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Several problems in recursion theory on admissible o¡dinals (a -recursion theory) and recursion
theory on inadmissible ordinals (B -recursion theory) are studied. Fruitful interactions betweenboth
theories are stressed. In the fr¡stpart the admissible collapse is used in order to characterizefor some

inadmissible B the structure of all p -recursively enumerable degrees asanaccumulationof structures
of 2[-recursively enumerable degrees for many admissible structures 2[. Thus problems about the

B -recursively enumerable degrees can be solved by considering "locally" the analogous problem in
an admissible 2[ (where results of a -recursion theory apply). In the second part p -recursion theory is

used as a tool in infinite injurypriority constructions for some particularly interesting c (e.g. ,1").
New effects canbeobserved since some structu¡e of the inadmissibleworld above O'isprojected into
the a-recursivelyenumerable degrees byinvertingthejump. The gained understandingof thejump
of a-recursively enumerable degrees makes it possible to solve some open problems.

A few years ago S.D. Friedman and G.E. Sacks [1] started a new chapter in
generalized recursion theory: p-recursion theory. So far recursion theory was

studied only on those initial segments L- of the constructible hierarchy where a is
admissible. In p-recursion theory one considers initial segments Lu lor any limit
ordinal B. This is a natural step since the concept of a recursively enumerable
(r.e.) set does not require any closure condition for the considered universe.

The p-r.e. sets are defined to be those subsets of Lu which are tl-definable
over Lp. A function is B-recursive if its graph is p-r.e. Another important concept
of recursion theory is finiteness and as in c-recursion theory a subset of Lu is
called p-finite if it is an element o1 Lu.

A striking new effect in B-recursion theory is the appearance of p-finite sets

which are rather large (compared with the whole universe Lp). If p is inadmissible
then there exist p-recursive functions which are cofinal in B and which have as

domain a B-finite set. The minimal 7<B which occurs as domain of such a

function is called the recursive cofinality of p (oI cf B). This ordinal is a good

measure for the remaining "admissibility" of an inadmissible B. Only p-finite sets

of cardinality less than ol cf B (in Lu) behave like c-finite sets.

The preceding example sho\¡vs already that several elementary facts from
ordinary recursion theory do not remain true in B-recursion theory. But usually
facts of this kind are not considered to be the essential results of recursion theory.
Thus the question arises what is happening e.g. with the structure of recursively
enumerable degrees. Serious mathematical problems occur here since most of the
constructions from d-recursion theory rely on admissibility and one has to look
for new strategies.
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In Section 1of this paper we study B-recursively enumerable degrees for
weakly inadmissible B and continue our earlier paper [5]. An inadmissible B is
called weakly inadmissible if one can project p B-recursively into olcf B, it is

called strongly inadmissible otherwise. For weakly inadmissible B one takes a

suitable predicate i - Lp which encodes all Ao-facts about Lu. One projects i by
means of the existing B-recursive projection into ø1 cf B. We write T for the
projection of f and call the structure W::(L-r"ru, T) the admissible collapse of B.

Then every set Ac L-t"tp is -Ir-definable over Lp iff it is.Er-definable over 2[.

Further 2l is admissible and therefore we know a lot about 2[-degrees since most
of the numerous results in a-recursion theory remain true for such an admissible
structure with an additional regular predicate (e.g. Shore's density theorem [10]
holds for 2l). It was shown in [5] that the B-recursive degrees (together with <p)
are isomorphic to the 2l-r.e. degrees (together with <*). The occurrence of
nonzero B-recursive degrees is a typical phenomenon of inadmissible recursion
theory. It is easy to see that the greatest B-recursive degree lies strictly between
0-the degree of the empty set-and the greatest B-r.e. degree 0'. But nothing
else is known about nonrecursive r.e. degrees in B-recursion theory. Theorem 1

throws some light onto this problem. A careful analysis shows that we can in fact
extend the isomorphism from 15] onto all regular p-r.e. degrees (a set A cLp is
regular if V1<B (An L,eLp), a B-r.e. degree is regular if it contains a regular

É-r.e. set). As isomorphic images we get in 2[ those degrees which are tame r.e. in
an 2f-r.e. degree below it. This leads to the characterization of the structure of all
regular B-r.e. degrees as an accumulation of structures of E-r.e. degrees for many
different admissible E (see the conclusions following Theorem 1). In particular by
applying the splitting theorem to many local structures \rye get a global splitting
theorem for all regular B-r.e. degrees.

Theorem L contains in addition a complete characterization of those B-r.e.
degrees which are regular. The relative size of o2cf B and o2p B turns out to be
the decisive criterion-a criterion which is well known from a-recursion theory
(see [6] and Shore [12]). In particular for weakly inadmissible B with o2cf B>
û2p P the regular set theorem from a-recursion theory holds: every B-r.e. degree
is regular. Therefore for these B we get an oversight over all B-r.e. degrees from
the isomorphism result.

It should be mentioned that Sack's concept of tameness plays a crucial role in
the formulation and the proof of Theorem 1 (A cLu is deflned to be B-tame r.e.
if {Ke LulrcA} is É-r.e.).

Using the result from Theorem 1we prove in Theorem 2that the B-recursive
degrees are not an initial segment of the B-r.e. degrees for weakly inadmissible B.
We do this by performing a suitable construction in the admissible collapse of p.

In Section 2 of the paper we apply results from p-recursion theory in ø-recursion
theory. If a is an admissible ordinal with c>o2c1 a>o2p a, then the structure
of the trL- degrees between 0' and 0" is isomorphic to the structure of the E-r.e.
degrees for the weakly inadmissible structure E::(L-,C) (with a regular a-r.e.
predicate C e 0'). Thus we can apply the preceding results and we find a strange
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new world of a-degrees between 0' and 0" (observe that the case of metarecursion

theory is included since <ofK satisfies the condition alo2cf a>o2pa).
The considered d are of particular interest with respect to the jump because

these are the only a where the jumps of c-r.e. degrees are not yet known (for

-Xr-admissible a the situation is exactly as in ordinary recursion theory according

to Theorem 5, in the case o2cf a1o2pa the jump is completely distorted and

only the degrees 0', 0i and 0" can possibly occur as jumps of a-r.e. degrees

according to [6]). The distinguished degree 0å was described in [6] for those a
where incomplete non-hyperregular c-r.e. degrees exist. Observe that these

degrees do always exist in the considered case alo2cf a>o2po (an o-r.e.
degreeø is hyperregular iff <L-,A) is admissible for regular Aea).It is easy to
see that every low degree is hyperregular and every high degree is non-

hyperregular (a is low if a':0'anda is high iia':0"). We show that there are

differences among the hyperregular and among the non-hyperregular a-r.e.
degrees since not every hyperregular a-r.e. degree is low and not every non-
hyperregular d-r.e. degree is high.

It is easy to see that a' <0å for hyperregular and c'>01 lor non-hyperregular
o-r.e. degreesa. Theorem 3 shows that there exist in fact non-hyperregular o-r.e.
degrees ø such thal a': 0å. Together with results from [6] we thus get

03:inf {o'lø is a non-hyperregular c-r.e. degree}

for all c where incomplete non-hyperregular c-r.e. degrees exists so thatwe have
another characterization of the degree 0?. The proof of Theorem 3 is based on a

simple trick since the straightforward approach fails. We construct an a-r.e. set A
as if we want to make it both non-hyperregular and low. This is of course
impossible but the constructed non-hyperregular set A is then at least "as low as

possible". Thus we get A':Q).
Concerning the jump of hyperregular degrees we first observe that there is a

rich structure of tame lrL- (or equivalently ArL-) degrees between 0' and 0" for
the considered a (A is tame LrL* iÎ {Ke L*l f g a} is -IrL.). These a-degrees

are isomorphic to the 2I-r.e. degrees of an admissible structure 2[. We show in

Theorem 4 that each of these tame \rL- degrees is the jump of a hyperregular

o-r.e. degree. This holds in particular for the greatest tame 2rL degree 0å. Thus

0å is the only point (for any a) where the jump of a hyperregular and a

non-hyperregular a-r.e. degree meet together.
We learn from the preceding results that the inadmissible world above 0' casts

its shadow upon the central part of e-recursion theory: the structure of a-r.e.

degrees and sets. In particular we stumble upon the naturally arising notion of an

intermediate degree which is characterized by the property a':01. Essential

differences between the structure of r.e. degrees in ordinary recursion theory and

the structure of a -r.e. degrees for some o with o2 cf a < oZp o have already been

discovered by R. Shore 1121. A further investigation of intermediate degrees may

show several differences between ordinary recufsion theory and c-recursion

theory for some a with a) o2 cf a> o2p c (including metarecursion theory). By
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combining recent work of A. Leggett [3] with our results \ile can give a first
example: Martin's celebrated Theorem ("a r.e. degree contains a maximal set iff it
is high") is not true in metarecursion theory since for arf* there exist maximal sets

of intermediate degree.

