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Several problems in recursion theory on admissible ordinals («-recursion theory) and recursion
theory oninadmissible ordinals (8 -recursion theory) are studied. Fruitful interactions between both
theories are stressed. In the first part the admissible collapse is used in order to characterize for some
inadmissible B the structure of all 8 -recursively enumerable degrees asanaccumulationof structures
of Y-recursively enumerable degrees for many admissible structures . Thus problems about the
B-recursively enumerable degrees can be solved by considering “locally’’ the analogous problem in
an admissible % (where results of a -recursion theory apply). In the second part -recursion theory is
used as a tool in infinite injury priority constructions for some particularly interesting & (e.g. » ).
New effects can be observed since some structure of the inadmissible world above O' is projected into
the a -recursively enumerable degrees by inverting the jump. The gained understanding of the jump
of a-recursively enumerable degrees makes it possible to solve some open problems.

A few years ago S.D. Friedman and G.E. Sacks [1] started a new chapter in
generalized recursion theory: B-recursion theory. So far recursion theory was
studied only on those initial segments L, of the constructible hierarchy where « is
admissible. In B-recursion theory one considers initial segments Lg for any limit
ordinal 8. This is a natural step since the concept of a recursively enumerable
(r.e.) set does not require any closure condition for the considered universe.

The B-1.e. sets are defined to be those subsets of L, which are 3;-definable
over L. A function is B-recursive if its graph is 8-r.e. Another important concept
of recursion theory is finiteness and as in a-recursion theory a subset of L, is
called B-finite if it is an element of L,.

A striking new effect in B-recursion theory is the appearance of B-finite sets
which are rather large (compared with the whole universe Lg). If B is inadmissible
then there exist B-recursive functions which are cofinal in 8 and which have as
domain a B-finite set. The minimal y<f which occurs as domain of such a
function is called the recursive cofinality of 8 (o1 cf 8). This ordinal is a good
measure for the remaining “admissibility” of an inadmissible 8. Only B-finite sets
of cardinality less than o1 cf 8 (in L;) behave like a-finite sets.

The preceding example shows already that several elementary facts from
ordinary recursion theory do not remain true in B-recursion theory. But usually
facts of this kind are not considered to be the essential results of recursion theory.
Thus the question arises what is happening e.g. with the structure of recursively
enumerable degrees. Serious mathematical problems occur here since most of the
constructions from a-recursion theory rely on admissibility and one has to look
for new strategies.
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In Section 1 of this paper we study B-recursively enumerable degrees for
weakly inadmissible B and continue our earlier paper [5]. An inadmissible B is
called weakly inadmissible if one can project B B-recursively into o1 cf B, it is
called strongly inadmissible otherwise. For weakly inadmissible 8 one takes a
suitable predicate T< L which encodes all Ay-facts about L. One projects T by
means of the existing B-recursive projection into o1 cf 8. We write T for the
projection of T and call the structure U := (Ly1cep T) the admissible collapse of 8.
Then every set A S L, g is 3;-definable over L, iff it is 3,-definable over 9.
Further ¥ is admissible and therefore we know a lot about 2-degrees since most
of the numerous results in a-recursion theory remain true for such an admissible
structure with an additional regular predicate (e.g. Shore’s density theorem [10]
holds for ). It was shown in [5] that the B-recursive degrees (together with <;)
are isomorphic to the -r.e. degrees (together with <g). The occurrence of
nonzero B-recursive degrees is a typical phenomenon of inadmissible recursion
theory. It is easy to see that the greatest B-recursive degree lies strictly between
0 — the degree of the empty set — and the greatest B-r.e. degree 0'. But nothing
else is known about nonrecursive r.e. degrees in B-recursion theory. Theorem 1
throws some light onto this problem. A careful analysis shows that we can in fact
extend the isomorphism from [5] onto all regular B-r.e. degrees (a set A < L is
regular if Vy<B (ANL,eL,), a B-r.e. degree is regular if it contains a regular
B-r.e. set). As isomorphic images we get in U those degrees which are tame r.e. in
an Y-r.e. degree below it. This leads to the characterization of the structure of all
regular B-r.e. degrees as an accumulation of structures of ®B-r.e. degrees for many
different admissible B (see the conclusions following Theorem 1). In particular by
applying the splitting theorem to many local structures we get a global splitting
theorem for all regular B-r.e. degrees.

Theorem 1 contains in addition a complete characterization of those B-r.e.
degrees which are regular. The relative size of o2 c¢f 8 and o2p B8 turns out to be
the decisive criterion — a criterion which is well known from a-recursion theory
(see [6] and Shore [12]). In particular for weakly inadmissible 8 with o2 cf g =
o2p B the regular set theorem from «-recursion theory holds: every B-r.e. degree
is regular. Therefore for these 8 we get an oversight over all 8-r.e. degrees from
the isomorphism result.

It should be mentioned that Sack’s concept of tameness plays a crucial role in
the formulation and the proof of Theorem 1 (A < L; is defined to be B-tame r.e.
if (KeLg| K< A}is B-re.).

Using the result from Theorem 1 we prove in Theorem 2 that the 8-recursive
degrees are not an initial segment of the B-r.e. degrees for weakly inadmissible 3.
We do this by performing a suitable construction in the admissible collapse of B.

In Section 2 of the paper we apply results from g -recursion theory in a-recursion
theory. If @ is an admissible ordinal with @ > o2 cf a = ¢2p a, then the structure
of the 3,L, degrees between 0’ and 0" is isomorphic to the structure of the B-r.e.
degrees for the weakly inadmissible structure 6:=(L,, C) (with a regular a-r.e.
predicate C e ('). Thus we can apply the preceding results and we find a strange



On a- and B-recursively enumerable degrees 207

new world of a-degrees between 0’ and 0” (observe that the case of metarecursion
theory is included since w{* satisfies the condition a >a2 cf a=o2pa).

The considered a are of particular interest with respect to the jump because
these are the only a where the jumps of a-r.e. degrees are not yet known (for
3,-admissible a the situation is exactly as in ordinary recursion theory according
to Theorem 35, in the case o2 cf a <o2pa the jump is completely distorted and
only the degrees 0', 0° and 0" can possibly occur as jumps of a-r.e. degrees
according to [6]). The distinguished degree 0? was described in [6] for those «
where incomplete non-hyperregular a-r.e. degrees exist. Observe that these
degrees do always exist in the considered case a>c2cfa=0o2pa (an a-r.e.
degree a is hyperregular iff (L, A) is admissible for regular A €a). It is easy to
see that every low degree is hyperregular and every high degree is non-
hyperregular (a is low if a’=0" and a is high if a'=0"). We show that there are
differences among the hyperregular and among the non-hyperregular a-r.e.
degrees since not every hyperregular a-r.e. degree is low and not every non-
hyperregular a-r.e. degree is high.

It is easy to see that @' <03 for hyperregular and a’= 03 for non-hyperregular
a-r.e. degrees a. Theorem 3 shows that there exist in fact non-hyperregular a-r.e.
degrees a such that a’ =03, Together with results from [6] we thus get

02=inf{a’| a is a non-hyperregular a-r.e. degree}

for all & where incomplete non-hyperregular a-r.c. degrees exists so that we have
another characterization of the degree 02, The proof of Theorem 3 is based on a
simple trick since the straightforward approach fails. We construct an «-r.e. set A
as if we want to make it both non-hyperregular and low. This is of course
impossible but the constructed non-hyperregular set A is then at least “as low as
possible”. Thus we get A' =0z,

Concerning the jump of hyperregular degrees we first observe that there is a
rich structure of tame 3,L, (or equivalently A,L,) degrees between 0’ and 0: for
the considered a (A is tame 3,L, if {KeL,|K < A}is 3,L,). These a-degrees
are isomorphic to the %-r.e. degrees of an admissible structure 2. We show in
Theorem 4 that each of these tame 3,L, degrees is the jump of a hyperregular
a-r.e. degree. This holds in particular for the greatest tame 3,L degree 0%. Thus
0? is the only point (for any «) where the jump of a hyperregular and a
non-hyperregular a-r.e. degree meet together.

