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Abstract 

Spiking neurons are models for the computa- 
tional units in biological neural systems where 
information is considered to be encoded mainly 
in the temporal patterns of their activity. They 
provide a way of analyzing neural computation 
that is not captured by the traditional neuron 
models such as sigmoidal and threshold gates 
(or “Perceptrons”). 

We introduce a simple model of a spiking neu- 
ron that, in addition to the weights that model 
the plasticity of synaptic strength, also has 
variable transmission delays between neurons 
as programmable parameters. For coding of 
input and output values two modes are taken 
into account: binary coding for the Boolean 
and analog coding for the real-valued domain. 

We investigate the complexity of learning for 
a single spiking neuron within the framework 
of PAC-learnability. With regard to sample 
complexity, we prove that the VC-dimension 
is O(nlogn) and, hence, strictly larger than 
that of a threshold gate. In particular, the 
lower bound holds for binary coding and even 
if all weights are kept fixed. The upper bound 
is valid for the case of analog coding if weights 
and delays are programmable. 

With regard to computational complexity, we 
show that there is no polynomial-time PAC- 
learning algorithm, unless RP = NP, for a quite 
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restricted spiking neuron that is only slightly 
more powerful than a Boolean threshold gate: 
The consistency problem for a spiking neuron 
using binary coding and programmable delays 
from (0, l} is NP-complete. This holds even if 
all weights are kept fixed. 

The results demonstrate that temporal coding 
has a surprisingly large impact on the com- 
plexity of learning for single neurons. 

1 INTRODUCTION AND 
DEFINITIONS 

During the last few years the paradigms for computa- 
tion in biological neural systems have undergone drastic 
changes. With the help of refined experimental tech- 
niques one has learnt that information is not only en- 
coded in the firing rates of biological neurons, but of- 
ten also in the tempomZ pattern of their firing (“tempo- 
ral coding”). Whereas threshold circuits and sigmoidal 
neural nets provide a suitable model for neural compu- 
tation in terms of firing rates, they cannot be used for 
modelling neural computation in terms of temporal pat- 
terns of neuronal activity. In order to model temporal 
patterns of activity, one has to consider networks con- 
sisting of a different type of computational unit: spiking 
neurons (or leaky integrate-and-fire neurons, as they are 
commonly called in biophysics and theoretical neurobi- 

OlWY). 

We will focus in this article on a simple version of the 
spiking neuron model (“spiking neurons of type A” in 
the terminology of [14]). This model allows us to study 
some fundamental new learning problems that arise in 
the context of computation with temporal coding. Since 
this model is sufficiently simple, the basic aspects of this 
new mode of computation are not obscured by the myr- 
iad of additional subtleties and complications that occur 
in a more detailed neuron model. In addition, this sim- 
ple model for a spiking neuron has the advantage that 
it provides a link to silicon implementations of spiking 
neurons in analog VLSI. 
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1.1 THE MODEL FOR A SPIKING 
NEURON 

We consider a spiking neuron v that receives input pul- 
ses from n input neurons al,. , a,. We assume that 
t,here exists for i = 1,. . . , n a connection from ai to v 
with weight 2~1, E R and delay di E R.+ (where R+ = 
{X E lR : :r 2 0)). We treat time as a continuous 
variable. For simplicity we assume that if the input 
neuron nj “fires“ at time ti, this causes a pulse in v of 
the form It I (t - t,) with 

for z < d, or 2 2 o!, + 1 , 

for d, 5 z < di + 1 

We assume that the neuron “fires” as soon as the sum 
r,,(t) = xi’;, Ir 1 (t - t,) of these pulses reaches a certain 
threshold 8,, In a biological context these pulses are 
called p&synaptic potentials. The function hi models 
the effect of a firing of neuron ai on the membrane poten- 
tial P%,(t) at, the trigger zone of II. The firing threshold 
H of a biological neuron depends on the time which has 
passed since its last firing. For simplicity we assume 
here that the neuron has not fired for a while (say at 
least, 20 ms), so that its firing threshold has returned 
to its “resting value” 0,. There is some disagreement 
among neurobiologists whether the sign of a synaptic 
efficacy UJ, can change in the course of a learning pro- 
cess. This issue will not be relevant for the results of 
this article. 

