[s]

η = 0.05
0.87467
0.874352
4362[s]

η = 0.03
0.874624
0.87433
6978[s]

η = 0.02
0.874593
0.874309
11788[s]

fixed:
Nbag = 32
η = 0.1
S = 2

K = 500
0.874838
0.874427
1741[s]

K = 300
0.874783
0.87437
2249[s]

K = 200
0.874767
0.874399
2620[s]

K = 100
0.874934
0.874546
5009[s]

fixed:
η = 0.02
K = 300
S = 2

Nbag = 16
0.87xxx
0.87xxx
x[s]

Nbag = 32
0.874783
0.87437
2249[s]

Nbag = 64
0.87xxx
0.87xxx
x[s]

Nbag = 128
0.87xxx
0.87xxx
x[s]

fixed:
η = 0.1
K = 500
Nbag = 32

S = 1
0.874838
0.874427
1741[s]

S = 2
0.874784
0.874377
1525[s]

S = 4
0.87477
0.874405
2432[s]

S = 8
0.874841
0.874504
4014[s]

Table 6: BGBDT blending results. The first column
denotes the fixed parameters. In the next columns
the first line is the tested parameters, second line is
the validation RMSE, third line is the test RMSE
and fourth line is the training time. We vary the
learn rate η, the subspace size K and the baggig size
Nbag. For all results we use optimal splits in training
a single tree.

We found that the BGBDT blender deliver better results
when the splits in building a single tree are choosen at ran-
dom. For example a BGBDT with K = 20 (full subspace),
S = 50, η = 0.1 and trained 255 epochs results in a test
RMSE of 0.873842, validation RMSE is 0.874103 and a train-
ing time of 26235[s].

Kernel Ridge Regression Blending
Kernel ridge regression is not directly applicable to the train-
ing set of N = 7 · 105 samples. The gram matrix with size
of NxN must be inverted. A PC with 16GB of main mem-
ory can store and invert matrices up to N = 60000 (single
precision). We therefore use the following method: Training
many KRR models on random subsets and average their pre-
dictions, the Figure 3 shows curves where subsets with 1%
to 6% of the training set were used. The regularization con-
stant and the width of the Gaussian kernel are optimized on
a 4-fold cross-validation set for every single model. Not very
surprisingly, the outcome shows that more data is better.
All models benefit from averaging over multiple runs with
different data. This approach can be seen as a form of Bag-
ging. An average of nine KRR models on 6% data achieves
an RMSE of 0.8740 on the test set, which is significantly
better than the linear regression baseline RMSE = 0.87525.
The curves with 1% and 2% data show a saturation effect
at about 100 averaged models, i.e. no improvement can be
expected with an increase of the number of averaged models
above 100.

0 50 100 150 200 250
0.874

0.8745

0.875

0.8755

0.876

0.8765

number of averaged KRR models

R
M

S
E

 o
n

 t
e

s
t

1% train subset
2% train subset
3% train subset
4% train subset
5% train subset
6% train subset

linear regression

Figure 3: Kernel ridge regression applied to the
blending of CF predictions. The KRR is trained on
a random subset of the data (1%...6%). More data
and more averaged models result in a lower RMSE.

K-Nearest Neighbors Blending
The runtime of the k-nearest neighbors algorithm is quadratic
in N (the number of training samples). Training and meta
parameters tuning on all 700k data is too time consuming.
We therefore try the same approach as in the KRR blending
model. We investigate the effect of averaging many models,
where each of them is trained on a random subset from of
data. The results are shown in Figure 4. Again, more data
and more averaged models are better. But the KNN shows
very bad performance in terms of RMSE. The reported RM-
SEs are in the region of 0.885...0.884. The linear regression
baseline achieves RMSE = 0.87525 on the test set.

0 20 40 60 80 100 120 140

0.884

0.885

0.886

0.887

0.888

number of averaged KNN models

R
M
S
E
 o
n
 t
e
st

1% train subset
2% train subset
3% train subset
5% train subset
8% train subset
12% train subset
15% train subset

Figure 4: K-nearest neighbors applied to the blend-
ing of CF predictions. The model is trained on a ran-
dom subset, we averaged the predictions from many
random subsets. In each model, the neighborhood
size k is optimized, typical values are k = 200.

Bagging with Neural Networks, Polynomial Regression
and GBDT
In this experiment we use bagging as model validation. A
chain of models is trained by optimizing the linear regression
of the out-of-bag estimates. This means that the ensemble
of blenders is build in a greedy way, starting with the first
model. The first model optimizes the linear regression of
itself and a constant, the second model the linear regression
of itself, the first model and a constant. The order of each
single model is the same as listed in Table 7. The models in
the ensemble are neural networks, gradient boosted decision
trees and polynomial regression. Polynomial regression is
a linear regression with an extended feature space. The
extention is done with the help of a polynomial series (x +
1)n. We mean by “no cross interactions” that the single
features xn

i are rised to the power of n. Where n is the

polynomial order.