We learn from the preceding results that the inadmissible world above ' casts
its shadow upon the central part of a-recursion theory: the structure of a-r.e.
degrees and sets. In particular we stumble upon the naturally arising notion of an
intermediate degree which is characterized by the property a'= 02. Essential
differences between the structure of r.e. degrees in ordinary recursion theory and
the structure of a-r.e. degrees for some a with o2 cf « <o2p a have already been
discovered by R. Shore [12]. A further investigation of intermediate degrees may
show several differences between ordinary recursion theory and «-recursion
theory for some a with a > 02 cf @ = 0¢2p @ (including metarecursion theory). By
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combining recent work of A. Leggett [3] with our results we can give a first
example: Martin’s celebrated Theorem (‘““a r.e. degree contains a maximal set iff it
is high”’) is not true in metarecursion theory since for w{* there exist maximal sets
of intermediate degree.

The combination of Leggett’s results with Theorem 4 settles in addition a
conjecture from Simpson’s thesis [13] positively: There exist in fact hyperregular
maximal sets even in nontrivial cases (it turns out that all these sets are of
intermediate degree).

In the proof of Theorem 4 we use similar infinite injury strategies as in [6]. But
the basic ingredient of the construction is a regular set theorem from B-recursion
theory [5] (in fact this is the first application of a regular set theorem from
B-recursion theory). All attempts to prove this regular set theorem by using
standard methods of a-recursion theory did fail so far.

Finally in Theorem 5 we show that an admissible « is 3,-admissible iff it
satisfies Sack’s jump theorem (“every 3, degree between 0’ and 0" is the jump of
an incomplete r.e. degree”). The crucial point of the proof is the demonstration of
the failure of Sack’s theorem in the case a>o2cf a=0o2pa. We apply here
another nontrivial result from B-recursion theory (the preceding Theorem 2).

0. Preliminaries

We use the same notations and definitions as in our preceding papers [5] and
[6]. All missing definitions can be found there.

It is not relevant for our arguments whether one chooses L or S, (see [5]) as
the universe for B-recursion theory.

For any structure 8 =(Lg, B) with B < L; we say that a subset of L; is B-r.e.
(B-recursive) if it is 3B (4,8). We write on of B for the least y=p such that a
cofinal %,%B function f:y— B exists. onp B is the least y=<p such that an 1-1
3,.% function f:B—vy exists. For the special case =L, we write oncfB
respectively onp .

Define for any structure B =(Lg, B) phg:=ud<pg (a 3,8 set M < § exists such
that M¢ L;).

The greatest B-recursive degree is always denoted by r.

If B is a weakly inadmissible structure (i.e. 8> o1 cf B=0o1p B) we reserve the
letter k for o1 cf B and we write U for the admissible collapse (L., T) of 8. A set
AcL, is called B-immune if it is immune with respect to neighborhood condi-
tions out of Ly —L,, i.e. for any Ke L; we have (KcAvKcL —A)—»KelL,.
According to [5] one can define for every set A < L, a B-immune version A< L,
of the same %-degree. The operation ~ preserves regularity and 3, %-definability.

For sets A,Bcf we set AVB:=2AU2B+1 where 2A:={2x |xc A} and
2B+1:={2x+1|xeB}.

Finally we remind of two conventions. If we write L, F[x € W] for some B-r.e.
set W, then this means that we have fixed a 3,1, definition ¢ of W and L, E¢(x).
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Further if we write L, F¢ for a formula ¢, then this implies that every parameter
in ¢ is an element of L.

1. B-recursively enumerable degrees

Theorem 1. Assume B is weakly inadmissible and b is a B-degree. Then (1), (2),
(3) are equivalent:

(1) b contains a regular B-r.e. set,

(2) b contains a B-re. set and (r<bnaa2cf B<o2pB) (r is the greatest
B-recursive degree),

(3) b contains a B-immune set A< L, such that A is regular over L. and
(A, B)-tame r.e. for some U-r.e. set B< L, with B <y A.

Proof. (2)—(3). Assume (2) and take a B-r.e. set Heb. We will construct
B-immune sets B, A <« such that H =BA, (Y, B) is not strongly inadmissible, B
is regular over L., B<yA and A is (%, B)-tame r.e. This is enough in order to
show (3) because we can apply then the regular set theorem for tame r.e. sets in
weakly inadmissible structures ((1)<>(3) of Theorem 4 in [5]) respectively the
usual regular set theorem for r.e. sets in admissible structures to the (U, B)-tame
r.e. set A in the weakly inadmissible or admissible structure ([, B). This gives a
(Y, B)-tame r.e. set A* with A* regular over L, and A = 5, A*. Then we take
the B-immune set A* and define A:=BvA*. Itis easy to verify that B, A have
all the properties which are demanded in (3).

We construct now the sets B, A with the properties above (i.e. all properties
from (3) except A regular).

Fix a B-recursive function P which maps L; 1-1 onto «. Define B,:=P[H]. B,
is Y-r.e. and there is a regular ¥-r.e. set B, such that B, =4 B,. Then we define
B:=B,. It is obvious that B =y B, =y B; and B is U-r.e., regular and B-immune.
We further have B=< ;H by the construction of B, since B is B-immune and
B =, B,.

Define 9 := (%, B). We want to show that 9 is not strongly inadmissible and at
this point we use the assumption —(r<bao2cf 8 <o2pB) in (2).

(a) B is incomplete in U. According to Lemma 3.3 in Shore [10] we have
o1 cf¥ k=p,. Further by using the fact that g2p% k = p%. we get p¥ = 1pT«
according to Shore [10]. The used equality holds because we have o2p¥ k =
02p B =p,s=p%. Thus it is proved that o1 cf* k =a1p? k.

(b) B is complete in . In this case B is an element of the B-degree r according
to Theorem 8 in [5]. We know already that B<gH and therefore we have r<b.
Since (3) follows from Theorem 4 in [5] if r = b we assume r <b for the following.
This implies o2 cf 8= o2p B according to the assumption in (2). Therefore we
have ol ct® k =02 cfB=a2pB=0lpT k.

Since ¥ is not strongly inadmissible there is a $-recursive function P which
maps « 1-1 onto K:=0o1 of* k. Further we fix an S-recursive strictly increasing
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cofinal function §:&k— k.
We define
A;={0,x)ex | P (x)NH#PU{1, x)e k |P’1(x)ﬂLB —H#0},
A2¢=Q[ﬁ[A1]], A3,:=A2 and A:=BVA3.

Then A is B-immune by construction and it is obvious that B <y A. In order to
vérify the other properties of A we prove:

Claim. Assume that Ke L., k-card (K)<#ik and K< A;N{1}x«k. Then there
exists a set K*e L, such that

k-card (K*) <&, P'[K*leL,—H
and
V{1,x)e K FzePK*|(ze P '(x))

(thus K* is a “small” k-finite set of witnesses for “K < A;N{1}X«”).

Proof of the claim. We have P[H]= B, = B. Therefore we can write
“yek—P[H]AP ' (y)e P} (x)”
as a 3,9 formula ¢(x, y). Since K< A;N{1}x« we have that
VxeK 3Ayex@Ey(x, y)).

