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Abstract

We discuss models for computation in biological neural systems that are based on the current
state of knowledge in neurophysiology. Di*erences and similarities to traditional neural network
models are highlighted. It turns out that many important questions regarding computation and
learning in biological neural systems cannot be adequately addressed in traditional neural network
models. In particular, the role of time is quite di*erent in biologically more realistic models, and
many fundamental questions regarding computation and learning have to be rethought for this
context. Simultaneously, a somewhat related new generation of VLSI-chips is emerging (“pulsed
VLSI”) where new ideas about computing and learning with temporal coding can be tested
in an engineering context. Articles with details to models and results that are sketched in this
article can be found at http:==www.tu-graz.ac.at=igi=maass=. We refer to Maass and Bishop (Eds.,
Pulsed Neural Network, MIT Press, Cambridge, MA, 1999) for a collection of survey articles
that contain further details and references. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

An analysis of the role of a gate g in a computation on a familiar computational
model, such as a boolean circuit or an arti=cial neural net, is likely to focus on the
question: What is the output of g during this computation?
It turns out that an analysis of the role of a biological neuron v in a neural computa-

tion has to proceed di*erently. One structural di*erence arises from the fact that most
biological neurons can produce just one output signal. They can “=re” and thereby
generate a short electrical pulse, which is called “action potential”, or “spike” (see
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Fig. 1. (a) Typical action potential (spike). (b) A typical spike train produced by a neuron (each =ring time
marked by a bar).

Fig. 1(a)). Each spike has the same shape. Hence the key question regarding the
contribution of a single neuron v to a computation in a biological neural system is: At
what times does v =re?
Thus, whereas time has deliberately been removed as a resource for encoding in-

formation in most traditional computational models (through synchronization or some
other pre-assigned schedule), it plays an essential role in biological neural computa-
tion. One may illustrate the signi=cance of time in biological neural computation with
the analogy of a symphony in music, where one gains little insight if one just an-
alyzes which tones are played during a performance of the piece. Instead, one has
to analyze at what times each tone is played. More precisely, one has to analyze
how each tone is embedded into the temporal pattern of the “outputs” of all the other
instruments.
Traditional neural network models, such as threshold circuits or sigmoidal neural

nets are usually employed in a synchronized mode, just like other circuit models. They
can be viewed as models for biological neural computation if one of the following two
assumptions holds:

Assumption (A). There exists a clock in the biological neural system, which synchro-
nizes the computation and partitions it into global computation steps in such a way,
that one can interpret the output of a neuron v at each computation step t as 1 or 0,
depending on whether v =res or does not =re at step t. Furthermore, whether a neuron
=res at step t depends only on =rings of other neurons at step t − 1 (and it does not
matter when exactly a neuron =res during a computation step).

Assumption (B). The individual =ring times in the biological neural system carry no
information. The number of =rings of a neuron v within a time window of a certain
length (i.e. the current “=ring rate” of v) is the only relevant variable.

A computation in a biological neural system which satis=es Assumption (A) can be
modeled quite well by a threshold circuit. Valiant’s formal model [59] for a biological
neural system is largely based on this Assumption (A).
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A computation in a biological neural system which satis=es Assumption (B) can be
modeled quite well by a sigmoidal (i.e. analog) neural net. The analog output value of
a sigmoidal gate models the current =ring rate of a neuron in the biological system.
On the basis of currently available data one cannot argue that Assumptions (A) and

(B) are wrong for all biological neural systems. There exists a large variety of di*erent
biological neural systems, and some may very well satisfy Assumption (A) or (B).
For example, recent recordings from the olfactory system of the locust demonstrate the
existence of a stimulus-evoked oscillation which may serve as a “clock” for that neural
system [61]. On the other hand, during the last few years ample empirical evidence
has accumulated which shows that many important biological neural systems satisfy
neither Assumption (A) nor Assumption (B).
Until a few years ago most experimental and theoretical work in neurophysiology

was based on Assumption (B), and apart from the work of Abeles and his group [3, 4]
little e*ort was made to investigate whether individual =ring times also carried informa-
tion. One interesting case is documented in [8], where Bair and Koch have re-analyzed
some older data where spike trains from a higher area (area MT) of the visual cortex
of monkeys had been recorded while various random dot moving patterns were shown
to the monkey. Originally, one had thought that only the =ring rates carried infor-
mation about the stimulus. But when Bair and Koch analyzed those spike trains that
had been recorded in response to repetitions of the same random dot moving pattern
(generated by the same random seed), a speci=c temporal structure became visible in
the recorded spike trains that was characteristic for the speci2c random dot moving
pattern.
A veri=cation or falsi=cation of Assumption (B) is complicated by the fact that the

same biological neural system may employ di�erent coding mechanisms for di�erent
tasks. Whereas =ring rates may be used by a neural system to encode information about
static or simple dynamic stimuli, a neural code that encodes additional information
through the =ring times of neurons may be used by the same system in response
to more complex dynamic stimuli, as they occur in the natural environment [10]. In
particular, a neural system may prefer a code where the timing of individual spikes
matters for those tasks where it has to respond very fast (see e.g. [54]). It has been
shown in [49] that the neuron H1 in the blowKy responds to a stimulus consisting of
a pattern of random bars that moves across the visual =eld at constant velocity with
a stochastic spike train whose individual spike times carry no information about the
stimulus, wheras its spike frequency (i.e. =ring rate) encodes information about the
constant velocity of the stimulus. In contrast to that, the same neuron H1 responds to
a stimulus consisting of the same pattern of random bars but now moving with a time-
dependent velocity with a spike train whose spike times are much more reproducible,
and in which on average the timing of each spike carries several bits of information
about this more complex and more “natural” stimulus. In fact, it is demonstrated in [45]
that one can “decode” the information contained in the =ring times of this neuron H1,
and thereby reconstruct with amazing =delity the time series encoded in a visual
stimulus with time-dependent velocity.
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Fig. 2. Simultaneous recordings (over 4 s) of the =ring times of 30 neurons from monkey striate cortex by
KrLuger and Aiple [24]. Each =ring is denoted by a vertical bar, with a separate row for each neuron. For
comparison we have shaded an interval of 150 ms. This time span is known to suMce for the completion
of some complex multilayer cortical computations.