model RMSE
(blend)

weight parameters

const. 1 - 0.xxx -
NN 0.87xxx

(0.87xxx)
0.xxx 19-100-1, of = 3.0, sc = 3.6, η =

5e− 4, η(−) = 5e− 7, 870 epochs
BGBDT 0.87xxx

(0.87xxx)
0.xxx S = 20, K = 50, η = 0.1, xxx

epochs, randomSplitPoint
BGBDT 0.87xxx

(0.87xxx)
0.xxx S = 2, K = 300, η = 0.02, xxx

epochs, optSplitPoint
PR 0.87xxx

(0.87xxx)
0.xxx order=2, λ = 0.xxx, with cross

interactions
PR 0.89xxx

(0.87xxx)
0.xxx order=3, λ = 0.xxx, no cross in-

teractions
NN 0.87xxx

(0.87xxx)
0.xxx 19-100-1, of = 3.0, sc = 2, η =

5e− 4, η(−) = 5e− 7, xxx epochs
NN 0.87xxx

(0.87xxx)
0.xxx 19-50-30-1, of = 3.0, sc = 2, η =

5e− 4, η(−) = 5e− 7, xxx epochs
blend 0.87xxx

test:0.87xxx
total train time: xx[h]
total prediction time xx[h]

Table 7: Bagging and linear combination of many
models applied to blend collaborative filtering pre-
dictions from the Netflix Prize dataset. The first
column is the model type. The second column re-
ports the individual out-of-bag RMSE estimate, the
number in brackets below is the blend RMSE. The
third column shows the weight of the model. Accu-
rate blending methods receive higher weights.

Results on the Netflix qualifying set
The RMSE on the Netflix qualifying predictions with the
linear regression model from Table 2 is 0.868088. This value
is much better compared to our test set (0.87525) because
each collaborative filtering algorithm includes the ratings
from the probe set when they get trained [16]. Polynomial
Regression: 0.866922. Neural Network 19-50-1: 0.866378.
Bagging many models from 7: 0.86xxxx.

4. CONCLUSION
This paper shows the advantage of ensemble learning ap-

plied to the combination (blending) of different collaborative
filtering algorithms. As input we use 18 different predictors.
We divide the Netflix Prize probe set randomly in two halfs,
a train and a test set. The baseline is a regularized linear
regression, which leads to an RMSE of 0.8752 on the test
set. Best single blending algorithm is a 19-100-1 neural net-
work with an test RMSE of 0.8733. We combine in an larger
experiment neural networks, gradient boosted decision trees
and polynomial regression with the help of bagging and op-
timizing directly the linear regression of the out-of-bag es-
timates. This result in an test RMSE of 0.8730, which is
about 0.0022 improvement to linear regression. The second
placed team“The Ensemble”published a paper [14], they re-
ported 0.0020 improvement over linear regression baseline.
When we apply the blenders to the predictions of the Net-
flix Prize qualifying set: Linear regression leads to 0.8xxx
RMSE and the bagged ensemble 0.8xxx RMSE (0.00xx im-
provement). As a summary we show a RMSE roadmap at
Figure 5. Above the RMSE scale we place best outcomes
of blending algorithms, below there are the best individual
collaborative filtering results. The dataset and the source

code of the learning framework are freely avaliable under
www.commendo.at/elf-project.

0.8900 0.8800 0.87000.9000

KNN-3SVD-3 SVD-4KNN-2

RMSE=0.87525 Linear Regression

RMSE=0.8732 Neural Network

RMSE=0.87385 BGBDT

RMSE=0.87305 Bagging: PR+NN+BGBDT

0.88710.89040.89700.9033

Figure 5: RMSE values on the Netflix Prize probe
set. Above there are various blending methods, be-
low the best performing single algorithms (from 19
total).

We can show that a large ensemble of different collabora-
tive filtering models leads to an accurate prediction system.
Furthermore a large ensemble of supervised learning tech-
niques can improve the accuracy of the whole ensemble by
clever blending.

5. REFERENCES
[1] J. Bennet and S. Lanning. The netflix prize. KDD Cup

workshop, 2007. "http://www.netflixprize.com".

[2] L. Breiman. Bagging predictors. In Machine Learning,
pages 123–140, 1996.

[3] L. Breiman. Random forests. Machine Learning,
45:5–32, 2001.

[4] J. Friedman. Greedy function approximation: A
gradient boosting machine. Technical report, Salford
Systems, 1999.

[5] J. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 2002.

[6] L. Herlocker, Jon, A. Konstan, A. Joseph, and
J. Riedl. An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms.
Inf. Retr., 5(4):287–310, 2002.

[7] L. Herlocker, A. Konstan, G. L. Terveen, John, and
T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22:5–53, 2004.

[8] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining ICDM,
2008.

[9] M. Jahrer. ELF - Ensemble Learning Framework. an
open source C++ framework for supervised learning.
http://www.commendo.at/elf-project, 2010.

[10] Y. Koren. The BellKor solution to the Netflix Grand
Prize, 2009.

[11] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. In KDD: Proceedings
of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009.

[12] M. Piotte and M. Chabbert. The Pragmatic theory
solution to the Netflix Grand Prize, 2009.

[13] R. Salakhutdinov, A. Mnih, and G. E. Hinton.
Restricted boltzmann machines for collaborative
filtering. In ICML, pages 791–798, 2007.

[14] J. Sill, G. Takacs, L. Mackey, and D. Lin.
Feature-weighted linear stacking. arXiv:0911.0460v2,
2009.

[15] G. Takács, I. Pilászy, B. Németh, and D. Tikk.
Investigation of various matrix factorization methods
for large recommender systems. In Proc. of the 2nd
KDD Workshop on Large Scale Recommender Systems
and the Netflix Prize Competition, August 2008.

[16] A. Töscher, M. Jahrer, and R. M. Bell. The BigChaos
solution to the Netflix Grand Prize, 2009.

[17] A. Töscher, M. Jahrer, and R. Legenstein. Improved
neighborhood-based algorithms for large-scale
recommender systems. In KDD Workshop at SIGKDD
08, August 2008.