Since k-card (K)< & there exists in fact a k-finite function h:K—k such that
Vx e KQLEY(x, h(x))) (show first that the function g: K-« such that

Vx e K(g(x)= ud(Ls, TN Ly, BN Ls)E[Ayi(x, y)])

is k-finite because k-card (K)<k =o'l of? k).
Then the set K*:=Rgh has all the properties which are demanded in the
claim. [

We can show now that A is 9l-tame r.e.: We have

KelL AKc Ao 3KeL (K, K)e W, rnk-card (K)<RAK € A, N{1}x k)

for some suitable 9l-r.e. set W,. By the claim we further have
KeL, Ak-card (K)< RAKc A, N{1}x«k
< 3JIK*e L (k-card (K*)<k AP [K*]cL;,—-H
AY(1,xye K Fze P [K*|(ze P (x))).
The latter can be written as a Elsi[ formula since
P {K*lcL;,—HeK*<L,—B,

and B;=<yB. Thus we have shown that A is fl-tame r.e.
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H= BA follows from
KelsAKcHexek(P '(x)=Ka(l,x)¢ A)),
KelsnKcLg—HoIxex(P ' (x)=KA(0,x)¢ A))

and AlswmA (it is obvious that A,<_qA; this implies A, <.,uA because
B=<4A).
It only remains to show that A <, H. We have

KeL AKcA,oKeL AdKeL (K =§[P[KIAk-card (K)< &)
/\HKOKl(K=K0UK1/\KOE{O}XK ﬁAl/\Kl_C_{l}XK ﬁAl). '

The part Ko<{0} X« NA; is obviously 3,L, since B-card (K,)<k. Further we
have shown before that for k-finite sets K; of k-cardinality less than K we can
write K,c{1}xkNA, as a 3,9 formula. Since B=,H we have altogether
expressed Ke L AK< A, B-recursively in H. Since A is B-immune we can
therefore express KeL;AK < A B-recursively in H.

In order to show the other part of A <,H we observe that

KeL AKck—A, < 3K, K,e Ly(K, = {K |(0, P(K))e K}

AK €Ly —HAK,= U{K (1, P(K))e K}AK, < H).
We further have

KeL AK<L,—A,«3KeL (G[P[KNI=RggNKAKck—A)).

The right side of this equivalence can be written as a 3,9 formula since 4 is
strictly increasing and continuous. If we combine these facts it is easy to see that
KelsnKcL, — A can be expressed B-recursively in H.

(3)—(1). Take sets A, B according to (3). One can assume that B is in addition
B-immune and regular over L,. We are going to define a II,L; set H which is
regular over L such that A =gH. Then L; — H will be a regular B-r.e. set of the
same B-degree as A.

One might try to understand the definition of H as follows: There exists some
II,Y set D such that we A< 3Jze L ((w,z)e D). H is some sort of II,%-
uniformization of this relation D.

First we define a set H. Fix a 3,(, B) formula ¢ such that R< A < (9, B)E
¢(R). For we A we put a 4-tupel {w, v, §, K) into H such that

(a) v is minimal such that

(L, TNL,BNL,F3AR(we RA$(R)),
(b) K=BNL,
(¢) &=y is minimal such that

Vxe K(Ls, TN Ls)Egp(x))

where ¢ is some fixed 3, definition of B.
For every w e A there exists exactly one tripel (v, 8, K) such that (w, v, 8, K) e
H and H is II,Y definable.
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Fix a B-finite function U which maps L, 1-1 onto « and a B-recursive strictly
increasing and continuous cofinal function q from « into 8. We write g for qoU.
Define the set H as follows (we use set theoretic pairing):

(x,7 8 K)e H:e>x € GILIAG ' (x), v, 8, K)e H.

H is II,L, definable since g[L,]is A,L, and H is IT,L,.
Take some set Ro€ L, such that R, A. Then there exists some y,<k such
that for all we R,

(L,, TNL,, BNL,)EAR(we R A¢(R))

(simply choose v, such that Roe L, and (L., TNL,, BNL,)Ed(Ry)). It follows
from this observation that H | R, is B-finite. We further have that § | R, is
B-finite and therefore H | g[R,] is B-finite as well. Observe that the given
argument relies mainly on the fact that A is (U, B)-tame r.c.

We can now prove that H is regular over L;. Assume that some y such that
Kk <y<p is given. In order to show that L, N He Ly we define

K:={weL,|3y,y,y:€ L. ((G(W), 1, ¥2, ya) € L,)}.

By using the properties of § we see that KeL,. Since A is regular over L, we
have R:=KNAecL, By the preceding we have then H | g[R]e L, Since
HNL,=H } g[R]NL, this implies that HNL, € L.
A =gH. We have
ReL;ARc Ao ReL A3FeLy((Fis afunction)Adom F=G[R]AF< H)

and
Rel,ARcL —AoReL ARcL, —-A<§[RIXLicL,—H

where g[R]x L2 is a B-finite set due to the properties of set theoretic pairing.
H =<j;A. We write g, my, m,, 73 for the projection functions which are associated
with the set theoretic 4-tuples. We have:

FelL,nFcHe FeL;A(Fisafunction)AdReL,(dom F
=g[RINRc AnTy8Ke L (ysd<knm[FlcyrnKcL,
AL,~KcL,—~BA3K(K;=LsNTAVxe K(Ls, K{)EFp(x))

A [Fle 8 AVK e m[FIA5<y(K=KNL)ATp<B(k<p
AFeL,nd | ReL, AL, F[F is correctly defined with respect to
d | R, v, 8, K, K; according to the definition of HJ)))).

Since T is A{L; and B<gA we can express in this way FeL,AnFcH -
recursively in A.
Concerning the other part of H=<,A we have

KeLynK<cLy—HoIKKKFe L (K, = m[KING[L,]
/\K2UK3=q—l[Kl]/\KngAK3ELK—A
Adom F=g[K;JAFc HAFNK =0).

R A TV
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The expression “F< H” which occurs on the right side can be expressed B-
recursively in A as we have shown before. Observe that the equivalence relies on
the fact that H is a function.

(1)>(3). Assume H < L; is regular and B-r.e. We construct sets A, B with the
properties in (3).

Fix a B-recursive function P which maps L; 1-1 onto k. Define B:=P[H].
Then B is Y-r.e. and regular over L.

Define

A={0,x)ex [P (X)NH#PULL, x) e« [P (x)NL;,—H#@

and A:=A;. It is obvious that H <z A and A is B-immune. Further the
regularity of H over L; implies the regularity of A, and A over L.
A is (U, B)-tame r.e. We have for any KeL_:

KcA«3IKK,eL (K=K, UK,AK,c{0} xkAK,={1}x«
ATy <B(L,F[V(0, x)e K, Iy e P~'(x)(y € H)])
AIKeL (Ksk—-BAY(1,x)e K,y e P {K](y e P 1(x)))).

tE)

Whereas “«” is obvious we have to show for “—* that the set K e L, exists.
The set U{P7*(x)|(1, x)e K,} is B-finite and therefore subset of some L, with
v<B. Since L,NH e L, there exists a B-finite function h such that

Y(1, x)e K,(h({1,x))€ P (x)NL,— H).

Then the k-finite set K :=P[Rg h] has all the desired properties. We have thus
shown that A, is (¥, B)-tame r.e. which implies that A is (3, B)-tame r.e. as well.

The equivalence above proves simultaneously one part of A <gH if we write
P {K]c L;—H instead of Kck—B on the right side. The other part is
immediate since A is B-immune (see the analogous reduction in the proof of
(2)—>(3)).

Since H=z;A and B =P[H] it is obvious that B <4 A.

(3)—(2). Assume for a contradiction that r <bA o2 cf B <o2p 8. Then we can
choose the sets A, B according to (3) such that in addition B <4 A and Be 0/ in 9
is regular. In this case the structure 9 :=(%l, B) is strongly inadmissible because

ol k=02c"k=02cfB<a2pB=02p Kk =alp«.

We have shown in Lemma 24 in [5] that A <, for every regular tame r.e. set
A c Ly if B is strongly inadmissible. The argument works as well for our strongly
inadmissible structure 91 since by Jensen’s Uniformization Theorem [2] we have
o2pB=p,5 so that ol of <pypg= p‘i’{,{. This inequality o1 off k< p%,( is
needed for the argument. Therefore we have A <g@ which implies that A <, B.
This is a contradiction to the assumption B <yq A so that we have proved that
Ar<bro2cfB<o2pp) if b contains a set according to (3). It remains to show
that b contains a B-r.e. set but this follows from (3) — (1).
Thus the proof of Theorem 1 is complete.
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Conclusions

(1) Consider a weakly inadmissible 8 with admissible collapse 2. According to
Theorem 8 in [S] there exists an isomorphism I from (S, <) onto (R, <;) where S
is the set of U-r.e. A-degrees and R is the set of B-recursive (or equivalently
B-tame r.e.) B-degrees.