The model is a simple version of a leaky integrate-and- 
fire neuron. In contrast to more complex models (see 
c.g., [19, 7, 131) it models a pulse as a step function, 
rather than a continuous function of a similar shape. 
Pulses of this shape are actually very common in silicon 
implement~ations of networks of spiking neurons 1171. 

.-\ spiking neuron of this type was called a “spiking neu- 
ron of type A” in (141. In this article we will refer to it 
simply as a spiking neuron. 

1.2 TEMPORAL CODING 

A spiking neuron may be viewed as a digital or analog 
computational element, depending on the type of tem- 
poral coding that is used. For binary coding we assume 
t,hat, input neuron u, fires at time 0 if it encodes a “l”, 
and that it does not fire at all if it encodes a “0”. Corre- 
spondingly, we assume that w outputs a “1” if it fires as 
a result of this input from al, . . . , a,, and that u outputs 
ii “0” if it does not fire. 

For analog coding we assume that a, encodes a real num- 
ber ti E [0, l] by firing at time ti. The output value of 
IJ is the time t,, when it fires (or t, - T for a suitable 
constant T if one wants to scale the real-valued output 
of v into a specific range such as (0, 11). In case that ‘u 

does not fire, we assume that this encodes some fixed 
analog output to (e.g. to = 0). 

We will consider both types of coding in this article. 
Moreover, the type of coding for the inputs may dif- 
fer from that for the output, e.g.: analog coding for the 
inputs and binary coding for the output may occur, sim- 
ilarly as for a’thi%shold gate. We prove each result for 
that type of coding for which it is more difficult. Lower 
bounds for sample or learning complexity tend to be 
more difficult for binary coding, upper bounds tend to 
be more difficult for analog coding. 

Our results about the VC-dimension of a spiking neuron 
are complementary to those achieved in [21]. In that 
article the integration time constant and the threshold 
were viewed as the only variable parameters of a spiking 
neuron, whereas the effect of variable delays hau not 
been addressed. 

1.3 OVERVIEW 

In this article we investigate the complexity of learning 
for a spiking neuron within the PAC-learning frame- 
work. (For detailed definitions we refer the reader to 
(2, 4, 201.) In Section 2 we estimate the computational 
power and the sample complexity of the spiking neuron 
model defined above. For binary coding we give upper 
and lower bounds for the computational power in terms 
of several classes of Boolean functions. As the main 
result of this section we show that for binary and ana- 
log coding the VC-dimension of the corresponding func- 
tion class is O(nlogn). It is well known that the VC- 
dimension of a function class gives fairly tight bounds 
on the sample complexity (i.e. the number of training 
examples needed) for PAC-learning this class. Accord- 
ing to (91, these estimates of the sample complexity in 
terms of the VC-dimension hold even in the case when 
the training examples are generated by some arbitrary 
probability distribution (“agnostic PAC-learning”). In 
particular, these bounds remain valid when the training 
examples are not generated by a spiking neuron. 

In Section 3 we investigate the computational complex- 
ity of PAC-learning using a particular spiking neuron 
as hypothesis class. We show that for a bounded set 
of at least two delay values the consistency problem 
for the corresponding hypothesis class is NP-complete. 
This implies that there is no efficient PAC-learning algo- 
rithm for these hypothesis classes unless RI’ = NP. The 
intractability results presented in this section have also 
consequences for the case of agnostic PAC-learning. Ac- 
cording to known results [12, lo], polynomial-time ag- 
nostic PAC-learning with some hypothesis class ‘H can 
be done only if the minimizing disagreement problem 
for H is in RP. Now, for each hypothesis class ‘H the 
consistency problem can easily be reduced to the min- 
imizing disagreement problem. Therefore, polynomial- 
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time agnostic PAC-learning is not possible for the hy- 
pothesis classes considered in this section, provided that 
RP # NP. Finally, Section 4 contains some concluding 
remarks and discussion. 

2 COMPUTATIONAL POW 
di 

R AND 
VC-DIMENSION OF A ‘KING 
NEURON 

We introduce the following notation: The class of Boole- 
an functions that can be computed by a spiking neuron 
with n binary coded inputs and binary coded output is 
denoted by Skb (where “bb” stands for “binary input 
and binary output”). Correspondingly, SF is the class 
of functions from R* to R that can be computed by 
a spiking neuron with analog coding of the inputs and 
output. The subclass of SF that has its output in {0, 1) 
is denoted by Sib. 