The combination of Leggett's results with Theorem 4 settles in addition a

conjecture from Simpson's thesis [13] positively: There exist in fact hyperregular
maximal sets even in nontrivial cases (it turns out that all these sets are of
intermediate degree).

In the proof of Theorem 4 we use similar infinite injury strategies as in [6]. But
the basic ingredient of the construction is a regular set theorem from B-recursion
theory [5] (in fact this is the first application of a regular set theorem from
p-recursion theory). All attempts to prove this regular set theorem by using
standard methods of a-recursion theory did fail so far.

Finally in Theorem 5 we show that an admissible c is -5r-admissible iff it
satisfies Sack's jump theorem ("every 22 degree between 0' and 0" is the jump of
an incomplete r.e. degree"). The crucial point of the proof is the demonstration of
the failure of Sack's theorem in the case d>o2cf a>o2pa. We apply here

another nontrivial result from p-recursion theory (the preceding Theorem 2).

0. Preliminaries

We use the same notations and definitions as in our preceding papers [5] and

[6]. All missing definitions can be found there.
It is not relevant for our arguments whether one chooses Lu or Su (see [5]) as

the universe for B-recursion theory.
For any structure E : (Lp,B) with B c Lp we say that a subset of Lu is E-r.e.

(E-recursive) if it is t1E (¿18). We write on cf8 for the least y<p such that a
cofinal X"E function f :y+B exists. onpW is the least y<B such that an 1-1
ã"E function f:B-+1 exists. For the special case E:Lu we write oncf B
respectively onp p.

Define for any structure 8: (Lp, B) p|.p': ¡rô < I (a .I.E set M c 6 exists such
that M{L).

The greatest E-recursive degree is always denoted by r.
If E is a weakly inadmissible structure (i.e. F > o 1 cf E > olp E) we reserve the

letter rc for øL cf E and we write 2[.for the admissible collapse (L*,T) of E. A set
A=L* is called B-immune if it is immune with respect to neighborhood condi-
tions out of Lu-L*, i.e. for any Ke Lu we have (KcAvK cL*-A)+KeL*.
According to [5] one can define for every set A c L* a B -immune version Ã - L*
of the same 2[-degree. The operation preserves regularity and -Ð"2[-definability.

For sets A,Bc B we set AvB::LAUZB *1 where 2A::{2xlxe A} and
2B+7':{2x+1lxeB}.

Finally we remind of two conventions. If we write L, F[x e IV] for some B-r.e.
set W, then this means that we have fixed a ZrLu definition þ of W and LrFó(x).
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Further if we write L^,FQ for a formula ry', then this implies that every parameter
in r! is an element of Lr.

1. p-recursively en'merable degrees

Theorem I. Assume B is weakly inadmissible and b is a B-degree. Then (I), (2),
(3) are equiualent:

(l) b contøins a regular B-r.e. set,

(2) b contains ø B-r.e. set and -r(r<á ¡o2c19<o2pB) (r is the greatest

B-recursiue degree),
(3) b contains a B-immune set AcL* such that A is regular ouer L* and

(21, B)-tame r.e. for some W-r.e. set B c L* with B <* A.

Proof. (2)-->(3). Assume (2) and take a B-r.e. set He á. We will construct
p-immune sets B, Á. r such that H :uA, (21,Il) is not strongly inadmissible, B
is regular over L*, B <"Á and Á is (2t, B)-tame r.e. This is enough in order to
show (3) because \rye can apply then the regular set theorem for tame r.e. sets in
weakly inadmissible structures ((1)e(3) of Theorem a in [5]) respectively the
usual regular set theorem for r.e. sets in admissible structures to the (2[, B)-tame
r.e. set Á in th" weakly inadmissible or admissible structure <2I,8>. This gives a
(21, B)-tame r.e. set A* with A* regular over L* and Á :(e,,")A*. Then we take
the B-immune set Á* and define A::BvÁ*. It is easy to verify that B,A have
all the properties which are demanded in (3).

We construct now the sets B, Á with the properties above (i.e. all properties
from (3) except Á regular).

Fix a p-recursive function P which maps Lu L-1 onto rc. Define Br::PlHl. B,
is 2I-r.e. and there is a regular 2I-r.e. set B, such that B, :wBz.Then we define
B :: Ér. It is obvious that B =a&z:aBt and B is 2I-r.e., regular and B-immune.
We further have B<pH by the construction of B, since B is B-immune and
B:aBt'

Define t::(21,Il). We want to show that 0t is not strongly inadmissible and at
this point we use the assumption r(r <b ¡o2 cf P <o2p 9) in (2).

(a) B is incomplete in 2I. According to Lemma 3.3 in Shore [10] we have
olcfú K>p{,*. Further by using the fact that q2pv K:py.*we get p{*>olpû x
according to Shore [10]. The used equality holds because we have o2pa x:
o2pp:pz.p:pY.*. Thus it is proved that øL cP *>olpû x.

(b) B is complete in2I.In this case B is an element of the p-degree r according
to Theorem 8 in [5]. We know already that B<uFf and therefore we have r(b.
Since (3) follows from Theorem 4 in [5] if r: ó we assume r ( ó for the following.
This implies o2cf B>ú2p B according to the assumption in (2). Therefore we
have o1 cfÛ r : o2 cf B > o2p ß : olpû x.

Since ft is not strongly inadmissible there is a fI-recursive function É which
maps K 1-1 onto rt:: o1, cfÛ x. Further we fix a.r f[-rec.rrsive strictly increasing
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cofinal function Q:ft+x.
We define

A.::{(0, x)e r lP-'(x) ìH+ø}U{(1, x)e x lf 1(x)OLu -H+ø),
A2t: âlPlAll, Ar:: Ã, and A::Bv Az.

Then Á is B-immune by construction and it is obvious that B <*Á. Itt order to
vèrify the other properties of Á *" proue'

Claim. Assume that K € L*, rc-card (I() < ,û and K c Ar fì{1} x rc. Then there

exists a set K*eL" such that

rc-card (K*)< Ê, P 1[Kx1c Lu-H
and

V(1, x)eK az eP-rlK*l(z eP-l(x))

(thus K* is a "small" rc-finite set of witnesses for "K.:_Atn{1}xr<").

Proof of the claim. We have P[H]: Bt:stB. Therefore we can write

"y e x-PlHlnP-1(y)e P-t(x)"

as a Xr0[ formula ,lt(x,y). Since KcAln{1}xK we have that

VxeK fy e r(fIFrl,(x, y)).

Since rc-card(K)<rt there exists in fact a rc-finite function h:K--+rc such that
VxeK(ù,F,,þ(x, h(x))) (show first that the function g:K-+r such that

Vx e K(S(x): pô((Lu, TrìLô, B nL")F[]yú(x, y)l)

is rc-finite because r-card (K) <,Ê : ø1 cfÛ r).
Then the set K*::Rgh has all the properties which are demanded in the

claim. ¡

We can show now that Á is 0[-tame r.e.: We have

K e L*n K s Á <+ f K e L- ((K, X¡ e W.n r -card (I() < Ê n k - Arn {1}x r)

for some suitable ü[-r.e. set W.. By the claim we further have

Ê. e L*¡ r-card (K)< Ê ¡k - Arn{1}x rc

<> !lK* e L.(r-card (K*) < ^ nP-{K*] ç Lp - H
nV(L, x) e K az eP 'lK*lQ e P-1(x))).