Define § as the set of all - degrees which contain a regular set A such that A
is (¥, B)-tame r.e. for some Y-r.e. set B with B <o A. Define R as the set of all
regular B-r.e. B degrees. Then we have: There exists an isomorphism I from
($, <q) onto (R, B) such that [ } S=1

The definition of [ is simple: If a € $ is an A-degree then we take a set Aca
with the properties as in the definition of $ such that A is in addition B-immune
(a contains such an A by the properties of the -operation in [5]). Define then
I(a) as the B-degree of A. Theorem 1 implies that the so defined function I isan
isomorphism.

(2) For the first time we now have an overview over the structure of all 8-r.e.
B-degrees for an inadmissible 8. Assume B is weakly inadmissible and o2 cf B =
a2p B.

In this case the set R in the preceding conclusion is the set of all B-r.e.
B-degrees. Further all structures (%, B) which occur in the definition of $ for this
case are not strongly inadmissible. Therefore we can drop the requirement “A
regular’ in the definition of S (apply the usual regular set theorem for admissible
structures respectively the regular set theorem for tame r.e. sets in weakly
inadmissible structures which is contained in Theorem 4 in [5]).

Thus we learn that there are many B-r.e. degrees between r and 0’ in B: The
structure of all B-r.e. degrees b such that r<sb=<( (together with <) is
isomorphic to the structure of all S(-r.e. -degrees (together with <g) for an
admissible structure 9.

We get ) by applying the admissible collapse two times if necessary: It is easy
to see that | maps exactly the tame 3,9 U-degrees a >0g[ onto the considered
B-degrees b, because in the definition of an %-degree a € S we can always assume
that B< (' if a satisfies 0'<sa (U is as always the admissible collapse of g8). Fix
then an 9-r.e. regular set Ce04. The structure (U, C) is either admissible, in
which case we define 9:= (¥, C), or it is weakly inadmissible, in which case we
define 9 to be the admissible collapse of (¥, C).

In order to describe all B-r.e. degrees we write RE @) for the structure of all
J(-r.e. degrees together with <4 for any admissible structure 9. For the consi-
dered B we can describe then the structure (R, <g) of all B-r.e. degrees as an
accumulation of many structures RE (2,) where b ranges over the B-tame r.ec.
degrees. The picture we get is familiar from fireworks: Every B-tame r.e. degree b
is the starting point of some structure RE (¥,) above b, where b itself corresponds
to Oy,.

To be a little more exact, we start with the structure (R <) and go then to the
isomorphic structure (S, <q). Consider a degree a € S. Then there is a set Aca
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which is ([, B)-tame r.e. for some %-r.e. B with B <4 A. It is obvious that we can
choose B in addition B-immune so that the B-degree of B is some B-tame r.e.
degree b. In order to define U, we first observe that the structure of the
(U, B)-tame r.e. U-degrees a <o B (together with =<g) is isomorphic to the
structure of the (¥, B)-tame r.e. (X, B)-degrees (together with <y g,). We define
A, as the structure (U, B), if (A, B) is admissible. Otherwise (¥, B) is weakly
inadmissible and we define %, to be the admissible collapse of (¥, B).

For those weakly inadmissible 8 which satisfy o2 cf 8 <o2p 8 one can give a
similar description except that we don’t know which structure has to be attached
to the greatest B-tame r.e. degree r as an characterization of the B-r.e. B-degrees
between r and 0'. We expect that the degree structure of a strongly inadmissible
structure occurs at this point.

Thus we see that for all B-r.e. B-degrees d >0 such that

“r<dro2ct B<o2pf)

the splitting theorem holds: There exist 8-r.e. B-degrees d,, d, such that 0<d, <
d, 0<d,<d and d is the least upper bound of d, and d,.

The claim is immediate from [5] if d is B-tame r.e. Otherwise we apply the
splitting theorem for r.e. degrees in admissible structures to the admissible
structure U, in which d is represented by a r.e. degree.

We do not yet know much about the “overlapping” of the structures RE (2,).
Concerning a proof of the density theorem for regular -r.e. degrees one can
eliminate this problem'. The following trick in ORT is due to David Posner.
Consider sets A,, A, < w such that A,<_A; and there exist r.e. sets B, B, such
that A, is r.e. in B; and B;<_A,, i =1, 2. In order to find sets A;, B; such that
A, <, A<, A, B;<_,A;and A, isr.e. in B; one considers the following cases:

(a) B;v A,=,A,. Apply the density theorem for r.e. degrees in (L, B, Vv B,).

(b) BjvA,=_,A,. Then A,<,B;vA, and B,V A, is r.e. in B,. Apply the
density theorem for r.e. degrees in (L, B,).

(c) A,<,B;vA,<_ A, Define A;:=B,v A,.

By combining this argument with Theorem 1 and the density theorem in a-RT
(Shore [10]) one sees that the regular B-r.e. degrees are dense if B is weakly
inadmissible and o1 cf 8 is a cardinal in L.

For a general weakly inadmissible B the problem is reduced to the density
theorem for r.e. degrees in admissible structures (L., B) with B regular. The latter
problem is open, even if B is in addition a-r.e. (the proof of this case might suffice
for our application). Shore’s proof of the density theorem for a-r.e. degrees [10]
uses properties of projecta which are dubious in presence of a predicate B.

(3) One has to be careful in generalizing the preceding results to weakly
inadmissible structures B =(Ls, B). We have used that ¢2p B8 = p, 5 (uniformiza-
tion theorem [2]) at two points in the proof of Theorem 1 (in (2)—(3) and in

1 We are grateful to Sy D. Friedman and Gerald E. Sacks who informed us about this. Further we

would like to thank Richard A. Shore and the referee for pointing out the situation concerning
relativized projecta.
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(3)—(2)). Even for some admissible 8 this equality is false. Fortunately the
equality holds for the most interesting applications in «a-recursion theory:

If o is admissible, a >02 cf a=02pa and Be (' is a-r.e. and regular over L,
then we have for 8:=(L,, B) that

o2p® e =a3pa=p;, =pa

by the uniformization theorem for a. (Observe that the level 3 is the first one
where we really need the full power of the uniformization theorem in a-recursion
theory since 3,-uniformization is trivial for admissible «.) Thus we get a lot of
information about 3,L, degrees above 0’ for these a.

Theorem 2. Assume that B is weakly inadmissible. Then the B-tame r.e. degrees
are not an initial segment of the B-r.e. degrees.

Proof. According to Theorem 1 (and Theorem 4 in [5]) it is enough to solve
the following problem for the admissible collapse % =(L,, T) of Ls: Construct a
set A such that A <y 04, A is (¥, B)-tame r.e. for some U-r.e. set B with B <y A
and there exists no UY-r.e. set W such that A =y W.

We will solve this problem in a way which was suggested by M. Lerman for the
special case of ordinary recursion theory. It turns out that routine precautions are
sufficient to make the proof work for all admissible structures.

Call a set D U-d.r.e. if D=A —B for some -r.e. sets A, B. It is easy to see
that we have in this case D =y 0% if A or B is regular over L,.

Lemma 1. Every 9U-d.r.e. set D is (U, B)-tame r.e. for some U-r.e. set B with
B =4 A

Proof. Assume that D=A,—B, with U-r.e. sets A;, B,. We can assume
without loss of generality that B, = A,. Fix an ¥-recursive 1-1 enumeration
f:k—> A, of the A-r.e. set A,. Define B :=f*[B,]. It is obvious that B is U-r.e.
We have for every KeL,:

KcDoKcA,-B,<3KeL (fIK]=KAKc«—B).

This shows that D is (¥, B)-tame r.e. Finally we have B=<yuD because K<
k —B < f[K]e D.

In order to prove Theorem 2 it is thus enough to comstruct an -d.r.e. set
D = A —B with A regular such that D is not contained in any ¥-r.e. degree. We
will mainly describe the construction since the verification of the desired proper-
ties is fairly standard for this finite injury priority construction. For convenience in
writing we restrict our attention to an admissible set L, instead of an admissible
structure U (for which the proof is litterally the same).