These data (and many other recordings) also show that typical =ring rates of bio-
logical neurons are relatively low – typically well below 100 Hz. They are especially
low in higher cortical areas of more advanced species. On the other hand complex
multi-layer biological neural systems with at least 10 synaptic stages (“layers”) are
able to complete complex computations within just 150 ms [11, 54]. Each neuron can
contribute at most 1 or 2 spikes to such computation. This is demonstrated in Fig. 2,
which also shows that inter-spike intervals tend to be quite irregular. These data pro-
vide a contradiction to Assumption (B) for fast cortical computations, since a neuron
in this system does not have time to “read” the =ring rates of its predecessors before it
produces its own output as contribution to a fast multi-layer computation. In addition,
recent neurophysiological results [2] suggest that the dynamical behaviour of synapses
(see Section 6) makes them not very suitable for analog neural computation in terms
of =ring rates.
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Thus, we arrive at the challenge to understand a new class of computational models
in which time is used as a resource for coding information. One might view these
models as a third generation of neural network models, following threshold circuits
as the =rst generation and sigmoidal neural nets as the second generation of neural
network models. Obviously, computation and learning has to proceed quite di*erently
in this new generation of neural network models. We have to rethink even the most
basic concepts and algorithmic ideas, and provide new tools that are adequate for this
unfamiliar computing environment. Apart from the goal of unraveling the structure
of biological neural computation, this challenge also arises through experiments with
a new generation of electronic hardware, where information is encoded in temporal
patterns of electric pulses (see e.g. [32, 40, 42, 63]).
The goal of this survey article is to discuss formal models that capture various

essential aspects of computation with temporal coding, and to give an overview of cur-
rently known theoretical results about computation and learning in such models. More
detailed results can be found at http:==www.cis.tu-graz.ac.at=igi=maass=. With regard
to further details about biological neural systems we refer to Abeles [3], Arbib [7],
Churchland [11], Johnston [20], Koch [21], Maass and Bishop [32], Rieke et al. [45],
Shepherd [52] and Tuckwell [57].

2. A formal model for a network of spiking neurons

If one ignores all temporal aspects then a spiking neuron v has some structural
similarity to the familiar threshold gate. A threshold gate outputs 1 if and only if the
weighted sum of its inputs reaches some threshold �. The membrane potential Pv of
a spiking neuron v can be modeled by a weighted sum of pulses, which result from
the “=ring” of other neurons. The neuron v “=res”, i.e. v generates a spike which is
propagated through its axon to other neurons, if this membrane potential Pv reaches a
threshold �v. The output of v consists of the set Fv⊆R+ of points in time when v
“=res” (where R+ = {x∈R: x¿0}).
In the simplest (deterministic) model of a spiking neuron one assumes that a neuron

v =res whenever Pv (which models the electric membrane potential at the “trigger zone”
of neuron v) reaches �v. Pv is the sum of socalled excitatory postsynaptic potentials
(EPSP’s) and inhibitory postsynaptic potentials (IPSPs), which result from the =ring
of other neurons u that are connected through a “synapse” to neuron v. The =ring of a
“presynaptic” neuron u at time s contributes to the potential Pv at time t an amount that
is modeled by the term wu; v(t) · u; v(t−s), which consists of a “weight” wu; v(t)¿0 and
a response-function u; v(t− s). Biologically realistic shapes of such response functions
are indicated in Fig. 3. In most mathematical models for spiking neurons one ignores
the time dependence of the factor wu; v(t), and views it as a constant wu; v which only
changes on the slow time scale of learning. Thus wu; v corresponds to a “weight” in
traditional models for arti=cial neural nets. For the sake of simplicity we will adopt
this view for the moment. However, we will discuss in Section 6 new results which
show that this view is quite problematic.
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Fig. 3. Typical shape of response functions (EPSP and IPSP) of a biological neuron.

The restriction of wu; v to non-negative values (in combination with positive or neg-
ative response functions u; v(t − s)) is motivated by the assumption that a biological
synapse is either “excitatory” or “inhibitory”, and that it does not change its “sign” in
the course of a “learning-process”. In addition, for most biological neurons u, either
all response-functions u; v(t − s) for postsynaptic neurons v are “excitatory” (i.e. posi-
tive), or all of them are “inhibitory” (i.e. negative). Obviously, these constraints have
little impact on theoretical complexity investigations (just consider pairs of excitatory
and inhibitory neurons instead of single neurons), unless one cares about small con-
stant factors in the size of networks, or one wants to model the actual architecture of
cortical circuits (see [52]).
In a “typical” biological neuron the resting membrane potential is around −70 mV,

the =ring threshold of a “rested” neuron is around −50 mV, and a postsynaptic potential
(i.e. EPSP or IPSP) changes the membrane potential temporarily by at most a few mV.
However, it is mathematically more convenient to assume that the potential Pv has value
0 in the absence of postsynaptic potentials, and that the threshold value �v is always
¿0. We adopt this normalization in the following.
We have already seen that Pv does not really correspond to the weighted sum of a