A similar notation is used for the threshold and for the 
sigmoidal gate: The class of Boolean functions com- 
putable by a threshold gate is denoted by ‘I;lbb, and 7tb 
is the class of halfspaces over R”. The sigmoidal gate is 
a neuron model that computes functions from R” to R 
by applying the sigmoidal function l/(1 + e-u) to the 
sum of the weighted inputs. We denote the correspond- 
ing function class by ‘T,“. 

Finally, /.L--DNF, is the class of Boolean functions de- 
finable by a DNF formula over n variables where each 
variable occurs at most once. 

2.1 COMPUTATIONAL POWER 

It is obvious that for binary coding a spiking neuron has 
at least the computational power of a threshold gate (or 
“Perceptron”): just assume that all delays di are equal. 
However, it is easy to see that its computational power 
is strictly larger. In order to characterize its power 
more precisely we compare it with the classes 7nbb and 
CL-DNF, both of which are contained in Sib. The fol- 
lowing theorem clarifies the relationships between these 
classes and gives also an upper bound in terms of dis- 
junctions of threshold gates. 

Theorem 2.1 

a) For n 2 3, 7,bb $iJ CL-DNF,. 

b) For n 2 4, p-DNF, g 72”“. 

c) 7,“” E Sib, but for n >_ 4, 7,“” # Skb. 

d) /.L-DNF, 2 Sib, but for n 2 3, ,u-DNF, # St’. 

e) Each function in St”” can be computed by an OR of 
2n - 1 threshold gates. For n 1 2, there exist functions 
computable by an OR of two threshold gates that are not 
in Sbb. n 

Proof. All proofs are straightforward. We therefore 
restrict the proof to the inequality claims by just giving 
for each of them a function that separates the two func- 
tion classes in bd. 
a) The funct r#Y n (zr A zs) v (x1 A 23) V (~2 A 23) can be 
computed by a threshold gate but not be written as a 
,u-DNFs formula. 
b,c) The function (21 A ~2) V (~3 A ~4) is in P-DNF, 
but cannot be computed by a threshold gate. 
d) The function (>rhzs) V (2s AQ) is in Stb but cannot 
be written as a p-DNFs formula. 
e) The exclusive-OR of two bits can be computed by an 
OR of two threshold gates but is not in Stb. cl 

2.2 LOWER BOUND FOR THE 
VC-DIMENSION 

The VC-dimension of the classes 7:” and 7cb is known 
to be n + 1 (see e.g. [4]). Furthermore, using known 
results about the pseudo-dimension (see [9]) it is easy 
to derive that the class 7nU has pseudodimension n-f- 1. 
We show now that the VC-dimension of the classes SEb, 
Stb and the pseudo-dimension of the class Sr is strictly 
larger by a factor of R(logn). We view in the following 
results the delays di as “programmable parameters” of 
a neuron, in addition to the weights wi of its synapses. 
This is reasonable since in biology many mechanisms 
are known that change the effective delay between two 
neurons. One well-known mechanism is the selection 
of a few synapses out of an initially very large set of 
synapses between two neurons. Some other biological 
mechanisms for changing the effective delay between two 
neurons are discussed in [ 1, 81. 

Theorem 2.2 The VC-dimension of a spiking neuron 
with n variable delays as programmable parameters is 
n(n log n). This holds even if the inputs are restricted 
to binary values and all weights are kept fixed. 

The statement follows from the following more general 
result choosing k = (log(n/2))/2 and m = n/2, and 
observing that k. 2k -I- m 5 n and k. m = fi(n logn). 
We give a proof for binary coding of the inputs and 
indicate afterwards how to derive the result for the case 
of analog coding of the inputs (i.e. the class Szb). 

Theorem 2.3 FOT each m, k 2 1 them etists a set S C 

{O,ll 
m+k.2k of size ISI = m . k that can be shattered by 

a spiking neuron with @ed weights. 

Proof. We first describe the construction of S, then we 
fix the weights and a part of the delays, and finally we 
show that for each subset S’ s S there exists a delay 
vector such that the neuron fires on elements of S’ but 
does not fire on elements of S\S’. 
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Tht, set S c,onsists of 7~ k c+ments gclv-’ for 1 2 i 5 m, 
1 < j 5 /i where the first m bits of g2J are formed 
by the unit vector e, E (0, l}“‘. The remaining Ic 2” 
bits of tht elements are defined as follows: Assume a 
fixed enumeration of all 2” subsets of the set { 1,. . , k}. 
Reserve for each =1 C { 1,. , k} a block bA of k bits. 
The block 6,~ of element ~“1 is then defined as 

the unit vector c, E (0, l}“, if j E 4, 

that z(‘ro vector Q E {O,l}“. otherwise. 