The latter can be written as a ^Xrf[ formula since

P-1[K*] c Lu - H<+ K* c L*- B t

and B1<e¡8. Thus we have shown that Á is fI-tame r.e.
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H=uÂ follows from

K e Lu¡K c Fle 3x e rc(P'(x) : Kn(1, x) É Ar),

KeLu¡KcLp-H<>Ax e rc(P 1(x):K¡(0, x)éAr)

and Ar=*rÁ (it is obvious that Ar<*f,Á; this implies A1<*2¡Á because

B <rÁ).
It only remains to show that Á <uH. We have

Ke L*¡Kc Az<>Ke L. nSKe L*(K:QtÉifllnr-card (IO< Ê)

n3KoKr(K :KoUKlnKoc {0}x x fìArnK, c {1}x x flAr).

The part Koc{0}xrcñ,4.1 is obviously IrLu since p-card (Ko)<x. Further we
have shown before that for r-finite sets K, of r-cardinality less than Ê we can

write Krc{l}xxíì,41 as a.XrÛ formula. Since B(u-E[ we have altogether
expressed KeL*¡KcAz p-recursively in H. Since Á is p-immune we can
therefore express K eLu ¡K - A B-recursively in H.

In order to show the other part of Â=uH we observe that

KeL*nKc rc -Ar e aKrKre Lp(Kt: U{K l(0, p(&)e f}
nK, c Lu- H nKr: U{È | (r, p(r))e Kl nK.c t7¡'.

We further have

K e L* n K <: L* - Arê ak e L-(âlPtitll : Rg 4 n K n k. r - A').

The right side of this equivalence can be written as a .IrÛ formula since ri is

strictly increasing and continuous. If we combine these facts it is easy to see that
KeLunKcLp-Â 

"un 
be expressed B-recursively in H.

(3)-+ (1). Take sets A, B according to (3). One can assume that B is in addition

B-immune and regular over L*. We are going to define a IIrLu set H which is
regular over Lu such that A: pH.Then Lu - FI will be a regular p-r.e. set of the
same B-degree as A.

One might try to understand the definition of II as follows: There exists some
IIt2[ set D such that weAoazeL*((w,z)eD). II is some sort of II12I-
uniformization of this relation D.

First we define a set.Ê. Fix a.Ir(2[,8) formula þ such that R cA<>(2I,,B)F

d(R). For we A we put a 4-tupel\w,^y,ô,K) into Ii such that
(a) f is minimal such that

(L^,, T f) L,, B lì L",) F 3R(w e R ¡ ó(R)),

(b) K: B nLP
(c) ô > y is minimal such that

Vxe K((Lu, TnLr)Fú(x))
where ry' is some fixed -X12I def,nition of B.

For every we A there exists exactly one tripel (y,ô,K) such that (w,y,ô,K)e
É and É i. zr2t definable.
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Fix a B-finite function U which maps L* 1-1 onto r and a B-recursive strictly
increasing and continuous cofinal function q from r into 9.We write { lor qog.

Define the sçt ,FI as follows (we use set theoretic pairing):

(x, % ô, K)eH:<->xeQlL-]n(Q-t(x), ?, ô,K)eÊ.

H is IIIL, definable since 4[L-] is ArLu and II is lfrlu.
Take some set Roe L" such that RocA. Then there exists some ?o<r such

that for all w e Ro

<L^,o, T ì L,o, B n L'>F3R (w e R ¡ ó(R))

(simply choose yo such that Roe L"," and (Lr.,T îLro,B nL"")Fó(Ro)). It follows
from this observation that H I Ro is B-finite. We further have that { | Ro is

B-finite and therefore If f {[Ro] is B-finite as well. Observe that the given

argument relies mainly on the fact that A is (2I, B)-tame r.e.

We can now prove that H is regular over Lu. Assume that some 7 such that
r(7(B is given. In order to show thatLrl\HeLu we define

K : : {w e L* lay ty 
"y 

re L*((Q@), j r J z,yr) e L",)}.

By using the properties of { we see that K e L". Since A is regular over L* we

have R::Kl-ìAe L*. By the preceding we have then Il l4[R]eLu. Since

Hf\L1:Fl l4[R]nL' this implies that Hl)L,eLu.
A<uH.We have

Re Lu¡RcAeRe L*¡3Fe Lu(F is afunction)ndomF:{[R]nFcH)
and

R e LunR c L* -A eR e L* nR c L*- A<+4[R] x¿1c Lu - H

where {[R]xLl is a B-finite set due to the properties of set theoretic pairing.
H <uA. We write ,ro, ltr, ,Tt2, ,TÍ j for the projection functions which are associated

with the set theoretic 4-tuples, We have:

F e Lu ¡ F c H e F e Lu n(F is a function)n 3R e L"(dom F
: 4[R]nR c A n3l6K e L*(l< ô < r 

^ 
zr1[F]c y nK c L

nL,-KçL"t-B ¡fKt(Kr:Lô n T¡Vx € K((Lu, Kr)Frll(x))

n n rlFf c ô n VK e ¡ rlFll i < ^y(It : K f^t Lr ) n f p < I G < p

n F e Lo^ 4 I R e L, n L.F[F is correctly defined with respect to

4 lR, ?, ô, K K1 according to the definition of }I])))).

Since T is AlLu and B<uA we can express in this way FeLunFcH B-
recursively in A.

Concerning the other part of H<uA we have

KeLu nKc Lp-H <+SKrKrKrF eLp(Kr: øe[K]fì{[L"]
n KrU K, : Q-rlKrJ n Krc A n Krç L* - A
ndom P:QlKrlnF cHnFl-ì K:Ø).

)
.F

¡
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The expression "Fcfl" which occurs on the right side can be expressed B-
recursively in A as we have shown before. Observe that the equivalence relies on
the fact that H is a function.

(1)--+ (3). Assume H c Lp is regular and B-r.e. We construct sets A, B with the
properties in (3).

Fix a B-recursive function P which maps Lu 1-1 onto r. Define B::PlHl.
Then B is 2I-r.e. and regular over L*.

Define

A1::{(0,x)e r< lP-'(x)t\H+Ø}U{<1,x)e rc lp '(x)ìLp-H+ø}
and A r:Ãr. It is obvious that H<uA and A is p-immune. Further the
regularity of .FI over Lu implies the regularity of A1 and A over L*.

A is (21,B)-tame r.e. We have for any Ke L*:

K c Are AKrK.re L"(K : KrU KrnK, c {0}x x nKrc{1}x x

nf I < B(L, F[V(0, x) e K, 3y e P-l(x)(y € ÉI)])

¡ illt e L*(k cr -B nV(1, x) e Krf y e p-l[¡t](y e P-1(x)))).

Whereas "ç" is obvious we have to show for "+" that the set KeL* exists.
The set U{P-t(x)l(t,r)e Kr} is p-finite and therefore subset of some L, with
^y<p. Since Lrl)Helu there exists a p-finite function h such that

V(1, x)e Kr(h((l, x))e P-1(x) nL"v-H).

Then the rc-finite set,û::P[Rgh] has all the desired properties. We have thus
shown that A, is (2[, B)-tame r.e. which implies that A is (2[, B)-tame r.e. as well.

The equivalence above proves simultaneously one part of A <uH if we write
P-t[f]c Lu-H instead of .Ê.x-B on the right side. The other part is
immediate since A is p-immune (see the analogous reduction in the proof of
(2)-+ (3)).

Since FI<'A and B:PlHl it is obvious that B<"4.
(3)+(2). Assume for a contradiction that r( b ¡o2cf B < o2p ß. Then we can

choose the sets A, B according to (3) such that in addition B <aA and B e 0' in 2I
is regular. In this case the structure ù"::\2[,I}) is strongly inadmissible because

of cfù x: o2 cfu x : o2 cf p < oLp ß : o2pv x: oIpû *.

we have shown in Lemma 2a in l5l that A <u B for every regular tame r.e. set
A 

= 
L, if B is strongly inadmissible. The argument works as well for our strongly

inadmissible structure fI since by Jensen's uniformization Theorem [2] we have
o2p þ : pz.p so that o1. cfû rc 1pz.p: p+.* This inequ ality olcfû r < pfl.* is
needed for the argument. Therefore we have A<tØ which implies that A<*I}.
This is a contradiction to the assumption B <2¡A so that we have proved that
-r(r<bn o2cf B<oZpP) il b contains a set according to (3). It remains to show
that á contains a B-r.e. set but this follows from (3)+ (1).

