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We show that networks of relatively realistic mathematical models for
biological neurons in principle can simulate arbitrary feedforward sig-
moidal neural nets in a way that has previously not been considered. This
new approach is based on temporal coding by single spikes (respectively
by the timing of synchronous firing in pools of neurons) rather than on
the traditional interpretation of analog variables in terms of firing rates.
The resulting new simulation is substantially faster and hence more con-
sistent with experimental results about the maximal speed of information
processing in cortical neural systems.

As a consequence we can show that networks of noisy spiking neurons
are “universal approximators” in the sense that they can approximate
with regard to temporal coding any given continuous function of several
variables. This result holds for a fairly large class of schemes for coding
" analog variables by firing times of spiking neurons.

This new proposal for the possible organization of computations in
networks of spiking neurons systems has some interesting consequences
for the type of learning rules that would be needed to explain the self-
organization of such networks.

Finally, the fast and noise-robust implementation of sigmoidal neural
nets by temporal coding points to possible new ways of implementing
feedforward and recurrent sigmoidal neural nets with pulse stream VLSI.

1 Introduction

Sigmoidal neural nets are the most powerful and flexible computational
model known today. In addition they have the advantage of allowing “self-
organization” via a variety of quite successful learning algorithms. Unfortu-
nately the computational units of sigmoidal neural nets differ strongly from
biological neurons, and it is particularly dubious whether sigmoidal neural
nets provide a useful paradigm for the organization of fast computations in
cortical neural systems.

Traditionally one views the firing rate of a neuron as the representa-
tion of an analog variable in analog computations with spiking neurons, in
particular, in the simulation of sigmoidal neural nets by spiking neurons.
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However, with regard to fast cortical computations, this view is inconsistent
with experimental data. Perrett ef al. (1982) and Thorpe and Imbert (1989)
have demonstrated that visual pattern analysis and pattern classification
can be carried out by humans in just 100 ms, in spite of the fact that it
involves a minimum of 10 synaptic stages from the retina to the temporal
lobe. The same speed of visual processing has been measured by Rolls and
others in macaque monkeys. Furthermore they have shown that a single
cortical area involved in visual processing can complete its computation in
just 20 to 30 ms (Rolls 1994; Rolls and Tovee 1994). On the other hand, the
firing rates of neurons involved in these computations are usually below
100 Hz, and hence at least 20 to 30 ms would be needed just to sample the
current firing rate of a neuron. Thus a coding of analog variables by firing
rates is quite dubious in the context of fast cortical computations.

Experimental evidence accumulated during the past few years indicates
that many biological neural systems use the timing of single action potentials
(or “spikes”) to encode information (Abeles et al. 1993; Bialek and Rieke
1992; Bair et al. 1994; Ferster and Spruston 1995; Hopfield 1995; Kempter et
al. 1996; Sejnowski 1995; Softky 1994; Thorpe and Imbert 1989; Rieke et al.
1996). In addition various experiments have shown that biological neurons
are able to fire in vitro with high timing precision (Bryant and Segundo
1976; Segundo 1994; Mainen and Sejnowski 1995).

We show in this article that there exists a completely different way of sim-
ulating sigmoidal neural nets with spiking neurons that is based on temporal
coding with single spikes (and on temporal coding by synchronous firings
of pools of neurons in a more noise-robust interpretation). This simulation
is based on the observation that in the presence of some other excitation that
moves the membrane potential close to the firing threshold, individual exci-
tatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials
(IPSPs) (or volleys of synchronized postsynaptic potentials (PSPs)) are able
to shift the firing time of a neuron. This mechanism is particularly easy to
analyze if we work in a range where all PSPs can be approximated well by
linear functions. For this range one can show that the resulting firing time
is linearly related to the weighted sum of the firing times of the presynaptic
neurons, with the weights corresponding to the efficacies (“strengths”) of
the involved synapses. We will explain this key observation in a bit more
detail at the end of this section, after defining the formal model of a noisy
spiking neuron. Although this model ignores many of the intricate details
of a biological neuron (e.g., nonlinearities in dendritic integration), one may
argue that it underestimates, rather than overestimates, the computational
capabilities of a biological neuron. We are not making explicit use of the
noise in spiking neurons. Rather we show that the computational mecha-
nism is robust with respect to various types of noise.

A complementary approach for simulating artificial neural nets by spik-
ing neurons with temporal coding has recently been proposed (Hopfield
1995). Hopfield’s construction yields basically a simulation of radial basis
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function (RBF) units, where the weights of the RBF units are stored in the
delays between synapses and soma of a spiking neuron. Hence Hopfield’s
construction provides an efficient way of implementing a look-up table with
spiking neurons (with some very nice invariance regarding the strength of
the stimulus). However, in contrast to the construction considered here, his
system is based on “grandmother neurons,” and it is not geared toward pro-
viding an informative output in a situation where the input (s1, .. ., s,) does
not match (up to a factor) one of the fixed set of stored patterns (because it s,
for example, a superposition of several stored patterns). Furthermore Hop-
field’s construction provides no method for simulating multilayer neural
nets. In addition, in contrast to our construction, it provides no compu-
tational or learning-related role to the efficacy (i.e. strength) of synapses
between biological neurons.