The weights are defined as w, = 1 for 1 5 1: < n, and 
the threshold is 3/2. The delays for the last k.2” inputs 
arc fixed in such a way that inputs from the same block 
6.4 have itlentic~al delays. but the pulses for inputs from 
different blocks 6~~ h..lf, .A # A’ do not overlap. (For 
instance, integer values (0,. ,2” - 1) would do this.) 

It remains to show that S can be shattered. Let S’ & S. 
The delays for the first m. inputs are specified as follows: 
For (>ach i E { 1, . 1 m} define the set 

-4; = {j t {l....,k} :$‘J E S’} 

and c.hoostl t,llca delay for t,hr i-th input cJqua1 to the delay 
of t,he inpot,s of block 6,,~~ Obviously then the neuron 

fires only for &ments of ‘S. cl 

Theorem 2.3 can be shown to hold also for analog cod- 
ing of the input values at the cost of adding an extra 
input with value “0”. Its weight is chosen such that all 
pulses from inputs that encode “0” are cancelled. This 
weight can iilso be ktlpt fixed because all elements of S- 
c.onstruc.tcld in t,he proof have the same number of “OS” 

The proof of Theorem 2.3 gives also rise to a lower 
I)ountl whcln the number of different values for the delays 
is I~oundc~l. OILY obtains the bound 0(n log 1) where 1 
is tht: nunlber of different delay values used. 

2.3 UPPER BOUND FOR THE 
VC-DIMENSION 

The lower bound of Theorem 2.2 holds for a very re- 
stricted spiking neuron with fixed weights and integer 
delays. The following suprising result shows that this 
bound is almost optimal (disregarding constant factors) 
even if t,hcl delays and weights range over arbitrary real 
numbc>rs. 

Theorem 2.4 The VC-dimension of n spiking neuron 
with n analog coded inputs and binary coded output is 
O(nlogn). 

The following statement is an immediate consequence of 
Theorems 2.2 and 2.4. (The argument for the pseudo- 
dimension is similar.) It summarizes the results of this 

section in terms of the function classes romputed by a 
spiking neuron. 

Corollary 2.5 The classes Sll” and Szt’ have: VC-di- 
mension O(n logn). The class SF has pseudo-dimen- 
sion O(n log n,). 

In the proof of Theorem 2.4 we will use the following 
result which is a consequence of Theorem 2 in [5]’ and 
Proposition A2.1 of [4]. 

Lemma 2.6 Let m hyperplancs in R” passing through 
the origin be given, where m > n. They partition R” 
into at most 2(em/(n - l))(n-‘) different regions. 

Proof. By Theorem 2 of [5], m hyperplanes through the 

origin partition R” into at most 2 Cl,‘:: (“[I) different 

regions. By Proposition A2.l(iii) of [4], 2 Czli (“‘L’) 5 

2(e(m - l)/(n - l))(“-‘) for m 2 n. cl 

Proof of Theorem 2.4. The proof is structured as 
follows: We first estimate the number of dichotomies 
of an arbitrary finite set S C R” of size m that can 
be computed by a spiking neuron. This rrsults in the 
upper bound 

2(4emn)” 2(2em)n. (1) 

Then the assumption that S is shattered by a spiking 
neuron, i.e. that all 2m dichotomies can be computed, 
will lead to the hound m = O(n logn) and hence to the 
claimed result. 

The computation of a spiking neuron can be considered 
in the following way: Given an input vector and a delay 
vector, the time that is relevant to determine if the neu- 
ron fires is divided into at most 2n - 1 intervals which 
are specified by the starting and ending points of the n 
pulses. With each interval there is associated a subset of 
the weights corresponding to the set of pulses that are 
active during this interval. The neuron fires if within 
some interval the sum of the weights in the associated 
subset reaches the threshold. 