D,, A,, B,, W, are the collections of elements which have been put into these
sets D, A, B, W, before step o € a of the construction.
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For every e ={(a, b, c)€ a with a, b, ce @ we have a requirement
R,:=(W,<!DvD=¢ ,W,).

(we have fixed a universal 3,L, predicate U, and we write W, for {x |(x, a)e
U,}, we have further fixed an enumeration of U, so that the notation W, , makes
sense).

Define p:=to2p a (the tame 3, projectum of a, see [4]) and fix a tame 3,
projection g which maps p 1-1 onto a. Further we fix an a-recursive tame
approximation f:a Xp—a such that f(o,*) is 1-1 for every o € a. We further
define an approximation {c¢}>¥-- for every function {c}"- (this is the —in general
partial — function which is weakly a-recursive in W, with index c). Define

{cWWae(x) | :e>Tr=<cIAKHye L (L E[{x,y,K, HYe W]
AKeW, . AnHcSL,-W,_,).

Observe that the o in W, at the end is not a misprint. If {c}¥<(x)| we
determine the value such that {c}"-<(x)=y and the negative neighborhood of this
computation as follows: Choose 1< ¢ with the properties above minimal. For this
T choose ¥, K, H with the properties above such that (3, K, H) is minimal with
respect to the canonical 4,L, well-ordering of L,. Then we define {c}¥e«(x)=y
and H is defined to be the negative neighborhood of this computation.
Every requirement is at every step o of the construction in one of the states
0, 1,2. At the beginning of the construction every requirement is in state 0.
We say that R, requires attention at step o if 38 <p(f(o, §)=¢) and
(1) R, is in state O at the beginning of step o and there exists some x <o such
that
(a) x—A, has an order type =+vy where y:=sup f(o, )[6 + 1], and
(b) x¢ A, and
(c) if at some step o' < o a requirement R, received attention with f(g’, 8") =
e’ and 8' <8 then we have ¢’ <x and
(d) {c}¥e(x)=0 with a negative neighborhood K (we assume that the
characteristic function of a set has value 1 for arguments in the set), and
(e) we have for K from (d) that

3H,H,e L (L, F[(K, 1, H,, Hye W,]JAH,c D, AH,c L, —D,)

(see the definition of W, <2 D); or

(2) R, was put into state 1 at some step ¢’ <o and an element x was put into
A at step o' and the state of R, was not changed after ¢’ and we have
{c}Fae(x)=1; or

(3) R, is not in state O at the beginning of step o and there exists no ¢’ <o and
8 <p such that f(r, 8)=e for all 7 such that ¢'s7r=<g.

Construction

Step o. If no requirement requires attention at step o go to the next step.
Otherwise choose 8 < p minimal such that R, with ¢ = f(c, 8) requires attention
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at step 0. We say then that R, receives attention at step ¢ and we do the
following:

At first we put all R; into state 0 such that é = f(o, 8) for some & >§. Then we
proceed as follows

Case 1. R, requires attention according to (1).

Choose the x in (1) minimal and put into A. Further we put R, into state 1.

Case 2. R, requires attention according to (2) but not according to (3).

Put the x in (2) into B and put R, into state 2.

Case 3. R, requires attention according to (3).

Put R, into state 0.

End of the construction.

One proves as usual that for every 8 < p there exists a step such that no R, with
g '(e)= 8 receives attention after this step.

The condition “x — A, has an order type=sup f(o, )[6 + 1] in (1) (a) makes it
possible to show that &« — A has order type a and A is regular over L,.

Assume then for a contradiction that D =_ W, for some a-r.e. set W,. It is
essential that we can assume without loss of generality that W, is regular (apply
the regular set theorem). Assume that b, ¢ are indices such that W,</D and
D<g W, (it is important that we take b such that W,<!D —not just
W, <t.D). We consider then requirement R, with e:=(a, b, ¢).

Consider a step o, such that after step o, no requirement of higher priority
than R, requires attention and such that x € g,— A exists so that x— A has an
order type which is large enough to satisfy the condition in (1) (a) for R, at . A
step with these properties exists by our previous remarks.

Since W, is regular, x¢ D and D <¢_ W, we have that {¢}W-~(x)==0 with the
same negative neighborhood K for all large enough o and we have K<, — W,.

Since W,<2D there exists a step o,=0, and there exist neighborhoods
H,, H,eL, such that H < D, for all =0, and H,cL,—D, for o=0, (we
have used for the latter that A is regular).

It follows from these observations that there is some step ¢ such that R, is put
into state 1 at step &, some £ is put into A at step & (call the associated negative
neighborhood K, thus KcL, - W,.s) and R, is not put into state 0 at any step
after 4.

Then either R, is in state 1 at all steps after & —in which case we have
€ A—B=:D but not {c}"-(x)=1, a contradiction.

Or there exists a first step & > & such that R, is put into state 2 at step o, X is
put into B at step ¢ and R, is in state 2 at all steps after &. In this case we have
that some element y € K was enumerated into W, at some step between ¢ and &
although some computation (K1, I:II, H,)eW, with H,cD, H, cL,—D, existed
at step . This computation may have been injured (if £ € H,) at the end of step & by
putting £ into A, but this £ is the only possible injury of the computation. Since
one puts £ into B< L, — D at step ¢ the computation is restored in any case at
step ¢. Further this computation in D will remain valid at all steps after & so that
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we have in fact H, = DAH,< L, —D. This contradicts our assumption W, <D
since we had observed before that "K < L, ~ W,.
This finishes the proof of Theorem 2.

2. a-recursively enumerable degrees

Not much is proved so far about the jump of a-r.e. degrees if « is 3, admissible
or a>c2cfa=02pa (these are the types (1) and (2) in the classification of
Section 3 in [6]), whereas everything is known about the jump of a-r.e. degrees
for the other a (see [6]). We will study in this chapter mainly type (2). The result
for type (1) is contained in Theorem 5.

For a of type (2) we know so far that there exist nonzero a-r.e. degrees which
are low and incomplete a-r.e. degrees which are high. This agrees with the
situation in ordinary recursion theory. On the other hand we learnt in the
meantime that the structure of X,L, degiees above 0' is for this type very
different from the corresponding structure in ordinary recursion theory: There
exists the distinguished degree 0? between 0' and 0" which was described in
Lemma 7, Section 2 in [6]. Observe that for a of type (2) there exist always
incomplete non-hyperregular a-r.e. degrees so that the assumption of this Lemma
is satisfied. We can apply the results about weakly inadmissible structures from [5]
and the preceding Section 1. The structure 8:=(L,, C) where Ce (' is a-r.e. and
regular is weakly inadmissible if « is of type (2) and it is obvious that the B-r.e.
degrees are isomorphic to the 3,L, degrees above 0’ in L,.

It is easy to see that 0% is the boundary between the jumps of hyperregular
a-r.e. degrees and the jumps of non-hyperregular a-r.e. degrees for a of type (2):

If a is a hyperregular a-r.e. degree, then a' is a tame 3,L, degree and
therefore we have a'<_ 0% because 07 is the greatest tame 3,L, degree.

If a is a non-hyperregular a-r.e. degree then we have that the complete 3,1,
set U, is weakly a-recursive in @’ (Shore [11]). According to Lemma 7 in [6] we
have therefore 03<_a’.

In particular we have thus shown that 0? is comparable with the jump of every
a-r.e. degree. But we do not yet know so far whether there exist for a of type (2)
any other jumps of a-r.e. degrees besides 0’ and 0".

Theorem 3. Assume o is admissible and « > a2 cf @ = o2p a. Then there exists a
non-hyperregular a-r.e. degree a such that a' = 0%,

Proof. One runs into a lot of trouble if one tries to prove this Theorem as one
would do it in ordinary recursion theory, i.e. if one fixes a set S ¢ 0? and tries to
construct A as a suitable “thick subset” as in Soare [14] in order to get A’ =, 0.