We describe in the remainder of this section the precise models for sig-
moidal neural nets and noisy spiking neurons that we consider, and at the
end of this section describe the key mechanism of our simulation. The main
construction of this article is given in Section 2, and our main result is stated
in the theorem at the end of that section. In Section 3 we show that this result
implies that networks of noisy spiking neurons are universal approxima-
tors. We also prove that this result holds for a fairly large class of schemes for
temporal coding of analog variables. In Section 4 we briefly indicate some
new perspectives about the organization of learning in biological neural
systems that follow from this approach.

We point out that this is not an article about biology but about com-
putational complexity theory. Its main results (given in Sections 2 and 3)
are rigorous theoretical results about the computational power of common
mathemetical models for networks of spiking neurons. However, some in-
formal comments have been added (after the theorem in Section 2, as well
as in Sections 4 and 5) in order to facilitate a discussion of the biological
relevance of this mathematical model and its theoretical consequences.

The computational unit of a sigmoidal neural net is a sigmoidal gate
(0-gate) G, that assigns to analog input numbers x1,...,x,-1 € [0, 7] an
output of the form O’(er-l:_ll ti- xi +1,). The function o: R — [0, y]is called
the activation function of G, r1, ..., r,_1 are the weights of G, and r, is the
bias of G. These are considered adjustable parameters of G in the context of
a learning process. The parameter y > 0 determines the scale of the analog
computations carried out by the neural net.

For convenience we assume that each o-gate G has an additional input
xn, with some constant value ¢ € (0, y] available. Hence after rescaling 7,
the function fg that is computed by G can be viewed as a restriction of the
function

fc(xl,...,x,,) =0 (Zri-x,)

i=1
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to arguments with x, = c. The original choice for the activation func-
tion o in Rumelhart et al. (1986) has been the logistic sigmoid function
o(y) = 1/(1 + e7¥). Many years of practical experience with sigmoidal
neural nets have shown that the exact form of the activation function o is
not relevant for the computational power and learning capabilities of such
neural nets, as long as o is nondecreasing and almost everywhere differ-
entiable, the limits lim,_, o, o(y) and lim,_, « o (y) have finite values, and
o increases approximately linearly in some intermediate range. Gradient-
descent learning procedures such as backpropagation formally require that
o is differentiable everywhere, but practically one can just as well use the
piecewise linear “linear-saturated” activation function ,,: R — [0, y] de-
fined by

0, ify<o0
Ty =43y i0=<y=<y
y, ify>vy.

As a model for a spiking neuron we take the common model of a leaky
integrate-and-fire neuron with noise, in the formulation of the somewhat
more general spike response model of Gerstner and van Hemmen (1994).
The only specific assumption needed for the construction in this article is
that postsynaptic potentials can be described (or at least approximated) by
a linear function during some initial segment. Actually the constructions of
this article appear to be of interest even if this assumption is not satisfied,
but in that case they are harder to analyze theoretically.

We consider networks that consist of a finite set V of spiking neurons,
aset E C V x V of synapses, a weight wy,, > 0 and a response function
euv: RY — R for each synapse (u, v) € E (where Rt := {x € R: x > 0}), and
a threshold function ®,: Rt — R for each neuronv € V.

Each response function ¢, , models either an EPSP or an IPSP. The typical
shape of EPSPs and IPSPs is indicated in Figure 1.

If F, € R* is the set of firing times of a neuron u, then the potential at
the trigger zone of neuron v at time ¢ is given by

P(t)— Z Z Wy,v - Eu,p(t —5).

(u,v)eE seF,: s<t

Furthermore one considers a threshold function ®,(t — #') that quantifies
the “reluctance” of v to fire again at time ¢ if its last previous firing was at
time t'. Thus ©,(x) is extremely large for small x and then approaches &, (0)
for larger x. In a noise-free model, a neuron v fires at time t as soon as Py(t)
reaches @, (t — t).

The precise form of this threshold function ®, is not important for the
constructions in this article, since we consider here only computations that
rely on the timing of the first spike in a spike train. Thus it suffices to
assume that ©,(t — t') = 0,(0) for sufficiently large values of t — ' and
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Figure 1: The typical shape of inhibitory and excitatory postsynaptic potentials
at a biological neuron. (We assume that the resting membrane potential has the
value 0.)

that inf{@,(x): x € (0, y1} is larger than the potentials P,(f) that occur in
the construction of Section 2 for t € [Tyt — ¥, Tout]. The latter condition
(which amounts to the assumption of a sufficiently long refractory period)
will prevent iterated firing of neuron v during the critical time interval
[Tout — ¥, Tout]-

The construction in Section 2 is robust with respect to several types of
noise that make the model of a spiking neuron biologically more realistic.
As in the model for a leaky integrate-and-fire neuron with noise, we allow
that the potentials P, (t) and the threshold functions ©,(t — ') are subject to
some additive noise. Hence P, (t) is replaced by

P (1) := Py(t) + o (D),

and ®,(t — t') is replaced by

N (t —t') 1= Oyt — ') + Bo(D),

where o, (t) and B,(t) describe the impact of some unknown (or even ad-
versarial) source of noise (which might, for example, result from synapse
failures).

One assumes in most previous theoretical studies that «,(t), B,(f) are
distributed according to some specific probability distribution (e.g., white
noise), whereas our subsequent constructions allow that a(t), B,(f) are
some arbitrary functions with bounded absolute value (e.g., “systematic
noise”).