threshold gate since it varies over time. The same holds true for the threshold �v. If
a neuron v has =red at time t′, it will not =re again for a few ms after t′, no matter
how large its current potential Pv(t) is (“absolute refractory period”). Then for a few
further ms it is still “reluctant” to =re, i.e. a =ring requires a larger value of Pv(t) than
usual (“relative refractory period”). Both of these refractory e*ects are modeled by a
suitable “threshold function” �v(t − t′), where t′ is the time of the most recent =ring
of v. A typical shape of the function �v(t − t′) for a biological neuron is indicated in
Fig. 4. We assume that �v(t− t′)=�v(0) for large values of t− t′. In the deterministic
(i.e. noise free) version of the spiking neuron model one assumes that v =res whenever
Pv(t) crosses from below the function �v(t − t′).
A formal Spiking Neuron Network (SNN) – which was introduced in [26, 27] –

consists of a =nite set V of spiking neurons, a set E⊆V ×V of synapses, a weight
wu; v¿0 and a response function u; v :R+→R for each synapse 〈u; v〉 ∈E, and a thresh-
old function �v :R+→R+ for each neuron v∈V .
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Fig. 4. Typical shape of the threshold function of a biological neuron.

If Fu⊆R+ is the set of 2ring times of a neuron u, then the potential at the trigger
zone of neuron v at time t is given by

Pv(t) :=
∑

u:〈u; v〉∈E

∑
s∈Fu :s¡t

wu; v · u; v(t − s):

In a noise-free model a neuron v =res at time t as soon as Pv(t) reaches �v(t − t′),
where t′ is the time of the most recent =ring of v.
For some speci=ed subset Vin ⊆V of input neurons one assumes that the =ring times

(“spike trains”) Fu for neurons u∈Vin are not de=ned by the preceding convention, but
are given from the outside as input to the network. The =ring times Fv for all other
neurons v∈V are determined by the previously described rules, and the output of the
network is given in the form of the spike trains Fv for the neurons v in a speci=ed set
of output neurons Vout ⊆V .
Experiments have shown that in vitro biological neurons =re with slightly varying

delays in response to repetitions of the same current injection. Only under certain
conditions neurons are known to =re in a more reliable manner [39]. Therefore one
also considers noisy spiking neurons [29, 28], where the di*erence Pv(t) −�v(t − t′)
just governs the probability that neuron v =res at time t. The choice of the exact =ring
times is left up to some unknown stochastic processes, and it may for example occur
that v does not =re in a time interval I during which Pv(t)−�v(t − t′)¿0, or that v
=res “spontaneously” at a time t when Pv(t)−�v(t − t′)¡0.
The previously described noisy version of the SNN model is essentially equivalent to

the spike response model in [16, 17], and to the other common mathematical models
for networks of spiking neurons (see e.g. [3, 7, 57]). Subtle di*erences exist between
these models with regard to their treatment of refractory e*ects and the “reset” of the
membrane potential after a =ring. An important advantage of the spike response model
is its mathematical simplicity. This makes it suitable for an analysis of computations
in networks of spiking neurons.
We would like to point out that the formal model for a spiking neuron that we have

discussed so far is a coarse simpli=cation. In particular, the membrane potential Pv at
the trigger zone of a neuron v is in general not a linear sum of incoming pulses. Both
sublinear and superlinear summation occur in biological neurons. We will discuss in
Section 5 some possible computational consequences of these e*ects. In Section 6, we
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will discuss computational consequences of taking the temporal dynamic of synapses
into account.
Sections 4–6 can be read independently.

3. Schemes for temporal coding in neural computation

If one accepts the premise that the =ring times of neurons in a biological neural
system encode relevant information, there are still many possible coding schemes that
have to be distinguished.
One eMcient way of encoding analog information in the =ring times of a mass-

ively parallel neural system is through di*erences in the =ring times of di*erent
neurons (sometimes referred to as “delay coding”, “latency coding”, or “=ring order
coding”, [15, 19, 55]). For example a vector 〈x1; : : : ; xn〉 ∈ [0; 1]n can be encoded by the
=ring times T – c · xi of n neurons, where T is some reference time – or simply the
time when the last one of the n neurons =res (see [19]), and c is a suitable scaling
factor. The neurophysiological evidence for the use of this coding method in biological
neural systems is still rather sparse, partially due to the lack of data from experiments
where one has been able to record spike trains from many neurons in parallel. How-
ever, this coding scheme has captured the attention of many researchers because it is
very simple and because it is one of very few coding methods that might theoretically
be used for very fast neural computation [26, 55]. We will discuss computation and
learning with this neural code in Section 4.
There also exists substantial evidence that on a larger time scale statistical correla-

tions between =ring times of di*erent neurons encode relevant information (“correlation
coding”); see e.g. [12, 23, 44]. We will discuss a theoretical model for computation with
this neural code in Section 5.
Another neural code is the one alluded to in Section 1: a spike train can encode

a time series (i.e. a sequence of analog numbers) through its pattern of interspike
intervals. There exists strong evidence that temporal coding schemes of this type are
employed by a variety of biological neural systems (see [45]). But one encounters some
obstacles if one wants to analyze the computational power of neural systems employing
this code. One obstacle is the fact that we have in computational complexity theory no
standard reference models for analyzing computations on time series. Another obstacle
is the fact that the simple model for a network of spiking neurons from Section 3 is too
crude to capture the essence of computations on spike trains. A synapse can no longer
be modeled by a constant weight wu; v when a sequence of spikes with speci=c interspike
intervals is processed by the synapse. We will discuss in Section 6 amendments to the
model from Section 3 that make the model more suitable for investigating computations
on spike trains.
We refer to Abbott [1], Abeles [3], Arbib [7], Koch [21], Maass and NatschlLager [34],

Phillips and Singer [44] and Rieke et al. [45] for further information about neural
coding.