Therefore we prove Theorem 3 as follows: We make sure that the order type of
a—A is less than « so that A is non-hyperregular as in Shore [9]. This implies
that Of<_ A’
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We keep the jump down in order to get 03=_ A’ by following the usual strategy
which is applied to make a constructed set low (see e.g. Soare [14] Theorem 4.1.).
This strategy will make sure that “KeL,AK<c A" is IILL, which implies
A’=_ 07 by the special properties of 02.

For the exact proof we fix a tame 3,L, projection P from L, onto to2pa =
o2 cf @ =:k and an a-recursive tame approximation P(-,'):a X L, — a such that
P(o, ') is 1-1 for every o€ a.

Further we fix a cofinal strictly increasing and continuous 3,L_, function
g:k—a and an a-recursive approximation g(-, -): @ X k = a such that g(o, )< o
and g(o, ) is weakly increasing, According to the definition of the jump in
a-recursion theory (see Shore [11]) there exists an a-r.e. set W such that for
every McL,:

M’ ={y|3H,H,(y,H,, Hye WAH,c MAH,c L,—M)}.
We fix an a-recursive enumeration of W such that W, c L for every o.

We define a restriction function r(i, o) for arguments i € k and o € a. r(i, o) will
be the a-finite set of those elements less than o which are kept out from A at
step o with priority i. :

Fix i and o for the following definition of r(i, o). Let K be the set of those

elements x € o — A, such that x—A_, has an order type less than i. Further we
check for every j<i whether the following condition (*j) is satisfied:

Ar<gy(Vr'(r<r'<o—>P(,y) =) AIHH,(y, H1, Hy)
eW,AH,c A AL _F[card (Hy)<k]anH,c L.—A,)).

If (+f) is satisfied we choose T in this condition minimal. For this 7 let (y, H,, I-L)
be the minimal tripel (with respect to <, ) which satisfies (*j). We define then
K;:=H,. If (x]) is not satisfied we define K;:=§. Then we define

r(i, o):= KU U{K, |j <i}.

Since « is a regular a-cardinal we have a-card (r(i, o)) <« for every i, o.

We have positive requirements P, for every i <« which try to make sure that
the order type of g{i)— A is less than «.

Construction. Step o. Choose i <k minimal such that

glo,i)—A,—r(i,o)# 0.

If such an i does not exist go to the next step. Otherwise for this i we say that P,
receives attention at o. We put all elements of g(a,i)— A, —r(i, o) into A.

End of the construction.

Claim 1. For all i <k there exists a step o; such that no P; with j=<i receives
attention after step o;.

Proof. Assume i, is minimal such that o, does not exist. Since i, <02 cf o there

exists a step o' such that no P; with j <i, receives attention after o'
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There exists ¢ = o’ such that
Vo=d(Vi<iyglo,i)=g(i)<a)AVye L, (P(y)<i,
— P(a, y)=P(y)) A(P(y)>i;,— P(a, y)> P(y))).

Choose 7;>¢ minimal such that P, receives attention at step 7;. Then all
elements of g(io)— A, —r(i, 7,) are put into A at step 7.

Choose 7,>7, minimal such that P, receives attention at 7,. This implies that
g(ig)— A,,—r(iy, 2) # @. That is only possible if there exists some y € r(iy, T1) such
that y¢ r(io, ,) Ay¢ A,,. Then there exists some j < i, such that y € K; where K is
some negative neighborhood I:IZ_C_LTI—ATI (see the definition of r(iy, 7,)) and
such that a minimal step 7 with 7, <7 <1, exists at which some z € H, is put into
A. By the choice of 1,7, some requirement P, with i>i, must then receive
attention at 7. But since I-Lg T—A, one has for this i, 7 that I-Lg r(i, 7) so that
no element of H, is put into A at step 7. Contradiction.

Claim 2. a— A is unbounded in « and has order type k. Further A is regular
and non-hyperregular.

Proof. (a) Assume for a contradiction that some vy less than « is the order type of
a—A.

Go to a stage o such that after o no P, with i < receives attention. Consider
the minimal j such that requirement P; receives attention at some step 7> 0. We
have then g(7,j)— A, —r(j, 7)# @ and therefore 7— A, has an order type =j by
the definition of r(j, 7). The first j elements of T — A, will never be put into A by
the choice of 7> ¢. This is a contradiction to j> .

(b) Assume for a contradiction that some 8 < a exists such that § — A has order
type k.

Choose i such that g(i)> & and o such that no P; with j<i receives attention at
o and g(o, i)=g(i).

Then we have g(o,i)—A,—r(i,)# @ because r(i,o) has «-cardinality less
than « and g(o,i)—A has order type k. Therefore some P; with j<ti receives
attention at o which is a contradiction to the choice of o.

A is regular because § —A has an order type less than « =2 cf a for every
8 <a. A is non-hyperregular because the function f: k — «, where f(i) is the i-th
element of a — A, is cofinal and weakly a-recursive in A.

Claim 3. A'=_ 0%

Proof. We have
KcA'eVi<kVoVy((ye KAP(y)=iAVr=0a((no P,
with j <i receives attention at 7)A P(r, y)=1i))
—3dr=0¢3H,H,(y,H,, H))e W, AH,c A, AnH,
ct— A, AL, F[card (H,)<«])).
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In order to prove this equivalence we use for “—” that A is regular and that
8 — A has an order type less than k for every 8 <a. For “«<”” we consider some
y € K. Then there exist i = P(y) and o such that the premise of the right side is
satisfied. Therefore there exists 7= o as in the conclusion on the right side. Thus
there exists some tripel (y, H,, H,)e W such that H,c A, H,c7—A, and
H, < r(j, ') for every /=1 and j>i. Therefore no element of H, will be put into
A at any step 7'=7 because no P, with j<i receives attention after 7= ¢. This
shows that ye A’.

The right side of the equivalence above can obviously be written in I1,L, form
so that we have

Kel AnKcA'e(K, e)¢ U,

for some fixed index e where U, is a universal 3,L, predicate. Since we have
U,<,, 0 by Lemma 7 in [6] we have thus expressed K < A’ a-recursively in 0%,

Since KeIL AnKcL,—A' is as well II,L, (trivial) we have shown that
A<, 0%

Finally 03<_A’ follows from the non-hyperregularity of A.

This finishes the proof of Theorem 3.

Theorem 4. Assume « is admissible and a > o2cf a = o2pa. If D is a tame 3,L,
set with 0'<_D, then there exists a hyperregular a-r.e. set A such that A'=,D.

Proof. The general strategy will be that one which is used in ordinary recursion
theory in order to prove Sack’s jump theorem [7] (see Soare [14]). This strategy is
a variation of the strategy which is used in order to construct incomplete high r.e.
sets. The positive requirements are the same but instead of using Sack’s preserva-
tion strategy one tries here to keep the jump down by preserving computations
which predict that some element is going to be in the jump of the constructed set.
This is the same preservation strategy as in the construction of non-zero low
degrees and we have used this strategy already in the proof of the preceding
Theorem.

If one wants to transfer this construction from ordinary recursion theory to
a-recursion theory one has to overcome similar problems as in the construction of
incomplete high a-r.e. degrees (Theorem 1 in [6]). But most of these problems
have to be solved here in a different way because of slight differences in the
situation.

We have again the difficulty that the construction from ordinary recursion
theory gives only D=, A’ instead of D<_,A'. Here we have to keep the
constructed set A hyperregular and therefore we use the regular set theorem from
B-recursion theory. According to Theorem 4 in [5] there exists a tame 3,1, set D
in the a-degree of D which is regular and satisfies in addition for every set
Bcl,:D=,,BoD=<_B. Observe that this escape was not possible in the
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construction of incomplete high a-r.e. degrees because (" does not contain a set
with the latter property if « is of type (2).

In Theorem 1 in [6] we could get along without a regular representative in 0"
because we made the priority list extremely short. For the present proof one
needs a better approximation to the priority list than there because here we have
the additional requirement to keep the jump down. Thus it is a lucky cir-
cumstance that due to the regular set theorem from B-recursion theory we can
work here with a regular representative and use an — in general longer — priority
list of length o2 cf o =to2p a.