In a simpler model for a noisy spiking neuron, one assumes that a neuron
v fires exactly at those time points ¢t when P"™ (#) reaches from below the

value @ZOisy (t — ). We consider in this article a biologically more realistic



284 Wolfgang Maass

model, whereas in Gerstner and van Hemmen (1994), the size of the differ-
ence P2 (1) — @, (t — t') governs just the probability that neuron v fires.
The choice of the exact firing times is left up to some unknown stochastic
processes, and it may, for example, occur that v does not fire in a time inter-

val I during which P;wisy (t)y— @ZOisy (t—t') > 0, or that v fires “spontaneously”
at a time + when P, () — oyt —t) <.

For the subsequent constructions we need only the following assumption
about the firing mechanism: For any time interval I of length greater than

0, the probability that v fires during I is arbitrarily close to 1 if PZ”iSV t) —
@y (t—t') is sufficiently large for t € I (up to the time when v fires), and the

probability that v fires during I is arbitrarily close to 0 of Py (1) — e (=t
is sufficiently negative for all t € I.

It turns out that it suffices to assume only the following rather weak
properties of the response functions e, »: Each response functioneg, ,: Rt —
R is either excitatory or inhibitory. All excitatory response functions &y (f)
have the value 0 for ¢ € [0, d,, ,], and the value t —dy,, for t € [du v, duo + Al,
where d,, > 0 is some fixed delay and A > 0 is some other constant.
Furthermore we assume that &, ,(t) > ey o(duo + A) for all t € [duv +
A,dyy+ A+ y], where y with0 < y < A/2 s another constant. With
regard to inhibitory response functions &, ,(t), we assume that g, ,(f) = 0
fort € [0,dy ] and g, ,(t) = —(t — dup) for t € [dy 0, dy v + Al Furthermore
we assume that &, ,(t) = 0 for all sufficiently large .

Finally we need a mechanism for increasing the firing threshold ® :=
@,(0) of a “rested” neuron v (at least for a short period). One biologically
plausible assumption that would account for such an increase is that neuron
v receives a large number of IPSPs from randomly firing neurons that arrive
on synapses that are far away from the trigger zone of v, so that each of them
has barely any effect on the dynamics of the potential at the trigger zone,
but together they contribute a rather steady negative summand BN~ to the
potential at the trigger zone. Other possible explanations for the increase
of the firing threshold ® could be based on the contribution of inhibitory
interneurons whose IPSPs arrive close to the soma and are time locked to the
onset of the stimulus, or on long-lasting inhibitions such as those mediated
by GABAg receptors.

Formally we assume that each neuron v receives some negative (i.e.,
inhibitory) potential BN~ < 0 that can be assumed to be constant during
the time intervals that are considered in the following arguments.

In comparison with other models for spiking neurons, this model allows
more general noise than the models considered in Gerstner and van Hem-
men (1994) and Maass (1995). On the other hand this model is somewhat
less general than the one considered in Maass (1996a).

Having defined the formal model, we can now explain the key mech-
anism of the constructions in more detail. It is well known that incoming
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EPSPs and IPSPs are able to shift the firing time of a biological neuron. We
explore this effect in the mathematical model of a spiking neuron, showing
that in principle it can be used to carry out complex analog computations in
temporal coding. Assume that a spiking neuron v receives PSPs from presy-
naptic neurons a1, ..., 4,4, that w; is the weight (efficacy) for the synapse
from g; to v, and that d; is the time delay from a; to v. Then there exists a
range of values for the parameters where the firing time ¢, of neuron v can
be written in terms of the firing times #,, of the presynaptic neurons a; as

- © — BN~ o Yo Wi (ty + di)
° Z?:l wi Z?:l Wi '

Hence in principle a spiking neuron is able to compute in temporal coding of
inputs and outputs a linear function (where the efficacies of synapses encode
the coefficients of the linear function, as in rate coding of analog variables).
The calculations at the beginning of Section 2 show that this holds precisely
if there is no noise and the n PSPs are at time t; all in their initial linearly ris-
ing or linearly decreasing phase. However, for a biological interpretation, it
is interesting to know that even if the firing times t,, (or more precisely their
effective values t,, +d;) lie further apart, this mechanism computes a mean-
ingful approximation to a linear function. It employs (through the natural
shape of PSPs) an interesting adaptation of outliers among the ¢,, + d;: Input
neurons 4; that fire too late (relative to the average) lose their influence on the
determination of t,, and input neurons g; that fire extremely early have the
same impact as neurons 4; that fire somewhat later (but still before the aver-
age). Remark 2 in Section 2 provides a more detailed discussion of this effect.

The goal of the next section is to prove a rigorous theoretical result about
the computational power of formal models for networks of spiking neurons.
We are not claiming that this construction (which is designed exclusively
for that purpose) provides a blueprint for the organization of fast analog
computations in biological neural systems. However, it provides the first
theoretical model that is able to explain the possibility of fast analog com-
putations with noisy spiking neurons. Some remarks about the possible
biological relevance of details of this construction can be found after the
theorem in Section 2.

(1.1)

2 The Main Construction

Consider an arbitrary m, -gate G, for some y > 0, which computes a function
fe: [0, ¥} = [0, y]. Letry, ..., 7, € Rbe the weights of G. Thus we have

0, if Z?:l ri-si <0
foGst,....s) =4 Yigriesi, HO<Y [ ri-si<y
v, if Ylyriosi>y

for arbitrary inputs sg, ..., s, € [0, y].
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Figure 2: The simulation of a sigmoidal gate by a spiking neuron v in temporal
coding

For the sake of simplicity we first consider the case of spiking neurons
without noise (i.e., o, = B, = 0 and each neuron v fires whenever P,
crosses O, (t—t') from below). Then we describe the changes that are needed
in this construction for the general case of noisy spiking neurons.