In order to prove (l), we first estimate thrl number of 
different delay vectors that are relevant. For each fixed 
2 E S, the space IR.” of delay vectors (1 is partitioned 
into regions by hyprrplanrs of the form 

S, + d, + ?/ = ~j + dj + z 

where y, z E (0, l}, depending whether the term corre- 
sponds to a starting or ending point of a pulse. There 
are (2n)” such hyperplanes for each fixed 5. They parti- 
tion R” into regions of delay vectors that arp equivalent 

‘Cover attributes the first proof of this theorem to Schlgfli 

WI. 
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with regard to the computation of the neuron on input 
vector s. If one partitions R” by the at most m. (2n)* 
hyperplanes that arise for all 2 E S, the resulting re- 
gions consist of delay vectors d that are equivalent with 
regard to all input vectors g E S. Estimating the num- 
ber of different regions, one has to take into account 
that the hyperplanes not necessarily pass through the 
origin. But the number of different regions of Rn gen- 
erated by rn. (27~)~ arbitrary hyperplanes is at most as 
large as the number of different regions of Rn+’ gener- 
ated by m. (2n)* hyperplanes that all pass through the 
origin. By Lemma 2.6 this partition consists of at most 
2(4emn)” different regions. Hence, for inputs from S it 
suffices to consider these many delay vectors. 

Now we show that for each fixed delay vector at most 
2(2em)” many weight vectors are relevant. The up- 
per bound (1) follows then from this number and the 
number of different delay vectors. For each fixed input 
vector 2 E S and each delay vector 4 there are at most 
2n - 1 hyperplanes that have to be considered corre- 
sponding to the intervals during which there are pulses 
active. Each hyperplane is characterized by a subset of 

{‘wl,..., w,} and by the threshold 8,. If for the given 2 
and d two weight vectors of the spiking neuron result in 
different outputs, then these outputs must be different 
for one of the intervals and hence, for the hyperplane 
corresponding to this interval. Consequently, the num- 
ber of regions of the space IR”+l of weights 201,. . . , w, 
and threshold 8,, is not larger than the number of regions 
that arise from the at most 2n - 1 hyperplanes. Taking 
into account all 5 E S, the space R”+’ is partitioned by 
at most m . (2n - 1) hyperplanes that all pass through 
the origin. By Lemma 2.6 the number of different re- 
gions that arise from these hyperplanes is bounded by 
2(2em)n. Hence (1) follows. 

Finally, the following claim implies the bound O(n log n) 
for the VC-dimension and hence the statement of the 
theorem 

Claim. For n > 8e*, VC-dim(Stb) < 8n log(2n). 

Assume that S has size m and is shattered by Stb. 
Hence, all 2m dichotomies of S can be computed by 
a spiking neuron. Then (1) implies 

2m 5 2(4emn)n. 2(2em)n 

= 4(8e*m*n)” 

5 4(mn)2n, 

where we have used the assumption n 2 8e2 for the last 
inequality. Taking logarithms on both sides yields 

m 5 2n log(mn) + 2, 

which implies 

m 5 2n(log(mn) + 1). (2) 

For any m 2 logn there is a real number r > 1 such 
that m = rlog(rn). (This can easily be seen from the 

fact that for arbitrary n the function q,, : [l,co) + 
[log n, 00) defined by q,,(z) = z log(zn) is l-l and onto.) 
Substituting m = rlog(rn) on both sides of (2) yields 

T log(m) 5 2n(log(rn log(m)) + 1) 

= fln(log(rn) + log(log(rn)) + 1) 

i 2n(log(rn) + log(m/2) + l), 

where the last inequality follows from log(m) 5 rn/2. 
(This requires rn 2 4 which is guaranteed by the as- 
sumption n > 8e*.) Hence we have 

T log(m) < 4n log(m). 

Dividing both sides by log(m), which is positive due to 
Tn 2 8e2, we get 

which implies 

T 5 4n, 

T log(m) 5 4n log( 4n*). 

Resubstituting m = T log(m) for the left hand side and 
rearranging the right hand side yields 

m < 8nlog(2n) 

as claimed. This completes the proof of Theorem 2.4. 
0 

The bound (1) can also be used to estimate the number 
of Boolean functions that can be computed by a spiking 

neuron. Substituting m = 2” yields the bound 2°(n2). 

Combining this with the lower bound 2”(“‘) of [16] for 
72b and our Theorem 2.1(c), we get the upper and lower 
bound almost matching. 

Corollary 2.7 There are 2Q(“2) many Boolean func- 
tions compzltable by a spiking neuron with binary coding 
of the inputs. 