At limit points of the priority list we have here the same problem with the
inductive argument as in [6]. This problem was described there in point 4) of the
motivation before Theorem 1. Similar as there we use a fixpoint argument in
order to get along although the induction hypothesis is too weak at limit points.

For the exact proof consider the weakly inadmissible structure B:=(L,, C) with
Ce( a-r.e. and regular. Since D is $B-tame r.e. there exists by Theorem 1 in [5]
a regular B-tame r.e. set S< a such that

and every K< S with Ke L, has an order type less than o2 cf & (we need the
latter property for the proof of Claim 1).
We define D :=Cv S and have then D =aﬁ, D is regular and tame X,L, and
D=, ,BoD=<_B for all Bc L, such that 0'<_B.
Fix A,-formulas ¢, ll; such that
xeCo L, Fyd(x, y)
and
xeSe L, FIy Vz((y is an ordinal) A P(x, y, 2)).
Define
Y¥(x,y,z):=(y is an ordinal) A d(x, y, 2).

We will construct A as a “‘thick subset” of the a-r.e. set R < a which is defined
as follows:

(u,v)e Reu,vean(@x(v=2x AL, FAyd(x,y))
vIx(v=2x+1AVy=suIzy(x,y, 2))).
We have
v¢Deofu|(u,v)eR}=a,
v=2xAxe Ceo{u|(u, v)e R}=uy(L,FAyd(x, y)ea
and

v=2x+1rxeSe{u|{u,v)e R}=puy(Vz¢(x, v, z)) €.
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We write in the following for any set M < «:

M@ ={(u, v)e M | v =10}
and

M*:=UM®|veK} forany set K.

Claim 1. For every set K €L, there exist K, H € L, such that R =HUaxK.
In particular R* is a-recursive.

Proof. Define K, K,e L, by DNK=K,vK, (we use here the regularity of
D).

Define a function f:K;—a such that f(x)=puy(L,EF3Iyd(x,y)). Then f is
a-finite because f is a-recursive and dom f =K, € L,. Therefore R**' is some
a-finite set H; (we had defined 2K, :={2x | x € K,}). .

Further by the choice of D respectively S we have that a-card (K,) < o2 cf a.
Since R™ is a-finite for every v € K, we get that R**:*! is some a-finite set H,.

We have then R*:= HUa x K with the a-finite sets H:=H, U H.,, K:=K-
DNK. O

Fix as in the proof of Theorem 3 an «-r.e. set W such that

M'={y |3H,H,e L,(y, H;, H)e WAH, = MAH,< a —M}.

We assume here for trivial technical reasons that M’ < « (use some a-recursive
function which maps L, 1-1 onto «).

We fix a-recursive enumerations of the sets W and R such that W, < L and
R, cL, for all cea.

As usual we write A,, W_ etc. for the set of those elements which are
enumerated before step o. Further we write R, RX instead of R“NR,
respectively RN R,

The restriction function r will be defined in two parts. First we define a
restriction function g which is needed in order to keep the jump A’ down. Then
we define a restriction function # which is needed in order to make A hyperregu-
lar (we use the standard strategy in order to make A hyperregular).

For v, o € a we define q(y, o) as follows: Check whether some step 7 < o exists
such that

3H1H2(<'Y, Hl! H2>€ WT/\ngAT/\Hzg T_Acr)'

If T does not exist define g(vy, o):=0. Otherwise we take the least such 7 and we
take for this 7 the least z € a such that the existing sets H;, H, can chosen to be
subsets of z. We define then

q(y, o):=max {z, 1}.

In order to define # we first have to define analogously as in Soare [14] the two
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functions l:aXa—a and u:a X a X a— a. Define

min ({x [{(e)o}o-(x) 1 }U{a™¥, (e)}) if a*<a,
min ({x | {(e)o}s=(x) 1 }U{(e):}) if a*=a
We use in this definition the two projection functions (:), and (+); which are
associated with the pairing function {:, *): @ X @ — a. The approximations {e}?~(x)

to the functions which are weakly recursive in A are defined as follows: We write

{e}o-(x) | if
Ar<oyH,Hy(L, F[(x, y, Hy, Hye W, IAH, € A, AH;S L, - A,).

I(e, o-):={

The “use function” u is defined as follows: We set u(e, x, o) =0 if {e}>(x) 1. If
{e}2(x) | we go back to the definition of {e}-(x)| and choose the existing 7 <o
minimal. For this = we take the minimal tripel (§, H,, H,) which satisfies the
condition in the definition. We define then u(e, x, o) as the minimal z €« such
that H, < z. The 9 out of this minimal tripel is defined to be the value of {e}*-(x)
and we write then {e}?(x)=§.

Finally we define

Ple, o):=sup{u((e)y, x, o) | x < l(e, o)}

and
r(e, o) :=max (f(e, o), qle, a)).

Observe that we always have r{e, o)<g.

In order to assign priorities we fix a tame 3,L, projection P which maps a 1-1
onto k:=c2cfa. We fix an a-recursive tame approximation P(:,"):aXa—>«
such that P(g, ) is 1-1 for every o€ a and

Vy<kIoVo'=a Vz(P(z)<vy— P(d', 2)=P(2))
A(P(z)>y—>P(d’, 2)>v)).

Construction. Step o. Consider every x =(x',e)e R,,; which is not already
element of A,. We put x into A at step o if and only if x =r(i, ) for every i< o
such that P(c, i)< P(0, e).

End of the construction.

Claim 2. Consider an index e and a step o, such that

Vo=zo,Yz(P(z)<P(e)— (P(o, 2)=P(2)rz <0y)
A (P(z)>P(e)— P(o, z)> P(e))).

Define K, :={x | P(x)<P(e)}. Then the following holds: If o> g, is a step such
that R® No = R¥No and no element of R¥: N is put into A at step o then no
x <r(e, o) is put into A at any stage 0’2o and we have Yo' = a(r(e, o) =r(e, a)).

Proof. Induction on P(e). Assume for a contradiction that there exists a minimal
o'= o such that some x <r(e, o) is put into A at step o'.
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Then we have o'> o because for o' =0¢ the ordinal x <r(e, o) would be an
element of R* N o. The computations in A which contribute to the definition of
r(e, o) are not destroyed before o' because of the minimality of ¢'. Therefore we
have r(e, o')=r(e, o) so that the element x =(x', ') <r(e, o) which is put into A
at step o’ is an element of R®-N ¢ and we have P(e') < P(e). Further since x is
not put into A at step o there exists some é with P(é)< P(e’) < P(e) such that
x <r(é, o). But this situation is impossible according to the induction hypothesis
for P(é). Contradiction.

It remains to show that r(e, ') =r(e, o) for o' = o but this follows immediately
from the preceding because the computations in A which contribute to the
definition of r(e, o) are never destroyed.

Claim 3. For every e € a we have A% =*RX. where K, :={i | P(i) < P(e)} and
M, =*M,:oM,—M,c L, AM,—-M,eL,.

Proof. Induction on P(e). We define for the proof
R(e,0):=sup{r(i,o) | i< AP(o,i)<P(o, e)}.

Further we fix a step o, such that

Vozo,Yz(P(z)s P(e)—= (P(o, 2)=P(z) Az < 0gyp)
A(P(z)>P(e"Y—= P(o, z)> P(e").

Case 1. P(e')=P(e)+1 for some e'.
We show that there exists a step o; and a constant r; such that

Vo=, (R(e,0)=riAndr=a(R(e, )=1)).

By the induction hypothesis we have A*- =* R¥.. Therefore A is a-recursive
(use Claim 1)) and regular. Thus the set

- M,:={o=0,| AXNo=AXN0}

of fixpoints is unbounded in &« and a-recursive.

A computation in A which contributes to the definition of R(e, o) for some
o = o, can only be destroyed later by some element of A% which is enumerated
into A. This implies that for o € M, the computations in A which contribute to
the definition of R(e, o) will never be destroyed.