We construct for a given r,,-gate G and for an arbitrary given parameter
e > 0 with ¢ < y a network NG, of spiking neurons that approximates
fc with precision < ¢; that is, the output NG .(s1, ..., $x) of N, satisfies
INGe(s1, ..., Sn) — fo(s1, ..., 80| < e forallsy, ... s, €[0,y].

In order to be able to scale the size of weights according to the given gate
G, we assume that A/; . receives an additional input sy that is given like the
other input variables sy, ..., s, in temporal coding. Thus we assume that
there are n + 1 input neurons ay, ..., a, with the property that a; fires at
time Tj, — s; (where Tj, is some constant). We will discuss at the end of this
section (in Remarks 5 and 6) biologically more plausible variations of the
construction where ag and T}, are not needed.

We construct a spiking neuron v in Ag . that receives n+1 PSPs kg ), ...,
hy (t) from the n + 1 input neurons ay, . . ., a,,, which result from the firing of
a; at time Ty — s; (see Figure 2). In addition v receives some auxiliary PSPs
from other spiking neurons in AV ¢, whose timing depends only on T;,.
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The firing time t,, of this neuron v will provide the output NGe(st, ..., s0)
of the network Nce in temporal coding; that is, v will fire at time Tout —
NG.e(si, .. ., 5y4) for some T,,; that does not depend on s, ..., s,. Let Wa, 0
be the weight of the synapse from input neuron ; to neuronv,i =0, ..., n.
We assume that the “delay” d,, , between a; and v is the same for all input
neurons 4y, ..., a,, and we write d for this common delay. Thus we can
describe for i = 0, ..., n the impact of the firing of a; at time Tj, — S; on
the potential at the trigger zone of neuron v at time ¢ by the EPSP or IPSP
hi(t) = wg, , - €a;,v(t — (Tiy — 8;)), which has on the basis of our assumptions
the value

! o wi'(t_(Tin_Si)_d), ifdft_(Tin_si)Sd"‘A’
where w; = Wy, » In the case of an EPSP and Wi = —W,, » in the case of an
IPSP.

We assume that neuron v has not fired for a sufficiently long time, so that
its threshold function ©, (t —t') can be assumed to have a constant value ®
when the PSPs hy(t), ..., h, (t) arrive at the trigger zone of v. Furthermore
weassume for the moment that besides these 71+1 PSPs only BN~ influences
the potential at the trigger zone of v. This contribution BN~ is assumed to
have a constant value in the time interval considered here. Then if no noise
is present, the time ¢, of the next firing of v can be described by the equality

n n
O=) hit)+BN" =Y wi-(th~ T —s)~H+BN", (1)
i=0 i=0
provided that
dstv—(T,-n—si)Sd—i—Aforz':O,...,n. (2.2)

We assume from now on that a fixed value sy = 0 is chosen for the extra
input sg. Then equation 2.1 is equivalent to

® — BN~ ’-1 i+ S;
ST NS LU @23)
D ieo Wi D io Wi
This ¢, satisfies equation 2.2 if =<ty ~Tip—d <A — siforj=0,...,n;
hence for any sj € [0, y]if
- n s . Q.
Dio Wi
Weset w; :== A -r; fori = 1,...,n, wherer, ..., r, are the weights of the

simulated 7, -gate G, and A > 0 is some not-yet-determined factor (that we
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will later choose sufficiently large in order to make sure that neuron v fires
closely to the time £, given by equation 2.3 even in the presence of noise).
We choose wy so that Y/ ; w; = A. This implies that equation 2.3 with

® — BN~
Tout =4 Tz'n +d
A
is now equivalent to
n
ty = Tour — Z ¥i -5, (25)
i=1

and equation 2.4 is equivalent to

®— BN~
0s———— - rs<A-y. (2.6)
i=1

Hence, provided that y, A, and BN~ are chosen in relationship to ® and A
so that

y<———<A—y, (2.7)

we have satisfied equation 2.4, and therefore achieved that the tiring time £,
of neuron v provides in temporal coding the output f6(81, .. ..80) =Y 1y tie
s; of the simulated 7, -gate G forall inputs sy, . . ., s, € [0, y] with Y risi€
[0, 1.
" In order to simulate G also for s1, ...,s, ¢ [0, y] with other values of
Z?zl ti - si, we make sure that v fires at a time with distance at most ¢ to
Tour — y if Zf’zl ti - s; is larger than y and that v fires with distance at most
¢ to time Ty if Y1y r; - s; < 0. For that purpose, we add inhibitory and
excitatory neurons that fire at times that depend on time T;, but not on
the input sy, ..., s,. The activity of these auxiliary inhibitory and excitatory.
neurons may also shift the firing time ¢, of v if Yoiqti-si € [0, y], but at
most by e.

According to the previously described construction, we have by equa-
tion2.5 thatt, = Ty ifs; = 0fori =1, ..., n (and therefore Yo ti-si=0).
Furthermore the parameters have been chosen so that equation 2.2 is satis-
fied for this case, which implies that each of the PSPs k;(t) is at time T, for
s; = O still within the initial segment of length A of its first nonzero segment.
This implies that for any value of s; € [0, y] the PSP k;(t) is at time T, — y
not further advanced than the end of the initial segment of length A of its
first nonzero segment. Thus

()] = w; - (t — (Tin — 5;) — )|

< |wil - (Toue — Yy — (Tin — y)—d) < lw;| - A
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forall t < Tout — y and all s; € [0, y]. This implies that for any s1,...,s, €
[0, ¥] (even if Y/ 7 - si ¢ [0, y]) we have |> 7 k()| < W- A for all
t < Tour — y, where W := Y7 |wj).