Thus the proof of Theorem 1 is complete.
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Conclusíons

(1) Consider a weakly inadmissible B with admissible collapse 2I. According to
Theorem 8 in [5] there exists an isomorphism I from (S, <*) onto (R, <p) where S

is the set of 2[-r.e.2[-degrees and R is the set of B-recursive (or equivalently

B-tame r.e.) B-degrees.
Define S as the set of all 2l-degrees which contain a regular set A such that A

is (2f , B)-tame r.e. for some 2[-r.e. set B with B <"4. Deflne É as the set of all
regular B-r.e. B-degrees. Then we have: There exists an isomorphism Î from
(S, <*) onto (É, <p) such that Î | S : L

The definition of Í is simple: If aeS is an 2[-degree then we take a set Aea
with the properties as in the definition of S such that A is in addition B-immune
(ø contains such an A by the properties of the 

--operation in [5]). Define then
Í(¿) as the B-degree of A. Theorem 1 implies that the so defined function i is an

isomorphism.
(2) For the first time we now have an overview over the structure of all B-r.e,

p -degrees for an inadmissible p. Assume p is weakly inadmissible and o2 cf P >
o2p ß.

In this case the set.É in the preceding conclusion is the set of all B-r.e.

B-degrees. Further all structures (2t, B) which occur in the definition of S for this

case are not strongly inadmissible. Therefore twe can drop the requirement "A
regular" in the deflnition of S (apply the usual regular set theorem for admissible

structures respectively the regular set theorem for tame r.e. sets in weakly
inadmissible structures which is contained in Theorem a in [5]).

Thus we learn that there are many p-r.e. degrees between r and 0'in B: The

structure of all p-r.e. degrees b such that r<b<O'(together with <p) is

isomorphic to the structure of all f[-r.e. 0I-d"grees (together with <:t) for an

admissible structure Úf.

We get Ûf by applying the admissible collapse two times if necessary: It is easy

to see that i maps exactly the tame 2z2I W-degrees ¿ > Ofi onto the considered

B-degrees b, because in the definition of an 2I-degree ø e S w" can always assume

that Be 0'if ø satisfies 0'<ø (2f is as always the admissible collapse of B). Fix
then an 2l-r.e. regular set C e 0{¡. The structure (2I, C) is either admissible, in
which case we define t::(\I,C), or it is weakly inadmissible, in which case \rye

define ff to b" the admissible collapse of (2t, C).
In order to describe all B-r.e. degrees we write RE(tÐ for the structure of all

0[-r.e. degrees together with <ui for any admissible structure Ú1. For the consi-

dered p we can describe then the structure (R,<u) of all B-r.e. degrees as an

accumulation of many structures RE(2tb) where b ranges over the B-tame r.e.

degrees. The picture we get is familiar from fireworks: Every p-tame r.e. degree b

is the starting point of some structure RE (2lb) above ó, where b itself corresponds

to 02¡0.

To be a little more exact, we start with the structure (É, <u) and go then to the

isomorphic structure (S, =*). Consider a degree ø e S. Then there is a set A e a
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which is (21, B)-tame r.e. for some 2[-r.e. B with B <rA.It is obvious that we can

choose B in addition p-immune so that the p-degree of B is some p-tame r.e.
degree ó. In order to define 2[6 we first observe that the structure of the
(2[, B)-tame r.e. 2[-degrees ø <2rB (together with <r) is isomorphic to the
structure of the (2[, B)-tame r.e. (2[, B)-degrees (together with <,".",). We define
2Iu as the structure (A,B>, if (2f,8) is admissible. Otherwise (21,8) is weakly
inadmissible and we define 2fu to be the admissible collapse of (2t, B).

For those weakly inadmissible p which satisfy oZcf B<oZpp one can give a
similar description except that we don't know which structure has to be attached
to the greatest B-tame r.e. degree r as an characterization of the B-r.e. B-degrees
between r and 0'. We expect that the degree structure of a strongly inadmissible
structure occurs at this point.

Thus we see that for all p-r.e. p-degrees d)0 such that

-(r<d ¡o2 cf I <o2p þ)
the splining theorem holds: There exist B -r.e. B -degrees d1, d, such that 0 < d, <
d,O<dr<d and d is the least upper bound of d1 and d".

The claim is immediate from [5] if d is B-tame r.e. Otherwise we apply the
splitting theorem for r.e. degrees in admissible structures to the admissible
structure 2[6 in which d is represented by a r.e. degree.

We do not yet know much about the "overlapping" of the structures RE (2tb).

Concerning a proof of the density theorem for regular B-r.e. degrees one can
eliminate this problemt. The following trick in ORT is due to David Posner.
Consider sets Ar, Azca such that At1-At and there existr.e. sets ¡¡1,¡¡, such

that A, is r.e. in B, and B,(-,4,, i:7,2. In order to find sets Ar,B. such that
Ar1-Ar1-Ar, B.s-A.. and A. is r.e. in B. one considers the following cases:

(a) Btv Ar:-Az.Apply the density theorem for r.e. degrees in (L-, Brv Brl.

density theorem for r.e. degrees in (L-,Br).
(c) Ar1-Brv Ar<..4r. Define Ar:: Brv Ar.
By combining this argument \ryith Theorem 1 and the density theorem in a-RT

(Shore [10]) one sees that the regular p-r.e. degrees are dense if p is weakly
inadmissible and ol cf B is a cardinal in L.

For a general weakly inadmissible p the problem is reduced to the density
theorem for r.e. degrees in admissible structures <L-, B) \,vith B regular. The latter
problem is open, even if B is in addition a-r.e. (the proof of this case might suffice
for our application). Shore's proof of the density theorem for o-r.e. degrees [10]
uses properties of projecta which are dubious in presence of a predicate B.

(3) One has to be careful in generalizing the preceding results to weakly
inadmissible structures E:(Lp,B). We have used that o2p þ: pr,p (uniformiza-
tion theorem l2l) at two points in the proof of Theorem 1 (in (2)--¡(3) and in

1We are grateful to Sy D. Friedman and Gerald E. Sacks who info¡med us about this. Further we

would like to thank Richard A. Shore and the referee for pointing out the situation concerning
relativized projecta.
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(3)+(2)). Even for some admissible E this equality is false. Fortunately the
equality holds for the most interesting applications in q.-recursion theory:

If a is admissible, at o2 cf a=- o2pa and B e 0' is d-r.e. and regular over L*
then we have for E::(Le,B) that

o2pa a : o3p o¿: pz.-: pT.-

by the uniformization theorem for a. (Observe that the level 3 is the first one
where we really need the full power of the uniformization theorem in a-recursion
theory since -Ir-uniformization is trivial for admissible c.) Thus we get a lot of
information about .ÐzL. degrees above 0' for these a.

Theorem 2. Assume that B is weakly inadmissible. Then the B-tame r.e. degrees

Gre not an initial segment of the ß-r.e. degrees.

Proof. According to Theorem 1 (and Theorem a in [5]) it is enough to solve
the following problem for the admissible collapse W: (L*, T) of Lu: Construct a

set A such that A (u0l¡, A is (2f , B)-tame r.e. for some 2I-r.e. set B with B <*A
and there exists no 2f-r.e. set VÍ such that A:aW.

We will solve this problem in a way which was suggested by M. Lerman for the
special case of ordinary recursion theory. It turns out that routine precautions are
sufficient to make the proof work for all admissible structures.

Call a set D 2I-d.r.e. if D:A-B for some 2I-r.e. sets A,B. It is easy to see

that we have in this case D<u06¡ if A or B is regular over L*.

Lemma t. Euery 2I-d.r.e. set D is (2I, B)-tame r.e. for some 2I-r.e. set B with
B <rA.

Proof. Assume that D:At-Br with 2f-r.e. sets 41,I}1. We can assume

without loss of generality that BrcAr. Fix an 2f-recursive 1-1 enumeration

f :x->A, of the 2[-r.e. set 41. Define n::f-tlB]. It is obvious that B is 2[-r.e.
We have for every K e L*:

K c D<>K c A1 -8, e3 x e r-(flkl: K n i( c r -B).
This shows that D is (2I,B)-tame Í.e. Finally we have B<r¡D because Kc
x-B<+flKlcD.