W. Maass / Theoretical Computer Science 261 (2001) 157–178 165

4. Neural computation with delay coding

We will show that networks of spiking neurons with delay coding have large com-
putational power by proving that they can simulate arbitrary sigmoidal neural nets. The
key mechanism for this simulation is based on the well-known fact that EPSPs and
IPSPs are able to shift the =ring time of a spiking neuron. This mechanism can be
demonstrated very clearly in our formal model if one assumes that EPSPs rise (and
IPSPs fall) linearly during a certain initial time period. Hence we assume in the follow-
ing that there exists some constant �¿0 such that each response function u; v(x) is of
the form signu; v · (x−du; v) for x∈ [du; v; du; v+�] with signu; v ∈{−1; 1}, and u; v(x)= 0
for x∈ [0; du; v]. The parameters du; v corresponds to the time that passes between a =ring
of neuron u and the arrival of the resulting EPSP or IPSP at the soma of neuron v.
The values of the functions u; v(x) for x¿du; v +� are not relevant for the subsequent
discussion. They describe an exponential decay as indicated in Fig. 3.
Consider a spiking neuron v that receives postsynaptic potentials from n presynaptic

neurons a1; : : : ; an. For simplicity we assume that interspike intervals are so large that
the =ring time tv of neuron v depends just on a single =ring time tai of each neuron
ai, and �v has returned to its “resting value” �v(0) before v =res again. Then if the
next =ring of v occurs at a time when the postsynaptic potentials described by wai; v ·
ai ; v(t − tai) are all in their initial linear phase, its =ring time tv is determined in the
noise-free model for wi :=wai; v · signai;v by the equation

∑n
i=1 wi · (tv−tai−dai; v)=�v(0),

or equivalently

tv =
�v(0)∑n
i=1 wi

+
∑n

i=1 wi(tai + dai;v)∑n
i=1 wi

: (4.1)

This equation reveals the somewhat surprising fact that (for a certain range of their
parameters) spiking neurons can compute a weighted sum in terms of 2ring times tai .
This mechanism can be employed to compute a weighted sum in delay coding. Finally,
according to (4.1) the coeMcients of the presynaptic =ring times tai are automatically
normalized, which appears to be of biological interest. We may assume here that all
delays dai; v have the same values. However, (4:1) also shows that di*erences in these
delays could also be used to modulate the e*ective “weights” of the presynaptic neurons
a1; : : : ; an.
In the simplest scheme for delay coding (which is closely related to that in [19]) an

analog variable xi ∈ [0; 1] is encoded by the =ring time T−c · xi of a neuron. In contrast
to Hop=eld [19] we consider here a computational model where both the inputs and
the outputs of computations are encoded in this fashion. This has the advantage that
one can compose computational modules.
We will =rst focus in Theorem 4.1 on the simulation of sigmoidal neural nets that

employ the piecewise linear “linear saturated” activation function � :R→ [0; 1] de=ned
by �(y)= 0 if y¡0; �(y)=y if 06y61, and �(y)= 1 if y¿1: The subsequent
Theorem 4.2 will imply that one can simulate with spiking neurons also sigmoidal
neural nets that employ arbitrary continuous activation functions.
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Theorem 4.1. For any given ; �¿0 one can simulate any given feedforward sigmoidal
neural net N consisting of s units with activation function � by a network NN; ; �

of s + O(1) noisy spiking neurons with delay coding. More precisely; for any net-
work input x1; : : : ; xn ∈ [0; 1] in delay coding the output of NN; ; � – given in delay
coding – di�ers with probability ¿1− � by at most  from that of N . Furthermore;
the computation time of NN; ; � depends neither on the number of gates in N nor
on the parameters ; �; but only on the number of layers of the sigmoidal neural
network N .

It is known [25] that feedforward sigmoidal neural nets whose gates employ the
activation function � can approximate with a single hidden layer for any n; k ∈N
any given continuous function F : [0; 1]n→ [0; 1]k within any ¿0 with regard to the
L∞-norm (i.e. uniform convergence). Hence we can derive the following result from
Theorem 4.1.

Theorem 4.2. Any given continuous function F : [0; 1]n→ [0; 1]k can be approximated
within any given ¿0 with arbitrarily high reliability in delay coding by a network
of noisy spiking neurons with a single hidden layer (and hence within 20 ms for
biologically realistic values of their time-constants).

Because of its generality this theorem implies the same result also for more general
schemes of coding analog variables by the 2ring times of neurons, besides the partic-
ular scheme for delay coding that we have considered so far. In fact, it implies that
the same result holds for any other coding scheme C that is “continuously related” to
the previously considered one in the sense that the transformation between =ring times
that encode a vector 〈x1; : : : ; xn〉 of analog variables, in the coding scheme considered
here and in the coding scheme C can be described by uniformly continuous functions
in both directions.
Finally, we show that the converse of Theorem 4.1 is not true: one cannot simulate

any network of s spiking neurons that employ delay coding by a network of O(s) sig-
moidal neurons, in fact not even by a network with polynomially in s many sigmoidal
neurons.
We consider the “element distinctness function” EDn : (R+)n→{0; 1} de=ned by

EDn(s1; : : : ; sn) =



1 if si = sj for some i �= j;

0 if |si − sj|¿1 for all i; j with i �= j;

arbitrary else:

If one encodes the value of input variable si by a =ring of input neuron ai at time
T − c · si, then for suMciently large values of the constant c¿0 a single noisy spiking
neuron v can compute EDn with arbitrarily high reliability. This holds for any reason-
able type of response functions, e.g. the ones shown in Fig. 3. The binary output of
this computation is assumed to be encoded by the =ring=non-=ring of v. Hair-trigger
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situations are avoided since no assumptions have to be made about the =ring or non-
=ring of v if EPSPs arrive with a temporal distance between 0 and c.
On the other hand, the following result shows that a fairly large sigmoidal neural net

is needed to compute the same function EDn. Its proof provides the =rst application
for Sontag’s recent result [53] about a new type of “dimension” d of a neural network
N , where d is chosen maximal so that every subset of d inputs is shattered by N .
Furthermore, it expands a method due to Koiran [22] for using the VC-dimension to
prove lower bounds on network size.