Hence in order to prevent a firing of v before time T,,; — y, it suffices
to employ auxiliary neurons in Mg, that send IPSPs to v that lower the
potential at the trigger zone of v during the interval [Ty — ¥ — A, Tout — ¥]
by more than W - A + BN~ — ©. In general, these IPSPs also influence the
potential at the trigger zone of v shortly after time T,,; — y. Since these
auxiliary IPSPs will be independent of the input sy, .. ., s,, they may delay
the firing of v even when )" ; r; - 5; € [0, y]. In order to approximate the
given m,-gate G with an error of at most &, we assume that these auxiliary
IPSPs have vanished at the trigger zone of v by time Ty, —y +¢. It is obvious
that all these conditions can be achieved with a sufficient number (and/or
weights) of auxiliary synchronized IPSPs from inhibitory neurons in N,
whose firing time depends only on T;,. This can be satisfied using only the
very weak condition that each IPSP is continuous and of value # 0 before
it eventually vanishes (see the precise condition in Section 1).

We now want to make sure that v fires at the latest by time Ty — y + € if
Z?:l ri-s; > y —e.Since all auxiliary IPSPs have vanished by time Ty, —y +¢,
we have Py(Tout — y + &) = Y 1o hi(Tout — ¥ + €) + BN~. Hence it suffices
to show that the latter is > ©. Consider the set I of those i € {1, ..., n} with
ri > 0, that is, those i where wy, , - £, 4(t) represents an EPSP. By choosing
suitable values s; in the interval [0, s;] for i € I and by setting s := s; for
i € {1,...,n} — I, one can achieve that Y /', #; - s} = y — &. According to
equation 2.5, the potential P, reaches the value © at time T,,,; — y + ¢ for the
input (s, ..., s,), and according to equations 2.2, 2.4, 2.6, and 2.7, each PSP
Wa; v+ €a;,v 18 @t time Ty — y + ¢ still within A of the beginning of its nonzero
phase. If we now change s; to s; for i € I, the EPSP wy, , - &5, , will be advanced
in time by s; — s} € [0, y]. Hence each of the EPSPs wy, 5, - €4, , for i € I is for
input s; at time T,y — y + & within A + y of the beginning of its rising phase.
Since we have assumed in Section 1 that wy, , - &4, ,(t) > Wy, p - €4,0(d + A)
forallt e [d+ A,d+ A+ y], Po(Tour — ¥ + €) has for input (s1,...,s,) a
value that is at least as large as for input (s}, ..., s;), and therefore a value
> ©. This implies that in the case ) ; 1 - s; > ¥ — ¢ the neuron v will fire
within the time interval [Ty, — v, Towr — ¥ + €]

In an analogous manner we can achieve with the help of EPSPs from
auxiliary excitatory neurons in A, (whose firing time depends only on
Ty, not on the input values sy, . . ., s,) that neuron v fires at the latest at time
Tout, even if > 1 1 7i - s; < 0. The preceding analysis implies that for any
value s; € [0, y] and any t < Toy, the absolute value of the PSP wy, , - £, (f)
can be bounded by |wg, »| - p, where p := sup{le, »(H)]: i € {0,...,n} and
t € [d,d + A + y]} is the maximum absolute value that any &, ,(t) for
i =0, ..., ncanreach during theinitial segment of length A+y of its nonzero
segment. Thus if the absolute value of these functions g, ,(t) grows during
[d+A, d+A+y]notfaster than during their linear segment [d, d+ A] (which
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Figure 3: The resulting activation function o of the implementation of a sig-
moidal gate in temporal coding.

apparently holds for biological PSPs), we can set p := A + y. Consequently
we can derive for any t < T, and any values sy, ..., s, € [0, y] the bound
IS iohi(Bl < Yo lwa] - p = W - p. Thus it suffices to make sure that
EPSPs from auxiliary neurons in N, reach the trigger zone of neuron v
shortly after time Ty, — ¢ and that their sum reaches a value ® —BN~+W . p
by time Ty;. Then for any values of s1, ..., s, € [0, y] the potential P, (¢) will
reach the value © at the latest by time Ty, causing a firing of v by time Tj;.
These auxiliary EPSPs will in general have the side effect that they slightly
advance for inputs s1, ..., s, € [0, y] with >/ ; 7; - 5; € [0, €] the firing time
ty, but the firing time will stay within the interval [Ty, — &, Tous]-

According to our assumption in Section 1, inf{®,(x): x € (0, y]} is so
large that v cannot fire more than once during [Tout — v, Tout]. Hence our
construction makes sure that v fires exactly once during [T, — ¥, Tout] for
any inputs sy, ..., s, € [0, y]. In the following discussion we will denote
this firing time ¢, of v by Tour — NG (51, ..., Sn).

We have now shown that under the assumption that no noise influences
the firing time ¢, of neuron v, we have ING . (s1, ...,51) — fo(51, .- .. 8x)| < &
forall sy, ...,s, € [0, y]. If one plots the variable y = Ng(s1, ..., s,) that
neuron v outputs in temporal coding asa functionof ) i, 7; - s;, one sees that
the effective “activation function” o of this implementation of the r, -gate
G has the form indicated in Figure 3. Like the piecewise linear activation
function 7, of the simulated gate G, this activation function o is linear
in the intervals (—o0, 0], [¢, ¥ — €], [y, 00). However, in contrast to 7y, it
connects these linear segments by smooth segments in the intervals [0, ]
and [y — ¢, y], whose precise shape depends on the exact shape and size of
the previously discussed auxiliary EPSPs and IPSPs.