For the case of binary coding the analysis can even be 
made easier, because the factor 2(4emn)n in (1) that 
is due to the number of relevant delay vectors can be 
replaced by a simpler bound: One observes that for a set 
S E (0, 1)” of input vectors at most n* many different 
values have to be considered for each delay. Hence, the 
number of relevant delay vectors is at most 2**“‘s”. 

Thus one derives the upper bound 2nz+o(n’osn) for the 
number of Boolean functions. This result is particularly 
interesting in the light of the fact that there are at most 

2”’ many different functions in 7,bb [15]. 

3 COMPUTATIONAL COMPLEXITY 
OF PAC-LEARNING FOR A 
SPIKING NEURON 

In order to investigate the computational complexity of 
learning within the PAC framework one has to specify 
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which class of hypotheses the learner may use. If Stb 
were PAC-learnable with some arbitrary polynomial- 
time computable hypothesis class, then this would im- 
ply the same result for DNF (which is one of the major 
open problems in computational learning theory). This 
follows from our Theorem 2.1(d) in combination with 
the corresponding result in [ll]. 

In this section we consider the complexity of PAC-learn- 
ing when only hypotheses from Sk” may be used by 
the learner (“proper PAC-learning”). This appears to 
be the more adequate assumption for the analysis of 
learning for a single spiking neuron. 

We investigate the computational complexity of the con- 
sistency problem for a spiking neuron which is defined as 
follows: Given a set of labelled examples from {0, l}n x 
{0, l}, does there exist a function in Sk” that is consis- 
tent (i.e., does agree with) all examples? 

In the following we show that this problem is NP-com- 
plete for a spiking neuron that may choose its delay 
values only from the set (0, 1). A spiking neuron with 
two delay values and binary coding is only slightly more 
powerful t ban a Boolean threshold gate, which can be 
thought of as a spiking neuron with only one delay value. 
Therefore. this intractability result, appears to be opti- 
mal in a certain sense. Moreover, the proof shows that 
t,he result also holds when the weights and the threshold 
are kept fixed. 

Theorem 3.1 The consistency problem for a spiking 
neuron where each delay is 0 or 1 is NP-complete. 

The proof is by a reduction from 3SET-SPLITTING [6], 
a problem which was also used in (31 for intractability 
results concerning certain two-layer networks of thresh- 
old gates. In fact, the problem considered here seems 
t,o bc closely related to the consistency problem for the 
AND of two threshold gates analyzed in [3]. However, 
their reduction cannot be used here in a straightforward 
manner (e.g.? by flipping the labels to change the AND 
into an OR), because due to our Theorem 2.1(e) the 
OR of two threshold gates is not equivalent to a spiking 
neuron with delays from (0, 1). 

Proof of Theorem 3.1. The problem is in NP be- 
cause the delay values are binary and the weights can 
be bounded potynomialty in size. The latter is shown 
similarly as in the case of threshold gates. 

To prove NP-hardness we define a polynomial-time re- 
duction from 3SET-SPLITTING, which is the problem 
to decide for an instance (U, C), where U is a finite set 
and C is a collection of subsets of Ii such that Jc] = 3 
for all c E C, if there exists a partition UO, Ui of U such 

that all c E C satisfy c g Uo and c g C’, .Z 

Let (U,C) be given ;tnd R = (UI. The set of examples 
is defined as S = S+ u S- C {O,l}*, x (0. l), where 
the elements of Sf and S- are labelled by “1” and “O”, 
respectively. For a set I 2 { 1, . . . , Zn} we denote by 11 
the binary vector of length 2n that has “1s” exactly at 
the positions in I. 

0 Let la E S-. 

l For each zli E U let 1{2i--1,2t) E Sf. 

l For each c E C where c = {u~,u~L~,u~} let 

l{*,-l.*z,*j-l,*j,*Lk-1,2k) E s-. 

Obviously, there is a function computable in polynomial 
time that maps each (U, C) to the corresponding S. We 
show now that (U, C) has a set splitting iff there exists 
a function in S:“,” with binary delays that is consistent 
with S. 

(*) Assume that (U,C) has a set splitting 19 : CT + 
{0, 1) (i.e., U, E I,:, iff (?(u,) = j). Define the weights 
701). . . 1 U!*,, and threshold 8,, as follows: 

w*i-1 = 1 
w*z = -2 

fori=l,..., n and H,,=1/2. 