In order to prove Theorem 2 it is thus enough to construct an 2I-d.r.e. set

D: A-B u/ith A regular such that D is not contained in any 2f-r.e. degree. We
will mainly describe the construction since the verification of the desired proper-
ties is fairly standard for this finite injury priority construction. For convenience in
writing we restrict our attention to an admissible set L* instead of an admissible

structure 2I (for which the proof is litterally the same).

Dn, Ao, Bo, Wo' are the collections of elements which have been put into these

sets D, A, B, Wo before step o e a of the construction.
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For every e:<a,b,c)ea with arb,cea we have a requirement

R" :: (rW" <!D vrD <i- W").

(we have fixed a universal IrL. predicate (J, and we write W'. for {x l(x,a)e
U1), we have further fixed an enumeration of Ut so that the notation W".- makes

sense).

Define p::toZpa (the tame E2 projectum of a, see [4]) and flx a tame -5"
projection g which maps p 1-1 onto c. Further we fix an c-recursive tame

approximation /:axp+a such that f(ø') is 1-1 for every øe o. We further
define an approximation {c}}"- for every function {c}w" (this is the-in general

partial-function which is weakly a-recursive in W" with index c). Define

{.}Y".-(x) J :o3r < o3KËly e L"(L" F[(x, y, K, H) e W.l
nK=W.,nHcL--W^-).

Observe that the o in W^o at the end is not a misprint. If {c}}"-(x) J we

determine the value such that {r}Y"-(r) - y and the negative neighborhood of this
computation as follows: Choose r < ø with the properties above minimal. For this
r choose i, k, H with the properties above such that (i, K, ¡ll i. minimal with
respect to the canonical ArL. well-ordering of L*.Then we define {c}}"{x):Í
and H is defined to be the negative neighborhood of this computation.

Every requirement is at every step ø of the construction in one of the states

0,1,2. At the beginning of the construction every requirement is in state 0.

We say that R" requires attention at step ø if 3ô <p(f@,ô):e) and
(1) R. is in state 0 at the beginning of step o and there exists some x(o such

that
(a) x-A- has an order type >"y where ?::sup/(ø')ta*11, and
(b) xÉ Ao, and
(c) if at some step cr'1o a requirement R., received attention with /(o', ô'):

e' and ô'< ô then we have o'< x and
(d) {c}Y"-(x):0 with a negative neighborhood K (we assume that the

characteristic function of a set has value 1 for arguments in the set), and
(e) we have for K from (d) that

a H rH., e L-(L- F [(K, 1, H r, Hr) e Wol n H, c D o A H zc L- - D -)
(see the definition of W"<3P); or

(2) R. was put into state 1 at some step o'( ø and an element x was put into
A at step o' and the state of R" was not changed after o' and we have

{c}}"'(x): 1; or
(3) R. is not in state 0 at the beginning of step ø and there exists no o'<o and

ô ( p such that f(r, ô): ¿ for all r such that o'{ t ( o.

Construction

Step o. If no requirement requires attention at step ø go to the next step.

Otherwise choose ô < p minimal such that R. with ¿ = f(o, ô) requires attention
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at step o. We say then that R" receives attention at step ø and we do the
following:

At first we put all Ru into state 0 such that ë : f (o,5') for some 5 > ô. Then we
proceed as follows

Case 7. R" requires attention according to (1).

Choose the x in (1) minimal and put into A. Further we put R" into state 1.

Cqse 2. R" requires attention according to (2) but not according to (3).

Put the x in (2) into B and put R. into state 2.

Case 3. R" requires attention according to (3).

Put R" into state 0.

End of the construction.
One proves as usual that for every ô ( p there exists a step such that no R" with

g-t(¿)<ô receives attention after this step.
The condition "x - Ao has an order type > sup /(ø, .)[ô + 1]" in (1) (a) makes it

possible to show that a-A has order type a and A is regular over L*.
Assume then for a contradiction that D :oWo for some a-r.e. set W'". It is

essential that we can assume without loss of generality that W. is regular (apply

the regular set theorem). Assume that b,c are indices such that W"<!D and
D<i.W" (it is important that we take b such that W"<o-D -not just
W"<l*D). We consider then requirement R. with e::(a,b,c).

Consider a step ø6 such that after step o6 no requirement of higher priority
than R" requires attention and such that x eoo-A exists so that x-A has an

order type which is large enough to satisfy the condition in (1) (a) for R. at øo. A
step with these properties exists by our previous remarks.

Since IV" is regular, x( D and D <i. Wo we have that {c}}"'{¡):O with the
same negative neighborhood K for all large enough ø and we have K c Lo- Wo.

Since W"<!D there exists a step ø1 Þoo and there exist neighborhoods
Hr,HreL-, such that H1 cD- for all o>-ø1 and HtÇL--D- for o2or(we
have used for the latter that A is regular).

It follows from these observations that there is some step ô such that R" is put
into state 1 at step ô, some Í is put into A at step ô (call the associated negative
neighborhood K thus K=fu-W".o) and R" is not put into state 0 at any step

after ô.
Then either R" is in state 1 at all steps after ô - in which case we have

î,eA-B::D but not {c}%(x):1, z contradiction.

Or there exists a first step ö>ô such that R. is put into state 2 at step ó Î is

put into B at step õ and R" is in state 2 at all steps alter ö. In this case we have
that some element y e ß *as enumerated into IV" at some step between ô and ö
although some computation(K l, íIr, íI">e IV, with Êr= Du r,,HrÇL6-Du existed

at step ô. This computation may have been injured (iÎ î e íl) at the end of step ô by
putting Í into A, but this î is the only possible injury of the computation. Since

one puts i into BçL--D at step ö the computation is restored in any case at

step ó. Further this computation in D will remain valid at all steps after ö so that
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we have in fact Êr.D nÊIr=L--D. This contradicts our assumption W" <lD
since we had observed before that -rÊ 

=L--W..
This finishes the proof of Theorem 2.

2. c¿-recursively enumerable degrees

Not much is proved so far about the jump of a-r.e. degrees if a is -Iz admissible

or a> o2cf a>úzpa (these are the types (1) and (2) in the classification of
Section 3 in [6]), whereas everything is known abo,ut the jump of a-r.e. degtees

for the other o Gee [6]). We will study in this chapter mainly type (2). The result
for type (1.) is contained in Theorem 5.

For c of type (2) we know so far that there exist nonzero a-r.e. degrees which

are low and incomplete c-r.e. degrees which are high. This agrees with the

situation in ordinary recursion theory. On the other hand we learnt in the

meantime that the structure of 22L- degiees above 0' is for this type very

different from the corresponding structure in ordinary recursion theory: There

exists the distinguished degree 0" between 0' and 0" which was described in
Lemma 7, Section 2 in 16]. Observe that for a of type (2) there exist always

incomplete non-hyperregular o-r.e. degrees so that the assumption of this Lemma

is satisfied. We can apply the results about weakly inadmissible structures from [5]
and the preceding Section L. The structure E :: (L., C) where C e 0' is a-r.e. and

regular is weakly inadmissible if a is of type (2) and it is obvious that the E-r.e.
degrees are isomorphic to the E2L- degrees above 0' in L..

It is easy to see that 0å is the boundary between the jumps of hyperregular
a-r.e. degrees and the jumps of non-hyperregular a-r.e. degrees for c of type (2):

If a is a hyperregular a-r.e. degree, then ¿' is a tame trL- degree and
therefore we have c'<.0; because 0å is the greatest tame ZrL- degree.

If ¿ is a non-hyperregular a-r.e. degree then we have that the complete -X2L.
set (J2 is weakly c-recursive in a' (Shore [11]). According to Lemma 7 in [6] we
have therefore 0Ê<.¿'.

In particular we have thus shown that 0å is comparable with the jump of every
a-r.e. degree. But we do not yet know so far whether there exist for a of Epe (2)

any other jumps of c-r.e. degrees besides 0' and 0".

Iheorem t. Assume a is admissible and o.)o2cf a>-o2pa. Thenthere exists a

non-hyperregular a-r.e. degree a such that a':0i.

Proof. One runs into a lot of trouble if one tries to prove this Theorem as one

would do it in ordinary recursion theory, i.e. if one fixes a set S e G and tries to

construct A as a suitable "thick subset" as in Soare [14] in order to get A'--.Oi'
Therefore we prove Theorem 3 as follows: We make sure that the order type of

a-A is less than a so that A is non-hyperregular as in Shore [9]. This implies

that 0å<.4'.
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We keep the jump down in order to get 03 = -A' by following the usual strategy
which is applied to make a constructed set low (see e.g. Soare [14] Theorem 4.1-.).