We now consider the general case where the firing time #, of v is subject
to two types of noise, as described in Section 1. We show that by choosing a
sufficiently large parameter A in the preceding construction, we can achieve
that in spite of these two types of noise the actual firing time t, of neuron
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v will be arbitrarily close to the previously considered deterministic firing
time ¢, of neuron v, with probability arbitrarily close to 1.

Assume that some arbitrary ¢,8 > 0 are given. In the preceding con-
struction, we had chosen values w; := A - 7; for the strengths of the synapses
to neuron v, where A > 0 was some not-yet-determined factor. According
to equation 2.3, a change in the value of this parameter A can result only
in a shift of t, by an amount that is independent from the input variables
$1, ..., Sy. Furthermore if one chooses the contribution BN~ of inhibitory
background noise as a function of A so that ® — BN~ = A - ¢ for some con-
stant ¢, the resulting firing time f, is completely independent of the choice
of 1. On the other hand, the parameter A occurs as a factor in the non-
constant term ) /' g A - 7i - |eq,.0(t — (Tin — 5))| = Y1y hi(t) in the potential
Py(t)y =y i ghi(t) + BN~ (we ignore the effect of auxilary PSPs for the mo-
ment). Hence by choosing A sufficiently large, one can make sure that in
the deterministic case P, (t) has an arbitrarily large derivative at the time ¢,
when it crosses ©,(t — ).

Furthermore if we choose y, A, and BN~ so that equation 2.7 can be
replaced by

® — BN~
< -

2y <A—-y—e, (2.8)

then it is guaranteed that the linearly increasing potential P,(t) (with slope
proportional to 1) will rise with the same slope throughout the interval
[ty — v, ty +£].

If we now keep this setting of the parameters but replace the deterministic
neuron v by a stochastic neuron v that is subject to the two types of noise
that were specified in Section 1, the following can be observed: If |« ()| < «
and |B(#)| < B for all t, then the time interval around t, during which P, (t)
is within the interval [® — « — 8, ©® + a + B] becomes arbitrarily small for
sufficiently large A.

Furthermore if A is sufficiently large (and BN~ is adjusted along with A
so that % = ¢ for some constant ¢ > 0 that is independent of 1), then
Py(t) + a + B — O is arbitrarily negative during [T, — v, t, — ¢]. Thus the
probability that v fires during [Ty —y, t, —€] canbe brought arbitrarily close
to 0. In addition, by making A sufficiently large, one can achieve that P, () —
o — B — O is arbitrarily large throughout the time interval [t, +£/2, t, + €].
Hence the probability that v fires by time #, + & can be brought arbitrarily
close to 1.

If one increases the number or the weights of the previously described
auxilary PSPs in an analogous manner, one can achieve for the noisy neuron
model that with probability > 1 — § the neuron v of network N s fires
exactly once during [Tous — ¥, Tout], and at a time £, = Ty —NGies(1,...,a,)
with NG e s(s1, ..., an) — fG(s1,...,5n] <2¢, forallsy,...,s, €0, y]
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The previously described construction can easily be adapted to allow
shifts in the arrival times of auxiliary PSPs at v of up to £/2. Hence we can
allow that these PSPs also come from noisy spiking neurons.

In order to simulate an arbitrary given feedforward network N of -
gates with precision & and probability > 1§ of correctness, one applies the
preceding construction separately to each gate G in N. For any given e, § > 0
one determines for each 7, -gate G in N (starting at the output gates of N)
suitable values e, ¢ > 0,so that to approximate N within e with probability
> 1 -4, it suffices that each gate G in N is approximated within 2e; with
probability > 1 — 4 by a network N .. 5. of noisy spiking neurons. In this
way, one can achieve that the network My, 5 of noisy spiking neurons that
is composed of these networks N . 5, approximates in temporal coding
with probability > 1 — § the output of N within ¢, for any given network
inputxy, ..., xy € [0, y]. Actually it would be more efficient if the modules
NG, ec.5¢ are not disjoint but share the neurons that generate the auxiliary
EPSPs and IPSPs. Note that the problem of achieving reliable digital and
analog computation with noisy neurons has already been considered in
von Neumann (1956) for other types of formal neuron models.

Thus we have shown:

Theorem. Forany givene, § > 0one can simulate any given feedforward sigmoidal
neuralnet N consisting of w, -gates (for some sufficiently small y that depends on the
chosen model for a spiking neuron) by a network Ny . s of noisy spiking neurons
in temporal coding. More precisely, for any network input x1, ..., %, € [0, y]
the output of N s differs with probability > 1 — & by at most ¢ from that of
N. Furthermore the computation time of Ny s depends on neither the number of
gates in N nor the parameters e, 8, but only on the number of layers of the sigmoidal
neural network N.

Remark 1. One can exploit the concrete shape of PSPs in biological neurons
in order to arrive at an alternative approximation of sigmoidal neural nets
by spiking neurons in temporal coding without simulating explicitly the acti-
vation function 7, of the sigmoidal neural net. In this alternative approach,
one can delete from the previously described construction the auxiliary neu-
rons that prevent a firing of neuron v before time Ty, — y and force it to fire
at the latest by time Ty,,,. Furthermore in this interpretation we no longer
have to assume that the initial linear segments of all incoming PSPs overlap,
and hence less precision in the firing times is needed.