Theorem 4.3. Any sigmoidal neural net N that computes EDn has at least
(n− 4)=2− 1 hidden units.

This result provides the largest known lower bound for any concrete function with
n inputs on a sigmoidal neural net. The largest previously known lower bound for
sigmoidal neural nets was R(n1=4), due to Koiran [22].
We refer to Maass [26, 30] for details of these results. Further theoretical results

about neural computation with delay coding can be found in [19, 27, 28, 33, 35, 48].
Several of these theoretical predictions have been tested through computer simulations
with more detailed models for biological neurons [33, 43, 46].
With regard to learning in the context of neural computation with delay coding the

following issue arises: besides the formal weights wu; v of synapses also the transmission
delays du; v between neurons u and v determine the function that is computed by a
network of spiking neurons with delay coding. There exists substantial evidence (see
e.g. [5, 18]) that these delays du; v are tuned by adaptive mechanisms in biological neural
systems. In [36] it is shown that the VC-dimension of a neuron grows faster in terms
of its number of programmable delays than in its number of programmable weights:
a spiking neuron with n programmable delays may have VC-dimension R(n log n),
whereas the VC-dimension of a threshold gate can grow only linearly with its number
of weights. Corresponding results are shown in [37] for networks of spiking neurons.
These results can be interpreted as evidence that tuning of delays in a network of
spiking neurons may contribute even more to the diversity of functions computed by
the system than changing its synaptic weights. This suggests that one should investigate
learning algorithms for tuning the delays in network of spiking neurons. Some =rst
results can be found in [18, 36, 37, 43, 47].
Zador and Pearlmutter [62] have investigated the VC-dimension of spiking neurons

in terms of another class of parameters that are relevant for neural computation: the
integration time constants and the =ring threshold of spiking neurons.

5. Neural coding through correlations in %ring times

A number of results in experimental neurophysiology suggest that correlations be-
tween =ring times of neurons are relevant for neural coding and computation (see for
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example [12, 23, 44, 58]). These data show that for example two neurons may par-
tially synchronize their =ring times (without changing their =ring rates) in response
to a particular visual or auditory stimulus. Note that this is a method for using time
as a resource for encoding information which strongly di*ers from the preceding one:
individual =ring times are not too critical here since no perfect correlation in =ring
times of di*erent neurons is required to convey relevant information, just a statistically
signi=cant correlation is needed. Hence this coding mechanism is quite noise robust.
This coding mechanism is also interesting from the conceptual point of view, since
it provides the means for carrying output analog computation with direct codes for
“fuzzy” relations.
Several models that reKect computational e*ects of =ring correlations in a simpli=ed

setting have already previously been proposed [3, 14, 41, 44, 51, 60]. Note that more
detailed models for networks of spiking neurons are less suitable for analyzing the
computational power of computations with large scale statistical correlations in =ring
times, since they keep track of too many details. We consider in this section a new ap-
proach towards modeling neural computation with =ring rates and correlations in =ring
times. We introduce a simple extension of the familiar neural network models from the
=rst two generations (i.e., of threshold circuits and sigmoidal neural nets) that allows
us to model salient computational features of correlations between =ring times in this
simpli=ed setting. We have seen in Section 2 that there exist substanially more detailed
models for networks of spiking neurons. But these are less suitable for analyzing the
computational power of computations with large scale statistical correlations in =ring
times, since they keep track of too many details.
We assume that an arbitrary directed graph is given that describes the architecture

of a neural network N. We reserve for each gate (or “unit”) u of the network a
formal variable o(u) which denotes the output of u. In a biological interpretation this
variable o(u) models the current =ring rate of a neuron u. We assume in our extended
neural network model that one has in addition to the formal variables o(u) for each
gate u of N a second type of formal variable c(S) for various sets S of gates in N.
In a biological interpretation the formal variable c(S) models the current correlation
in the =ring times of neurons in this set S. A characteristic feature of this new type
of variables is that no additional computational units are needed to compute their
values.
Each gate v of the network N receives both types of variables as input, i.e. in

addition to the variables o(u) for immediate predecessors u it also receives the vari-
ables c(S) for subsets S of its set of immediate predecessors. Thus, besides the “real”
variables o(u), gates in N also handle a second type of “imaginary” variables c(S).
Furthermore, the computational operation of a gate v cannot be decomposed into its
operation on “real” variables and its operation on “imaginary” variables, since both
its “real” output o(v) and its “imaginary” output c(T ) depend on both types of in-
put variables. Hence the computational operation of such gate v is reminiscent of a
complex function in mathematics (for example z → ez, where the real and imaginary
component of its output ez for an input z= x + iy depend on both x and y). Because
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of this loose analogy we refer to the new type of gates that we are introducing as
complex gates.
The “real” component o(v) of the output of a complex gate v is described by the

equation

o(v) = '