This strategy will make sure that "KeLoAKcA"' is II"L- which implies
A'<.0; by the special properties of 0,'.

For the exact proof we fix a tame ZrL- projection P from L. onto to2p e:
o2cf a::rc and an a-recursive tame approximation P(.,.):oxL.+a such that
P(r¡,') is 1-1 for every ø e a.

Further we fix a coflnal strictly increasing and continuous .IrL* function
g:K-+a and an d-recursive approximation g(.,.):cxrc+a such that g(o,.)<o
and g(ø,') is weakly increasing, According to the definition of the jump in
ø-recursion theory (see Shore [11]) there exists an ø-r.e. set W such that for
every McL*:

M' : {y lfurnrlly, H¡ Hr) e w nílc M ¡Hzc L-- M)}.

We fix an c-recursive enumeration of W such that IV- c L- lor every cr.

We define a restriction funttion r(i, o) for arguments i e r and c e a. r(i, o) will
be the o-finite set of those elements less than ø which are kept out from A at

step o with priority i.

Fix i and o for the following definition of r(i, o). Let K be the set of those

elements xe o-A- such that x-Ao has an order type less than i. Further we

check for every i (i whether the following condition (xj) is satisfied:

3 r < ø3 y (Vr'(r < r' < o + P (r', y ) : j) ¡ I H tH r((y, H r, H r)

e W, n Hrc A, A L-F[card (Hr) < xl t, Hr= L" - A-)).

If (x7; is satisfied we choose r in this condition minimal. For this r let (y, Êr,Êt)
be the minimal tripel (with respect to <r-) which satisfies (*j). We define then
K,::Êr.If (x¡) is not satisfied we define K¡i:Ø. Then we define

r(i,o)::KU U{Kj li <¡}.

Since r is a regular o-cardinal we have a-card(r(i,ø))(x for every i,o.
We have positive requirements Pt for every I < rc which try to make sure that

the order type of C(t)-A is less than rc.

Construction. Step o. Choose i < rc minimal such that

g(o, i)- A-- r(i, o)t Ø.

If such an i does not exist go to the next step. Otherwise for this i we say that Pt

receives attention at ø. We put all elements of g(ø i)-A--r(i,o) into A.
End of the construction.
Claim 1. For all i<r there exists a step ø, such that no P, with i <i receives

attention after step o,.

Proof. Assume io is minimal such that ø;o does not exist. Since lo( o2cf a there
exists a step ø' such that no P, with j ( io receives attention after o'.
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There exists ô > ø' such that

Vo>ô(Vi < io(g(ø ,): e(t)<ø)nVy e L.((P(y)< to

+ P(o, y) : P(y)) n (P(y) > io+ P(o, y) > P(y))).

Choose rr ) ô minimal such that P," receives attention at step rt. Then all
elements of g(io)-4",-r(io, rr) are put into A at step 11.

Choose rr)r, minimal such that Pi" receives attention at 12. This implies that
g(iò - An- r(io, tr) f Ø. That is only possible if there exists some y e r(is, 11) such

thatyÉr(io,rr)nyé1-... Then there exists some i <io such that y e { where K, is
some negative neighborhood HzÇL,,-A,, (see the definition of r(io,rr)) and

such that a minimal step r with r, 11 1r2 exists at which some z eÊ, is put into
A.By the choice of r¡r2 some requirement P, with i)io must then receive
attention at r. But since É, cr-A, one has for this i,r that Ê"çr(i,r) so that
no element of H, is put into A at step r. Contradiction.

Claim 2. a-A is unbounded in a and has order type rc. Further A is regular
and non-hyperregular.

Proof. (a) Assume for a contradiction that some y less than r is the order type of
q-4.

Go to a stage o such that after o no P, with ¿ < y receives attention. Consider
the minimal j such that requirement Pr receives attention at some step r ) o. We
have then g(r,i)-A,-r(i,r)f Ø and therefore r-A. has an order type >Ì by
the definition of r(j, r). The first j elements of r-4" will never be put into A by
the choice of r ) ø. This is a contradiction to i > y.

(b) Assume for a contradiction that some ô (a exists such that ô-A has order
type x.

Choose i such that C(,)>ô and ø such that no P¡ with i< i receives attention at

o and g(o, i): C(t).
Therr we have g(ø, i)-A--r(i,o)lp because r(i,o) has a-cardinality less

than rc and g(øi)-A has order type rc. Therefore some P, with i<i receives

attention at ø which is a contradiction to the choice of ø.

A is regular because ô-A has an order type less than rc:Zcfa for every

6 < a. A is non-hyperregular because the function f ; x --> a, where f(i) is the i-th
element of a-A, is cofinal and weakly a-recursive in A.

Claim 3. 4t:.0î.

Proof. We have

Kc A'<+ Vi < rcVø Vy((y e K¡P(y): i ¡Vr >o((no Pt

with ¡ < i receives attention at r) nP(r, y) = i))

+arèoAHrHz((y, Ht,H,t)eW, nHr= 4 ¡H,

= 
r - A"n L" F[card (ffJ < 

"])).
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In order to prove this equivalence we use for "-->" that A is regular and that
ô-A has an order type less than r for every ô(c. For "e" we consider some
ye K. Then there exist,:P(y) and o such that the premise of the right side is

satisfied. Therefore there exists r>o as in the conclusion on the right side. Thus
there exists some tripel (y,Êr,Êr¡eW such that Êr=A,, Ê,r=r-4" and
Êr= r(j, r') for every r' >- r and j > i. Therefore no element of Éz will be put into
A at any step r'Þ r because no P, with j < i receives attention after r > ø. This
shows that yeA'.

The right side of the equivalence above can obviously be written in II,L- form
so that we have

KeL.¡KcA'<> (K,e){u,

for some fixed index e where (J, is a universal 22L- predicate. Since we have
(Jz4*-0? by Lemma 7 in [6] we have thus expressed K c A' a-recursively in 0å.

Since KeL-IK=L^-A' is as well II2L. (triviat) we have shown that
A'<. 0å.

Finally 0å<.,4'follows from the non-hyperregularity of A.
This finishes the proof of Theorem 3.

Theorem 4. Assume a is admissible and a) o2cf a> oLp a. If D is a tame trL-
set with 0'(oD, then there exists a hyperregular a-r.e. set A such that A':-D.

Proof. The general strategy will be that one which is used in ordinary recursion
theory in order to prove Sack's jump theorem [7] (see Soare [14]). This strategy is
a variation of the strategy which is used in order to construct incomplete high r.e.
sets. The positive requirements are the same but instead of using Sack's preserva-
tion strategy one tries here to keep the jump down by preserving computations
which predict that some element is going to be in the jump of the constructed set.

This is the same preservation strategy as in the construction of non-zero low
degrees and we have used this strategy already in the proof of the preceding
Theorem.

If one wants to transfer this construction from ordinary recursion theory to
a-recursion theory one has to overcome similar problems as in the construction of
incomplete high a-r.e. degrees (Theorem 1 in [6]). But most of these problems
have to be solved here in a different way because of slight differences in the
situation.

We have again the difficulty that the construction from ordinary recursion
theory gives only Ds*oA'instead of D<*A'. Here we have to keep the
constructed set A hyperregular and therefore we use the regular set theorem from

B-recursion theory. According to Theorem 4 in [5] there exists a tame ErL- set ô
in the c-degree of D which is regular and satisfies in addition for every set

BcL-:D<*.I}<+D<.Iì. Observe that this escape was not possible in the
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construction of incomplete high @-r.e. degtees because 0" does not contain a set
with the latter property if a is of type (2).

In Theorem 1 in [6] we could get along without a regular representative in 0"

because we made the priority list extremely short. For the present proof one
needs a better approximation to the priority list than there because here we have

the additional requirement to keep the jump down. Thus it is a lucky cir-
cumstance that due to the regular set theorem from p-recursion theory we can

work here with a regular representative and use an - in general longer - priority
list of length o2 cf a: to2p a.

At limit points of the priority list we have here the same problem with the
inductive argument as in [6]. This problem was described there in point 4) of the
motivation before Theorem 1. Similar as there we use a fixpoint argument in
order to get along although the induction hypothesis is too weak at limit points.