Define for i€ K, I(i):=sup {I(i, 0) | 0 e M.} and

{{x+1‘x<l(i)} if YozoloeM,—>q(i,o)=0),
CTloyu{x+ 1] x< 1()} otherwise.

Then K:=U{H,x{i}|ieK,} is a-finite because K is a-re., a-card(K,)<
o2 cf a and every H; is a-finite.
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We define an a-recursive function f: K— « such that

poe M, (qi,0)#0) if x=(0,i),

f(x)z {MO’GMe(l(i, 0-)>x') if x=(x’+1,i>-

f is in fact a-finite because dom f = K is a-finite.

Choose o, € M, such that Rg f € o;. Define r,:= R(e, o). Then o4, r; have the
desired properties.

Choose r,=ry, oy such that R®“Nr,=R®Nr; and r,e M, Then we have
AN =A%, NrieL, and A®—r;=R®—r, by the properties of oy, r;.

Case 2. P(e') is a limit ordinal.

In this case we have w < o2 cf a. Therefore the set

M,:={o>0| R*No=RE&NorAXNa=AXNg}

is unbounded in a.
Further consider the set

N, :={o>0,|R¥No=RXNaA(noelement xe R N¢o
is put into A at step o)}.

N, is a-recursive by Claim 1 and by using Claim 2 we get that M,. = N,.

Therefore M, is a-recursive which implies that A% is a-recursive as well.
Thus the set H:=R¥<— AX- is «-r.e. Since by the induction hypothesis every
H® is a-finite for i € K, and since a-card (K,)< o2 cf @ we get that H is in fact
a-finite.
Claim 4. A is hyperrégular.

Proof. Assume for a contradiction that p =rcf A <a. We have then p < a* since
a* is the greatest a-cardinal if a*<a.

There is an index i € o such that {i}* is a cofinal function from p into a and
such that

Vy<p 3o’ Vo=a' Vx=<y{i}2(x)]).
We consider then e:={i, p) and the a-finite set
K. :={y [ P(y)<P(e)}.
Fix a step o, such that
Vo=0,Vz((P(z)< P(e)— (P(a, z) = P(z) A z <0y))
A(P(2)> P(e)— P(a, z)> P(e))).

A is a-recursive (and therefore regular) according to Claim 3. Therefore the
set

M, :={o>0,| AXNo=A%Ng}

is unbounded in a and «-recursive.
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We have then for every xep and y e a:
{i}* (x)=y o 3oe M, (1(e, ) > x A{i}7(x) =y).

Thus we have found an a-recursive definition of the cofinal function {i}* which
contradicts the admissibility of a.

Claim 5. A'<,D.

Proof. A' is tame 3,L, since A is hyperregular and a-r.e. Therefore “Ke
L.AKc A is a 3,L, fact and since 0's_,D we can express this fact a-
recursively in D.

For the other part of the reduction we observe that “K<cL,—A" is a
IT(L,, A) fact. Therefore it is enough to express e¢ A’ a-recursively in D. We
have

e¢ A'o Apyo(y=Ple)Ap=P(oo,*) ' | (y+1)
Adom p=(y+ 1D AVxyoc((oc=oon{x,y)ep)— P(g,y)=x)
AAK,KHeL, (K, =Rg(p | YYAR¥*=HUaxK
AVoz o (R%:No=HUaxK)Noa(no element of R%No
is put into A at step o))— q(e, o) =0))).

The existence of the a-finite sets K, H on the right side was shown in Claim 1 by
using the regularity of D. Itis easy to see that one can express “R*=HUa xK”
a-recursively in D. The a-finite function p on the right side is only mentioned in
order to be able to describe the properties of o. g, plays a similar role as in the
preceding claims.

The proof of the equivalence is then immediate from the following observation:
Take y:= P(e) and let o, be a step such that

VYo=o,Vz<y(P(o,) " (2){ AP(a, ) (z)=P7'(2)).
Define K, :={y | P(y)<P(e)}. Define

M, :={oc=0,| R&%No=RX NaA(no element of R¥ N is put
into A at step o)}

Since R*- and AX are a-recursive according to Claim 3 there exists an un-
bounded set of steps o where

RX¥No=R*%NonrAX%No=A%nNe.

Therefore the set M, is unbounded in @ which implies that
VYVoeM,(qle,g)=0)—>eg¢ A’

(use the regularity of A). Further Claim 2 implies that

JoeM,(qle,a)>0)—>ec A’
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Thus we have expressed e¢ A’ a-recursively in D.
Claim 6. D<_A’,

Proof. We show that D<_A’. According to the choice of D it is enough to show
that D<_, A’

The part e D is a 3,L, fact and therefore trivially a-recursive in A’ because
of O's A"

Concerning the part e¢ D we have according to Claim 3

e¢ DolAy(738> y((8, e)¢ A)) o> y(p, (v, e ¢ A)

for some fixed parameter p. [
This finishes the proof of Theorem 4.,

It is tempting to define—in analogy to the definition of high and low
degrees — for a-degrees a:

a is intermediate : < a’ =03

0* does not exist for every admissible a. Therefore we consider as well the
following definition which makes sense for every a:

a is intermediate : <> a’ is equal to the greatest A,L, degree and to the
greatest tame 3,L, degree.

According to this second definition intermediate a-r.e. degrees exist exactly for
those a where incomplete non-hyperregular a-r.e. degrees exist. Since for these «
the degree (7 is well defined we see that both definitions characterize the same
class of a-r.e. degrees.

By the preceding theorems there exist hyperregular and non-hyperregular
intermediate «-r.e. degrees. Further results are needed in order to see whether
intermediate «-r.e. degrees are relevant for the fine structure of a-r.e. sets and
degrees. In particular it would be nice to find intrinsic properties of the inter-
mediate a-r.e. degrees (or of those a-r.e. degrees a which satisfy a’< 0? respec-
tively a’=0%) which don’t mention the jump. We get some first results in this
direction by using recent work of A. Leggett [3].

Leggett shows that in the case olpa=w and a-r.e. degree a contains a
maximal set iff Us==<_, a' (where U3~ is an universal 3,L, set). If clpa=w we
can write 03<a’ instead of the latter condition according to [6].

Further Leggett shows in [3] for the larger class of @ with o2p @ = @ that an
a-r.e. degree a satisfies Uk==<,_ a’ iff a contains a maximal set or @ is non-
hyperregular. Thus by the preceding we get for those a with o2p a = w which are
not 3, admissible that a hyperregular a-r.e. degree a contains a maximal set iff it
is intermediate. Theorem 4 shows that hyperregular intermediate a-r.e. degrees
exist for all these a and so Martin’s Theorem fails in these cases.
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Simpson conjectured in his thesis [13] that for those @ where maximal sets
exists we can find in fact hyperregular ones. His conjecture is now proved for
those a which satisfy o2p o = w.

The final theorem characterizes those o which are 3, admissible in terms of
their degree structure. The proof is based on non-trivial results from B-recursion
theory.

Theorem 5. Assume a is admissible. Then a is 3, admissible if and only if every
3,L, degree d=0'is the jump of an incomplete a-r.e. degree.

Proof. If o2 cf a <o2p a, then 0" is not the jump of an incomplete a-r.e. degree
according to Theorem 2 in [6].

Ifo2pa<so2da<a (ie. ais of type (2)) we consider the weakly inadmissible
structure B:=(L_, C) where Ce (' is a-r.e. and regular. By Theorem 2 there
exists a B-r.e. degree d which is not B-tame r.e. such that d <ur (where r is the
greatest B-recursive degree). Therefore there exists a 3,1, degree d which is not
tame 3,L, such that 0'<,d <, 0% If a is an incomplete a-r.e. degree then we
have 0°<a’ if a-is non-hyperregular and a’ is a tame Y.L, degree if a is
hyperregular. Therefore we have d# a’ for every incomplete a-r.e. degree a.

It remains to show that for 3, admissible a every 3,L, degree d=(' is the
jump of an incomplete «-r.e. degree.

For a = w this is the jump theorem of Sacks [7].

For a>w we apply a simplified version of the construction in the proof of
Theorem 4 (define r(e, o):= qle, o)).
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