Define the delays di.. , d2,, as: 

h-1 = l-l(W) 
hi = I-P(u,) > 

for i = l,...,?). 

This spiking neuron is consistent with S: For input 10 
it does not fire because Bl, > 0. For each 1{2i-i,2i) 
one of the two active inputs generates an EPSP of 1: 
hence the output is 1. For each 1{2t-1,2r,23--I,~j,2k--1,2k} 
corresponding to a c E C there is associated with each 
delay value at least one of wzi, UJQ, W~L. Hence, for both 
delay values the corresponding PSP cannot be larger 
than 0. 

(+) Assume that the spiking neuron is consistent with 
S. Let 9 be the threshold function which has threshold 
6,,, the weights assigned to delay value 0, and where 
the weights of delay value 1 are replaced by 0. Define 
B : U + (0, 1) as 

lj(u*) = !/(1{2t-l,2t}). 

We claim that [;’ is a set splitting of (U, C). Assume the 
contrary. Then there exists c E C,c = {u,,u~, UI;} and 
b E {O,l} such that 

ijj(u*) = ,9(u,) = D(Q) = b. 

2Strictly speaking, the restriction of SET-SPLITTING as 
defined in [6] allows that Jc] 5 3. However, it is straightfor- 
ward to define a reduction that avoids subsets of size 2. 
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(i) If b = 1 then g(lfsl-i,zll) = 1 for each I E {i,j,k}. 
Because 10 is a negative example and g is a thresh- 
old function this implies g(?(2i-1,2i,zj-1,2j,2k-1,2k)) = 1. 
Hence, the neuron fires on the input vector correspond- 
ing to c, in contradiction to the definition of 5’. 
(ii) If b = 0 then consider the threshold function g’ 
consisting of the weights assigned to delay value 1. Ac- 
cordingly, g’ must output 1 on input lfsl.-i,s~ for each 
1 E {i,j,k} (because the label is 1 and g outputs 0). 
The label of 10 then implies that g’ outputs 1 on input 

l{2i-1,2i,2j-l,2j,2k-l,2~}. It follows that the neuron fires 
on this input in contradiction to the definition of S. 
Finally, (i) and (ii) imply that /3 is a set splitting of 

PJ, (7. 0 

The fact that the weights need not be modifiable in the 
previous proof leads to the following stronger result. 

Corollary 3.2 The consistency problem for a spiking 
neuron with binary delays and certain fixed weights is 
NP-complete. 

In a similar way, NP-completeness can be shown for 
the case that the delays are allowed to take on values 
from a bounded set (0,. . . ,k-1) wherek > 3. The 
reduction is from GRAPH-k-COLORABILITY and is 
basically a modification of the reduction used in [2] for 
the AND of k threshold gates. Again, the weights and 
the threshold can also be kept fixed. Combining this 
with Theorem 3.1 we get the following result. 

Corollary 3.3 For each k 2 2, the consistency problem 
for a spiking neuron with delays from (0,. . . , k - 1) is 
NP-complete. This holds also for a spiking neuron with 
certain j?xed weights. 

4 CONCLUSIONS 

We have investigated a new type of computational mod- 
el where a set of parameters becomes quite relevant that 
plays little or no role in other models: transmission de- 
lays. We have shown that these new parameters have an 
even larger impact on the richness of the class of Boolean 
functions that can be computed by a spiking neuron 
than those parameters that are traditionally considered 
to be the main “programmable parameters” of a neuron: 
the “weights” of its synapses. We have shown that the 
VC-dimension of a spiking neuron is superlinear in the 
number of delays that can be varied, and we have given 
asymptotically tight bounds for this VC-dimension. 

In Section 3 we have shown that the learning complex- 
ity of a single spiking neuron is surprisingly large, in 
particular much larger than the learning complexity of 
a single threshold gate. Similarly as the corresponding 

result for multi-layer threshold circuits, this should not 
be interpreted as saying that supervised learning is im- 
possible for a spiking neuron. However it tells us that it 
will become quite difficult to formulate rigorously prov- 
able positive learning results for spiking neurons. 

Unfortunately, one cannot hope that the negative learn- 
ing result of Section 3 is a consequence of the rather 
simple model for a spiking neuron that we have consid- 
ered. This negative result, as well as the lower bound on 
the VC-dimension in Theorem 2.2, can easily be seen to 
hold also for biologically more realistic shapes of post- 
synaptic potentials. 
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