For the exact proof consider the weakly inadmissible structure E: = (L., C) with
Ce 0' a-r.e. and regular. Since D is E-tame r.e. there exists by Theorem 1 in [5]
a regular E-tame r.e. set S c a such that

Vf c L.(S <*aeB <+S <sB), D :lsS

and every KcS with KeL- has an order type less than oLcf o (we need the
latter property for the proof of Claim 1).

We defrne ô:: Cv S and have then D :-Ô, D is regular and tame ZrL- and
ó=*.8.-ó<.8 for all B9L- such that 0'<.,B.

Fix Áo-formulas {, r/ such that

xeC<+LoF3yþ(x, y)

and

xeS<+L.Ffy Vz((y is an ordinaln$(x,y,z)).

Define

ú(x, y, z):=(y is an ordinal) n$(x, y, z).

We will construct A as a "thick subset" of the c-r.e. set R c a which is defined
as follows:

(u, u)e R<+ u, D e a A(Ax@ :2x n-LnF3yó(x, y))

v3r(u :2x I l nVy < uaz-tþ(x, y, z))).

We have

uë Ô <+Iu | (u, o) eR) : o,

u :2x nx e C <+{u \fu, u)€ R}: Fry(L,Filyó(x, y))e a

and

ts:2x *1¡x e S+t{ø l(u,u)eR}: pry(Yzú(x,^t, z))ea.
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We write in the following for any set M c a:

¡Y¡(oò' - {(u, u)e M I o : uo}

and

MK :: U{M.) | o e K} for any set K.

Claim 1. For every set keL- there exist K,HeL* such thatRÊ:-FIUaxK.
In particular RK is a-recursive.

Proof. Define Kr, Kre L* by O n X : Krv K,, (we use here the regularity of
o¡.

Define a function f :Kr--+o such that f(x):þ'y(L,F1yþ(x,y)). Then f is

a-finite because f is o-recursive and dom/:Kr€L-. Therefore R2K'is some
a-flnite set Il1 (we had defined 2Kr::{2x lx e Kr}).

Further by the choice of ó respectively S we have that a-card(Kr)< o2cf a.

Since R(") is a-finite for every u e Kr,we get that R2K'*1 is some a-finite set lfr.
We have then Rß::HUaxK with the a-finite sets II::IfrU Ht, Kt:k-

o¡k. D

Fix as in the proof of Theorem 3 an a-r.e. set W such that

M' : {y laHrHre L-((y, Hr, Hr) e w narc M ¡ Hz= ø - M}.

We assume here for trivial technical reasons that M' ca (use some d-recursive
function which maps L- 1.-1 onto e).

We fix a-recursive enumerations of the sets VØ and R such that W-cL- and
R-çL- for all oe a.

As usual we write Ao, Wo etc. for the set of those elements which are
enumerated before step ø. Further we write RY), Rf instead of R(")nR-
respectively Rr( n R-.

The restriction function r will be defined in two parts. First we define a

restriction function q which is needed in order to keep the jump A' down. Then
we define a restriction function I which is needed in order to make A hyperregu-
lar (we use the standard strategy in order to make A hyperregular).

For 7, ø € a ìve define q(1, o) as follows: Check whether some step r ( o exists
such that

aHtHr((1,Hr,Hr)eW, nHrc A- ¡Hzcr- A-).

If r does not exist define q(1, o)::0. Otherwise we take the least such t and we

take for this r the least z e o such that the existing sets IIr, H, can chosen to be

subsets of z. We define then

q(y, o)::max{z,Il.

In order to define î we first have to define analogously as in Soare [14] the two



On a- ønd B-recursioely enumerable degrees 225

functions l:axa-td and u:axdxd-+a. Define

,, , fmin (x l{(e)Jâ-(x) 1}U{a*, (¿)r}) if e41a,
r\e'o) ': l-in(x l{(¿)Jâ-(x) 1}u{(e)J) if a*:d.

We use in this definition the two projection functions (.)o and (.), which are
associated with the pairing function (., .):o x c-+d. The approximations {"}î-(x)
to the functions which are weakly recursive in A are defined as follows: We write
{e}å-(x) J if

ar <oayHlHr(L" F[(x, y, Hr,Ht)eW"f nHtc A, ¡H>c L,- A-).

The "use function" u is defined as follows: We set u(e, x, ø) :0 if {¿}â-(x) I . If
{e}!-(x),l we go back to the definition of {¿}â-(x)J and choose the existing r < ø
minimal. For this z we take the minimal tripel (j,Êr,¡ft wni"n satisfies the
condition in the definition. We define then u(e, x, o) as the minimal z e o such
that Êtc z. The f out of this minimal tripel is defined to be the value of {e}î-(*)
and we write then {e}!-(x):9.

Finally we define

î(e, o):: sup {u((e)o, x, o) | x < I(e, o)}
and

r(e, o) : : rnax (î(e, o), q(e, o)).

Observe that we always have r(e, ø)<ø.
In order to assign priorities we fix a tame ÐrL- projection P which maps a 1-L

onto rc :: o2 cf a. We fix an ø-recursive tame approximation P(., .) : c X c --> cy

such that P(o,,) is L-1 for every ø e c and

V7 < rc3ø Vo'>oVz((P(z)<^y+P.(o', z): P(z))

n(P(z)> t--+P(o', z)> ù).
Construction. Step ø. Consider every r:(x',e)eR-*1 which is not already

element of A-. We put x into A at step o if and only if x>r(i, ø) for every i(ø
such that P(o, i)< P(o, e).

End of the construction.
Claim 2. Consider an index e and a step øo such that

V o -- ooVz((P(z) < P(e)+ (P(o, z) : P(z) ¡ z < øJ)

¡(P(z)> P(e)+ P(o, z)> P(e))).

Define K"::{xlflx¡<f1e¡}. Then the following holds: If ø>øe is a step such

that RK. n o: Rf" iì ø and no element of RK. O ø is put into A at step ø then no
x 1r(e, ø) is put into A at any stage o'> ø and we have Vø'> o(r(e, o')> r(e, o)).

Proof. Induction on P(e). Assume for a contradiction that there exists a minimal
o'>o such that some r <r(e,o) is put into A at step ø'.
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Then we have o')o because for ø':o the ordinal x1r(e,ø) would be an

element of RK" fì o. The computations in A which contribute to the definition of
r(e, o) are not destroyed before ø' because of the minimality of ø'. Therefore we

have r(e, o)> r(e, ø) so that the element x : (x' , e') < r(e, ø) which is put into A
at step ø' is an element of R& lìø and we have P(e')<P(e). Further since x is

not put into A at step o there exists some á with P(ê)<P(e')<P(e) such that
x1r(ê,o). But this situation is impossible according to the induction hypothesis
for P(é). Contradiction.

It remains to show that r(e, o')> r(e, ø) for o'> o but this follows immediately
from the preceding because the computations in A which contribute to the
definition of r(e,o) are never destroyed.

Claim 3. For every e € d \rye have AK":*Rç where K":={i lP(,)<P(¿)} and

Mt:* Mz:e Mt- Mze L- n M2- Mre L-.

Proof. Induction on P(e). We define for the proof

R(e, o): : sup {r(1, o) | i < ø n P(ø, i)< P(o, e)}.

Further we fix a step oo such that

V o >- osV z ((P (z) < P (e') + (P (o, z) : P(z) ¡ z < oo))

¡(P(z)> P(e')--> P(o, z)> P(e')).

Case 1. P(e'):P(e)+ 1 for some ¿'.

We show that there exists a step or and a constant 11 such that

Vo> ot(R(e, o)àrt¡a¡> o(R(e, î): h)).

By the induction hypothesis we have AK" :*RK'. Therefore AK" is a-recursive
(use Claim 1)) and regular. Thus the set

. M" :: {o> col A*" n o : A5"îl o}

of fixpoints is unbounded in ø and ø-recursive.
A computation in A which contributes to the definition of R(e, ø) for some

oÞcro can only be destroyed later by some element of AK" which is enumerated

into A. This implies that for oeM. the computations in A which contribute to
the definition of R(e, ø) will never be destroyed.

Define for i e K.' l(i):: sup {l(i, o) | o e M") and

{x+1lx< l(,)} if Vo>oç(oeM.+q(i,ø):0),
{0}U{x+1 | x< l(t)} otherwise.