(∑
u∈U

)uvo(u) +
∑

S ⊆U
)Svc(S)

∏
u∈S

o(u) + )v

)
; (5.2)

where U is the set of immediate predecessors of v in the directed graph that describes
the architecture of the network N. The parameters )uv; )Sv and )v may have arbitrary
real values. The parameter )Sv scales the impact that correlated =ring of the neurons in
S have on the =ring rate of v. In a biological interpretation the value of )Sv depends on
the locations of the synapses between neurons u∈ S and v on the dendritic tree or soma
of the postsynaptic neuron v. In addition, it depends on the biochemical structure of
these synapses, and on the distribution of voltage-dependent channels on the dendritic
tree of v. For example, if all neurons in S have synapses close together on the dendritic
tree of v, and if there exists an accumulation of voltage-dependent channels in a close-
by branching point on the way to the soma of v (so that a “dendritic spike” can be
generated at such “hot spot”), then an increase in the =ring correlation of the neurons
in S is likely to have a signi=cant impact on the =ring rate of neuron v, and )Sv
should be given a relatively large value. We refer to Bernander et al. [9], Johnston and
Wu [20], Koch [21] and Shepherd [52] for further details about dendritic integration.
The letter ' in (5.2) denotes some arbitrary activation function ' :R→R, that can

be chosen as in traditional neural network models. If ' is the sign-function then we
refer to the gate v as a complex threshold gate.
The next equation describes the “imaginary” part of the output of the same complex

gate v, i.e. the values of the variables c(T ) for arbitrary sets T of gates in N with
v∈T :

c(T ) = 'c

(∑
u∈U

)uT o(u) +
∑

S ⊆U
)ST c(S)

∏
u∈S

o(u) + )T

)
: (5.3)

In a biological interpretation the parameters )uT and )ST in Eq. (5.3) can be used to
model details of the geometrical and biochemical structure of the neurons in T and U .
The =rst term

∑
u∈U )uT o(u) in (5.3) reKects the fact that the =ring correlation of the

neurons in T can be increased through common input from a neuron u. Hence, the value
of )uT should be chosen positive if neuron u has excitatory synapses to all neurons in T .
The second term

∑
S⊆U )ST c(S)

∏
u∈S o(u) in (5.3) reKects an alternative way in which

=ring correlation among neurons in T can be achieved: if each neuron in T receives
input from some neuron u∈ S where S is a set of presynaptic neurons that =re with a
fairly large =ring correlation (i.e., c(S)

∏
u∈S o(u) is large). The parameter )ST depends

on the connectivity structure between the neuron sets S and T , and on biochemical
details of their synapses and of the dendritic trees of the neurons in T . It is not yet
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known how many of the parameters )vu; )Sv; )uT ; )ST can be chosen independently for
a biological neuron.
If one assumes that the =ring rate o(u) of each neuron u is proportional to the

probability pu(I) that neuron u =res during some =xed short time-window I (say of
length 2 ms), and if the spike trains from a set S of such neurons u can be modeled by
independent stochastic processes, then the probability that all neurons u∈ S =re during
this time-window I is given by

∏
u∈S pu(I). Hence one can for example interpret the

value of the variable c(S) as

Pr[all neurons u ∈ S =re during I ]∏
u∈S pu(I)

: (5.4)

Then c(S)= 1 if the neurons v∈ S =re independently. Furthermore, the term c(S)
∏

u∈S
o(u) in Eqs. (5.2) and (5.3) is proportional to Pr[all neurons u∈ S =re during I ]. This
is desirable since an increase in Pr[all neurons u∈ S =re during I ] is likely to increase
the =ring rate o(v) of a neuron v (if all neurons in S are connected to v) and the
correlation c(T ) of a set T of subsequent neurons to which the neurons in S are
connected.
The following result provides some =rst information about the computational power

of our model for computation with =ring rates and =ring correlations. Let C be some
arbitrary class of nonempty subsets of {u1; : : : ; un}. We consider the boolean function
FC : {0; 1}m→{0; 1} for m := n + |C|. FC gives for input vectors 〈xi〉i=1;:::; n∩〈xS〉S∈C

from {0; 1}m the output 1 if and only if xS
∏

ui∈S xi=1 for some S ∈C. The operation
“∩” denotes the concatenation of vectors. The logarithm that occurs in the subsequent
bound is taken with regard to base 2.

Theorem 5.1. The function FC : {0; 1}m→{0; 1} can be computed by a single complex
threshold gate.

Let C̃⊆C be an arbitrary collection of sets in C so that no S; S ′ ∈ C̃ exist with
S ( S ′. Then any feedforward threshold circuit computing FC needs to have at least
|C̃|= log(|C̃|+1) gates; and any feedforward sigmoidal neural net computing FC with
piecewise rational activation functions needs to have R(|C̃|1=2) gates.

In [31] we discuss applications of Theorem 5.1 to concrete classes C of sub-
sets of {u1; : : : ; un}, for which the computation of the associated boolean function FC:
{0; 1}n+|C| →{0; 1} appears to be of interest in the context of biological neural systems.
The computational model that we have sketched in this section also throws new

light on questions about learning in neural systems. Besides the parameters )uv that
correspond to the weights in traditional neural network models, there emerge new types
of parameters )Sv; )uT ; )ST that are relevant for computations with =ring correlations.
So far nothing is known about suitable learning algorithms for tuning these parameters.
Details to the results of this section can be found in [31].