In case v fires substantially after time T, the resulting PSP at a post-
synaptic neuron ¢’ (which simulates a sigmoidal gate on the next layer of
the simulated sigmoidal neural net) still has its initial value 0 at the time t,
when v’ fires. Dually, if v fires before time T,,; — y, the resulting PSP may be
at time ¢, already near its saturation value (where it increases or decreases
more slowly than during its initial “linear phase”). Thus in either case, the
concrete functional form of EPSPs and IPSPs in a biological neuron v’ mod-
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ulates the input from a presynaptic neuron v in a way that corresponds to
the application of a saturating sigmoidal activation function to the output
of vin temporal coding. Furthermore, larger differences than y between the
firing times of presynaptic neurons v can be tolerated in this context.

This implicit implementation of an activation function is, however, math-
ematically imprecise. A closer look shows that the amount by which the
output of v in temporal coding is adjusted depends on the size of the output
of v relative to the size of the outputs of the other presynaptic neurons of
v (in temporal coding). The output of v is changed by a larger amount if
it differs more strongly from the median output of the other presynaptic
neurons of v’ (but it is always moved in the direction of the median). This
context-dependent modulation of the output of v is hard to exploit for pre-
cise theoretical results, but it appears to be useful for practically relevant
computations such as pattern recognition.

Thus we arrive in this way at a variation of the implementation of a sig-
moidal neural net, where two biologically dubious components of our main
construction (the auxiliary neurons that force v to fire exactly once during
[Tout — ¥, Tout], as well as the requirement that the initial linear segments of
all relevant PSPs have to overlap) are deleted, but the resulting network of
spiking neurons can still carry out complex and practical multilayer com-
putations in temporal coding.

Remark 2. Our construction shows as a special case that a linear function of
the form s > w - s for real-valued inputs s = (s1, ..., s4) and a stored vector
w = (w1, ..., wy) can be computed very efficiently (and very quickly) by a
spiking neuron v in temporal coding. In this case, no auxiliary neurons are
needed.

Quick computation of linear functions is relevant in many biological
contexts, such as coordinate transformations between different frames of
reference or the analysis of a complex stimulus s in terms of many stored
patterns w, w/, . ... For example, in an olfactory neural system (see, e.g.,
Hopfield 1991, 1995) the stimulus s may be thought of as a superposition
of various stored basic odors w, o/, . ... In this case the outputy = w - s of
neuron v in temporal coding may be interpreted as the amount by which
the basic odor w (which is stored in the efficacies of the synapses of v)
is present in the stimulus s. Furthermore another neuron v on the next
layer might receive as its input y = (y, v/, ...) from several such neurons
v,v,...; that is,  receives the “mixing proportions” y = w-s, i’ = w' -s for
various stored basic odors w, w', .. ., in temporal coding. This neuron v on
the second layer can then continue the pattern analysis by computing for its
input y the inner product W - y with some stored “higher-order pattern” W
(e.g., the composition of basic odors characteristic for an individual animal).
Such multilayer pattern analysis is facilitated by the fact that the neurons
considered here encode their output in the same way in which their input is
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encoded (in contrast to the approach in Hopfield 1995). One also gets in this
way a very fast implementation of Linsker’s network (Linsker 1988) with
spiking neurons in temporal coding.

Remark 3. For biological neurons it is impossible to choose the parameter A
arbitrarily large. On the other hand, the experiments of Bryant and Segundo
(1976), as well as the recent experiments of Mainen and Sejnowski (1995),
suggest that biological neurons already exhibit very high precision in their
firing times if the slope of the membrane potential P,(f) at the time f when
it crosses the firing threshold is moderately large.

Remark 4. Analog computations with the type of temporal coding consid-
ered here become impossible if the jitter in the firing times is large relative
to the size of the range [0, y] of analog variables in temporal coding. The
following points should be taken into account in this context:

e Even if the jitter is so high that in temporal coding just two different
outputs can be distinguished in a reliable manner, the computational
power of the constructed network A of spiking neurons is still enor-
mous from the point of view of computational complexity theory. In
this case, the network can simulate arbitrary threshold circuits (i.e.,
multilayer perceptrons whose gates give binary outputs) very fast.
Threshold circuits are extremely powerful models for parallel digital
computation, which can (in contrast to PRAMSs and other models for
currently available computer hardware) compute various nontrivial
boolean functions that depend on a large number # of input bits with
polynomially in n many gates and not more than four layers (Johnson
1990; Roychowdhury et al. 1994; Siu et al. 1995).

e Formally the value of y in the preceding construction was required
to be very small: it was bounded by a fraction of the length A of the
rising segment of an EPSP (see inequalities 2.7 and 2.8). However, keep
in mind that we were forced to resort to such small values for y only
because we wanted to prove a rigorous theoretical result. The consider-
ations in Remark 1 suggest that in a practical context, one can still carry
out meaningful computations if the linearly rising segments of incom-
ing EPSP are spread out over a somewhat larger time interval than A,
where they need no longer overlap. If one wants to compute specific
values for the parameters y and A, one runs into the problem that the
value of A varies enormously among different biological neural sys-
tems, from about 1 to 3 ms for EPSPs resulting from AMPA receptors
in cortex to about a second in dark-adapted toad photoreceptors.