Then K::U{Il,x{¿}lreK",} is ø-finite because K is a-r.e., a-card(K"')<
o2cf o. and every H, is a-finite.

Hi::
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We define an a-recursive function f :K+d such that
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/(x):

/ is in fact a-finite because domf :K is a-finite.
Choose Ç1€M" such that Rgf c ø1. Define rt:: R(e,o1). Then o1, 11 have the

desired properties.

Choose tzÞtt,ø1 such that R(')Orr:p{")ñr, and rre M.. Then we have
AG) n rt: Ali\rlì r, e L* and A(") - rt: R@) - rt by the properties of o¡ 11.

Case 2. P(e') is a limit ordinal.
In this case we have o <a2cf c. Therefore the set

M", ::{o}øo I Rn'l.ì ø :R}'fì o n AKo î\ o : An" î\ o}

is unbounded in c.
Further consider the set

.iV.,::{ø>øo I R*"'no : R5.'î øn(no element x e RK.'O ø

is put into A at step ø)Ì.

Àf, is a-recursive by Claim 1 and by using Claim 2 we get that M.':N"'.
Therefore M., is a-recrtrsive which implies that AK.' is a-recursive as well.

Thus the set If ::RK.'-Ar(.'is a-r.e. Since by the induction hypothesis every
,E[(t) is c-finite for ie K., and since a-card(K")< o2cf a we get that H is in fact
a-finite.

Claim 4. A is hyperregular.

Proof. Assume for a contradiction that p:rcf A1a. We have then p<a* since
a* is the greatest a-cardinal if a*(o.

There is an index i e a such that {i}A is a cofrnal function from p into a and
such that

V "y < p Ao' V o 2ø' Vx < r({¿}å-(x) J).

We consider then e::(i,p) and the a-finite set

K"::{y lp(y)<p(e)}.
Fix a step øo such that

Yo-- øoV z((P(z)<P(e)-->(P(o, z): P(z) n z <'cJ)
¡(P(z)> P(e)--> P(o, z)> P(e))).

AK" is a-recursive (and therefore regular) according to Claim 3. Therefore the
set

M. :: {o } oo I A*" î o : An" ¡ o}

is unbounded in a and a-recursive.

y"o e M.(q(i, o) # 0) if x : (0, i),
p"o eM"(I(i,o))x') if 1:(¡¡' *I,i)
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We have then for every r e p and y e c:

{,}o(x) - y e 3ø e M.(l(e, o)> x n {;}f-(x) - y).

Thus we have found an d-recursive definition of the cofinal function {i}A which
contradicts the admissibility of a.

Claim 5. A'<.D.

Proof. A'is tame IrL. since A is hyperregular and d-r.e. Therefore "Ke
L-nKcA"'is a trL- fact and since 0'<.D we can express this fact o-
recursively in D.

For the other part of the reduction we observe that "KcLo-A"'is a

II1(L-,A) fact. Therefore it is enough to express e{A' ø-recursively in D. We
have

e{ A' <>fptoo(l : P(e) ¡p : P(oo,')' I (r+ 1)

n dom p : (y + 1) n Vxyo( (o >- o o n (x, y) e p) --+ P (o, y ) : x)

I3K.KH e L-(K.: Rg (p I y)¡nt" : H U a x K
nYo> øo((Rf" lì ø: (Il U c x K) fì øn (no element of Rf. ft o

is put into A at step o))--> q(e, o) :0))).

The existence of the a-flnite sets K, fr on the right side was shown in Claim 1 by
using the regularity of ó. It is easy to see that one can express "R& : H \J a X K"
a-recursively in D. The cr-finite function p on the right side is only mentioned in
order to be able to describe the properties of oo. oo plays a similar role as in the
preceding claims.

The proof of the equivalence is then immediate from the following observation:
Take y :: P(e) and let oo be a step such that

V o ) o oV z < y (P (o,')-t(z) J n P (o,')-' (z) : P-' (z)).

Defrne K"::{y lP(v)<P(e)}. Define

M. ::{o>øo I R5.î ø : R4 lì on(no element of RK. O o is put
into A at step o)).

Since RK" and AK. are a-recursive according to Claim 3 there exists an un-
bounded set of steps ø where

Rf"n ø: RK" fl o nAf"ìo: AK" l)o.

Therefore the set M" is unbounded in a which implies that

V o e M"(q(e, o):0)-> eÉ A'
(use the regularity of A). Further Claim 2 implies that

ao e M"(q(e, ø) > 0)+ e e A' .
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Thus we have expressed e{A' ø-recursively in D
Claim 6. D<.4'.

Proof. We show that ó (.4'. According to the choice of ó it is enough to show
that ó (*,A'.

The part eeÔ isaE2L- fact and therefore trivially d-recursive in A'because
of 0t<.4'.

Concerning the part e{.D we have according to Claim 3

e( D <>t 37(-13ô > ?((ô, e) É A))<>1y((p,0, e)) É A')

for some fixed parameter p. tr
This finishes the proof of Theorem 4.

It is tempting to define - in analogy to the definition of high and low
degrees- for a-degrees c:

¿ is intermediate: o ø':OZ.

0å does not exist for every admissible a. Therefore we consider as well the
following definition which makes sense for every d:

a is intermediate: e a' is equal to the greatest AzL- degree and to the
greatest tame trL- degree.

According to this second definition intermediate ø-r.e. degrees exist exactly for
those a where incomplete non-hyperregular a-r.e. degrees exist. Since for these c
the degree 0å is well defined we see that both definitions characterize the same

class of a-r.e. degrees.
By the preceding theorems there exist hyperregular and non-hyperregular

intermediate c-r.e. degrees. Further results are needed in order to see whether
intermediate c-r.e. degrees are relevant for the fine structure of a-r.e. sets and
degrees. In particular it would be nice to find intrinsic properties of the inter-
mediate o-r.e. degrees (or of those o-r.e. degrees ¿ which satisfy ¿'<0? respec-

tively a';'gå) which don't mention the jump. We get some first results in this
direction by using recent work of A. Leggett [3].

Leggett shows that in the case øLpc:o¡ and a-r.e. degree ø contains a

maximal set iff Uf-<*oø' (where Ul- is an universal XzL. set). fi olp d.: o) we
can write }i<at instead of the latter condition according to [6].

Further Leggett shows in [3] for the larger class of a with o2p a: or that an

a-r.e. degree a satisfles Ut"-4*-a'iff ø contains a maximal set or ø is non-
hyperregular. Thus by the preceding we get for those a with o2p a: or which are

not 2z admissible that a hyperregular c-r.e. degree ø contains a maximal set iff it
is intermediate. Theorem 4 shows that hyperregular intermediate a-r.e. degrees

exist for all these a and so Martin's Theorem fails in these cases.
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Simpson conjectured in his thesis [13] that for those a where maximal sets

exists we can find in fact hyperregular ones. His conjecture is now proved for
those a which satisfy ú2p d : a.

The final theorem characterizes those a which are 2, admissible in terms of
their degree structure. The proof is based on non-trivial results from p-recursion
theory.

Theorem 5. Assume a is admissible. Then a is 2z admissible if and only if eoery

22L- degree d>0' is the iump of an incomplete a-r.e. degree.

Proof. 11 o2cf a1o2p ø, then 0" is not the jump of an incomplete a-r.e. degree

according to Theorem 2 inl6].
If o2p a 4 o2 cf a ( o (i.e. a is of type (2)) we consider the weakly inadmissible

structure E::(L-,C) where Ce 0'is a-r.e. and regular. By Theorem 2 there
exists a E-r.e. degree d which is not E-tame r.e. such that d (sr (where r is the
greatest E-recursive degree). Therefore there exists a ErL- degree d which is not
tame trL- such that O'<-d <.0å. If ¿ is an incomplete c-r.e. degree then we

have 0l<¿' if a'is non-hyperregular and ø' is a tame EtL- degree if a is

hyperregular. Therefore we have dt' a' for every incomplete o-r.e. degree a.

It remains to show that for 22 admissible ø every trL- degree d > 0' is the
jump of an incomplete c-r.e. degree.

For a : a¡ this is the jump theorem of Sacks [7].
For a > r,l we apply a simplified version of the construction in the proof of

Theorem 4 (define r(e,o)::q(e,o)).
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