W. Maass / Theoretical Computer Science 261 (2001) 157–178 171

6. Synapses are not static during a computation

So far we have modeled the computational role of a synapse as a multiplication with
a static scalar parameter: the “weight” of that synapse. However, biological synapses
are in fact rather complex computational devices. When a spike arrives at a presynaptic
terminal, it sometimes triggers the release of a neurotransmitter-=lled packet or vesicle
of neurotransmitter from a release site, but it also sometimes fails to trigger a release.
Only when a vesicle is released does the signal from the presynaptic neuron propagate
to the postsynaptic neuron. The probability that a presynaptic action potential fails to
elicit a postsynaptic response is di*erent at di*erent synapses, and ranges in the hip-
pocampus from less than 0.1–0.9 or higher [6]. Moreover, the release probability at a
synapse is strongly modulated by the recent history of activity at that synapse. This
modulation occurs through a variety of distinct biophysical mechanisms including facil-
itation (i.e., a transient increase in release probability) and depression (i.e., a transient
decrease in release probability) [64]. Previous formal models [2, 50, 56] account only
for the average probability across a population of synapses.
In this section, which describes a part of recent joint work with Zador [38], we

will be interested in the computational implications of the more complex model of a
synapse that is emerging. For this we consider the biophysical mechanisms underly-
ing the modulation of probability at individual release sites. We assume that release
probability is determined by two distinct processes: facilitation, and depression. Facil-
itation in our model depends on the number of spikes that arrive at the presynaptic
terminal. This is consistent with a mechanism in which the facilitation is determined
by the amount of calcium that has entered the presynaptic terminal [64], which in turn
depends on the number of spikes that invade the presynaptic terminal. Depression in
our model depends on the number of vesicles actually released by the synapse; such
a dependence could arise for example if depression was the result of depletion of
the pool of readily releasable vesicles [13]. The resulting history-dependent temporal
development of the release probability of a synapse through the competition between
these two complementary mechanisms can be quote complex as the subsequent formal
analysis shows.
A synapse S carries out computations on spike trains, more precisely on trains of

spikes that arrive at the presynaptic terminal. A spike train is represented as a sequence
t of =ring times, i.e. as increasing sequences of numbers t1 ¡ t2 ¡ · · · from R+. If the
time t1 of the =rst spike in the spike train t is irrelevant, one can represent t just as well
by the associated sequences I1; I2; : : : of interspike intervals Ij, which are de=ned by
Ij := tj+1 − tj. For each spike train t the output of synapse S consists of the sequence
S(t) of those ti ∈ t on which vesicles are “released” by S, i.e. of those ti ∈ t which
cause an excitatory or inhibitory postsynaptic potential (EPSP or IPSP, respectively).
The map t→ S(t) may be viewed as a stochastic function that is computed by synapse
S. Alternatively, one can characterize the output S(t) of a synapse S through its release
pattern q= q1q2 : : : ∈{R; F}∗, where R stands for release and F for failure of release.
For each ti ∈ t one sets qi=R if ti ∈ S(t), and qi=F if ti =∈ S(t).
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The central Equation in our dynamic synapse model gives the probability pS(ti) that
the ith spike in a presynaptic spike train t= 〈t1; : : : ; tk〉 triggers the release of vesicle
at time ti at synapse S,

pS(ti)= 1− e−C(ti)·V (ti): (6.5)

The functions C(t)¿0 and V (t)¿0 describe, respectively, the states of facilitation and
depletion at the synapse at time t.
The dynamics of facilitation are given by

C(t) = C0 +
∑
ti¡t

c(t − ti); (6.6)

where C0 is some parameter ¿0 that can for example be related to the resting con-
centration of calcium in the synapse. The exponential response function c(s) models
the response of C(t) to a presynaptic spike that had reached the synapse at time t− s:

c(s) = )e−s=/C ; (6.7)

where the positive parameters /C and ) give the decay constant and magnitude, re-
spectively, of the response. The function C models in an abstract way internal synaptic
processes underlying presynaptic facilitation, such as the concentration of calcium in
the presynaptic terminal. The particular exponential form used for c(s) could arise for
example if presynaptic calcium dynamics were governed by a simple =rst-order process.
The dynamics of depletion are given by

V (t) = max

(
0; V0 −

∑
ti :ti¡t and ti∈S(t)

v(t − ti)

)
(6.8)

for some parameter V0¿0. V (t) depends on the subset of those ti ∈ t with ti ¡ t on
which vesicles were actually released by the synapse, i.e. ti ∈ S(t). The function v(s)
models the response of V (t) to a preceding release of the same synapse at time t−s6t.
Analogously, as for c(s) one may choose for v(s) a function with exponential decay

v(s) = e−s=/V ; (6.9)

where /V¿0 is the decay constant. The function V models in an abstract way internal
synaptic processes that support presynaptic depression, such as depletion of the pool
of readily releasable vesicles. In a more speci=c synapse model one could interpret V0
as the maximal number of vesicles that can be stored in the readily releasable pool,
and V (t) as the expected number of vesicles in the readily releasable pool at time t.
In summary, the model of synaptic dynamics presented here is described by =ve

parameters: C0; V0; /C ; /V and ). The dynamics of a synaptic computation and its
internal variables C(t) and V (t) is indicated in Fig. 5.

Theorem 6.1. Let 〈t1; t2〉 be some arbitrary spike train consisting of two spikes; and
let p1; p2 ∈ (0; 1) be some arbitrary given numbers with p2¿p1(1−p1). Furthermore;
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Fig. 5. Synaptic computation on a spike train t, together with the temporal dynamics of the internal variables
C and V of our model. Note that V (t) changes its value only when a presynaptic spike causes release.

assume that arbitrary positive values are given for the parameters ); /C; /V of a
synapse S. Then one can always 2nd values for the two parameters C0 and V0 of the
synapse S so that pS(t1)=p1 and pS(t2)=p2.

Furthermore the condition p2¿p1(1−p1) is necessary in a strong sense. If p26p1
(1 − p1) then no synapse S can achieve pS(t1)=p1 and pS(t2)=p2 for any spike
train 〈t1; t2〉 and for any values of its parameters C0; V0; ); /C ; /V .

If one associates the current sum of release probabilities of multiple synapses between
two neurons u and v with the current value of the “connection strength” wu; v between
two neurons in a formal neural network model, then the preceding result points to
a signi=cant di*erence between the dynamics of computations in biological circuits
and formal neural network models. Whereas in formal neural network models it is
commonly assumed that the value of a synaptic weight stays =xed during a computation,
the release probabilities of synapses in biological neural circuits may change on a fast
time scale within a single computation.
We now look at the variety of release patterns that a synapse can produce for spike

trains t1; t2; t3; : : : with at least three spikes. We show that a synapse with a 2xed
parameter setting can respond quite di*erently to spike trains with di*erent interspike
intervals. Hence a synapse can serve as pattern detector for temporal patterns in spike
trains.
Fig. 6A shows the most likely release pattern for each given pair of interspike inter-

vals 〈I1; I2〉, given a particular 2xed set of synaptic parameters. One can immediately
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Fig. 6. (A, left) Most likely release pattern of a synapse in dependence of the interspike intervals I1 and I2.
The synaptic parameters are C0 = 1:5; V0 = 0:5; /C = 5; /V = 9; ) = 0:7. (B, right) Release patterns for
a synapse with other values of its parameters (C0 = 0:1; V0 = 1:8; /C = 15; /V = 30; ) = 1).

see that a synapse with =xed parameter values is likely to respond quite di*erently to
spike trains with di*erent interspike intervals. For example even if one just considers
spike trains with I1 = I2 one moves in Fig. 6A through three di*erent release patterns
that take their turn in becoming the most likely release pattern when I1 varies. Simi-
larly, if one only considers spike trains with a =xed time interval t3 − t1 = I1 + I2 =�,
but with di*erent positions of the second spike within this time interval of length �,
one sees that the most likely release pattern is quite sensitive to the position of the
second spike within this time interval �.
Fig. 6B shows that a di*erent set of synaptic parameters gives rise to a completely

di*erent assignment ofrelease patterns.
We show in the next Theorem that the boundaries between the zones in these =gures

are “plastic”: by changing the values of C0; V0; ) the synapse can move the zone for
most of the release patterns q to any given point 〈I1; I2〉. This result provides an example
for a new type of synaptic plasticity that can no longer be described in terms of a
decrease or increase of the synaptic “weight”.

Theorem 6.2. Assume that an arbitrary number p∈ (0; 1) and an arbitrary pattern
〈I1; I2〉 of interspike intervals is given. Furthermore; assume that arbitrary 2xed pos-
itive values are given for the parameters /C and /V of a synapse S. Then for any
pattern q∈{R; F}3 except RRF; FFR one can assign values to the other parameters
); C0; V0 of this synapse S so that the probability of release pattern q for a spike
train with interspike intervals I1; I2 becomes larger than p.

The proof of Theorem 6.2 in [38] is constructive in the sense that it exhibits con-
structive methods for the assignment of suitable values to the parameters ); C0; V0 (an
analogous remark also holds for Theorem 6.1). It is also shown in [38] that the pre-
ceding result is not valid for the two patterns RRF and FFR.
Finally, we show that the computational power of a spiking (e.g. integrate-and-

=re) neuron with stochastic dynamic synapses is strictly larger than that of a spiking
neuron with traditional “static” synapses. Let T be a some given time window, and
consider the computational task of detecting whether at least one of n presynaptic
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neurons a1; : : : ; an =re at least twice during T (“burst detection”). To make this task
computationally feasible we assume that none of the neurons a1; : : : ; an =res outside of
this time window.

Theorem 6.3. A spiking neuron v with stochastic dynamic synapses can solve this
burst detection task (with arbitrarily high reliability). On the other hand; no spiking
neuron with static synapses can solve this task ( for any assignment of “weights” to
its synapses.) 1

7. Conclusions

We have shown that computations in models for biological neural systems di*er
in essential aspects from computations in arti=cial neural networks. Many of these
di*erences result from the more central role that time plays in biological neural systems.
This has drastic consequences for questions about learning in biological neural sys-

tems. If one takes the inherent temporal dynamics of neurons and synapses into account,
then one can no longer characterize the computational role of a synapse by a single
parameter (its “weight”). Rather, other types of parameters emerge that determine the
role of a synapse in a neural computation (for example the parameters C0; V0; /C ; /V ; )
that we have described in our formal synapse model in Section 6). In addition, we
have demonstrated in Sections 4 and 5 that various other “programmable parame-
ters” are relevant for shaping the structure of a neural computation, which have no
relationship to “weights” in traditional neural network models. Examples are the trans-
mission delays between neurons (see Section 4), and various parameters that depend
on the geometrical arrangement of synapses on the dendritic tree of a neuron (see
Section 5).
None of the abovementioned new types of parameters that govern biological neural

computation correspond to any of the parameters that have been considered in the
context of traditional neural network models. This suggests that “learning” in biological
neural systems may employ rather di*erent mechanisms and algorithms.
The results reported in this article indicate that the organization of computing and

learning in biological neural systems di*ers strongly from that in our current generation
of arti=cial computing machinery. We hope that theoretical computer science will play
an essential role in the transmission of new insight from biological neural systems to
the design of improved arti=cial computing machinery.
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