e There exists an alternative interpretation of our construction in a bi-
ological neural system that focuses on a smaller spatial scale. In this
interpretation, a “hot spot” in the dendritic tree of a biological neuron
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assumes the role of a spiking neuron in our construction. Hot spots
are patches of membrane with voltage-dependent channels that are
known to occur at branching points of the dendritic tree (Shepherd
1994; Jaffe et al. 1992; Mel 1993; Softky 1994). They fire a dendritic
spike if the membrane potential reaches a certain threshold value.
From this point of view, a single biological neuron may be viewed
as a network of spiking neurons, which according to our construc-
tion, can simulate in temporal coding a multilayer sigmoidal neural
net. The timing precision of such circuits is possibly very high since it
does not involve synapses (see also Softky 1994). Furthermore in this
interpretation the computation is less affected by possible failures of
synapses.

e In another biological interpretation one can replace each neuron v in
Nn.e.s by a pool P, of neurons (as in a synfire chain; see Abeles et al.
1993). The firing time t, of neuron v is then replaced by the mean fir-
ing time of neurons in P, and an EPSP from v is replaced by a sum
of EPSPs from neurons in P,. This interpretation has the advantage
that it is less affected by jitter in the firing times of individual neurons
and by stochastic failures of individual synapses. Furthermore, the
rising segment of a sum of EPSPs from P, is likely to be substantially
longer than that of an individual EPSP. Hence in this interpretation,
the parameter y can be chosen substantially larger than for single neu-
rons.

Remark 5. The auxiliary neuron 4y that provides in the construction a refer-
ence spike at time Tj, is not really necessary. Without such auxiliary neuron
ap, the weights w; of the inputs s; are automa tically normalized so that they
sum up to 1 (see equation 2.3 with "I w; replaced by 3"i"; w;). Such nor-
malization is disadvantageous for simulating an arbitrary given sigmoidal
gate G, but it may be desirable in a biological context.

Remark 6. Our construction was based on a specific temporal coding in
terms of reference times T, and T,y Some biological systems may pro-
vide such reference times that are time locked with the onset of a sensory
stimulus. However, our construction can also be adapted to other types
of temporal coding that require no reference times. For example, the basic
equation at the end of Section 1—equation 1.1—also yields a mechanism
for carrying out analog computations with regard to the scheme of “com-
petitive temporal coding” discussed in Thorpe and Imbert (1989). In this
coding scheme the firing time f,, of neuron 4; encodes the analog variable
(to; +di) —minj=y n(ts, + dj) , where dj = du[,v is the delay between neuron
ajand v. For T := minj_y _n(tg + dj) we have according to equation 1.1,

.....

_ ©—BN~

B Z?:l Wi

D i Wi ~Z(’(1ta; ; d)—T) ‘ (29)
i=1 Wi

ty + T+



296 Wolfgang Maass

In this coding scheme the firing time t, encodes the analog value t, —
mingey t5, where L is the layer of neurons to which v belongs. Thus, equa-
tion 2.9 provides the mechanism for computing a segment of a linear func-
tion for inputs and outputs in competitive temporal coding. Hence our
construction also provides a method for simulating multilayer neural nets
with regard to this alternative coding scheme. No reference times T;; or Tout
are needed for that.

In this way, one can implement, for example, a multilayer pattern analysis
as described in Remark 2 without making any use of reference times. If
one wants to simulate gates that employ a sigmoidal activation function
by spiking neurons with competitive temporal coding, one can add lateral
excitation among all neurons on the same layer L. In this way the neurons
in L are forced to fire within a rather small time window (corresponding
to the bounded output range of a sigmoidal activation function). In other
applications, it appears to be more advantageous to employ instead lateral
inhibition. This also has the effect of preventing the value of t, — ming¢ ¢;
from becoming too large.

Remark 7. For the sake of simplicity we have considered in the preced-
ing construction only feedforward computations on networks of spiking
neurons. However, the same simulation method can be used to simulate re-
current sigmoidal neural nets by recurrent networks of spiking neurons. For
example, in this way one gets a novel implementation of a Hopfield net (with
synchronous updates). At each “round” of the computation, the output of
a unit of the Hopfield net is encoded by the firing time of a corresponding
spiking neuron relative to that of other neurons in the network. For exam-
ple, one may assume that a neuron gives the highest possible output value
if it is among the first neurons that fire at that round. Each spiking neuron
simulates in temporal coding a sigmoidal unit whose inputs are the firing
times of the other spiking neurons in the network at the previous round.
One can employ here competitive temporal coding (see Remark 6); hence
no reference times or external clock are needed.

A stable state of the Hopfield net is reached in this implementation (with
competitive temporal coding) if and only if all neurons fire “regularly” (i.e.,
at regular intervals with a common interspike interval) but generally with
different phases. These phases encode the output values of the individual
neurons, and together these phase differences represent a “recalled” stored
pattern of the Hopfield net. Thus, each stored pattern of the Hopfield net
is realized by a different assignment of phase differences in some stable
oscillation.

This novel implementation of a Hopfield net with spiking neurons in
temporal coding has, apart from its high computation speed, another feature
that is possibly of biological interest: whereas the input to such network of
spiking neuron can be transient (encoded in the relative timing of the firing
of each neuron in the network at the first round), its output is available over



Fast Sigmoidal Networks via Spiking Neurons 297

a longer time period, since it is encoded in the phases of the neurons in a
stable global oscillation of the network. Hence, this implementation makes
it possible that even in the rapidly fluctuating environment of temporal
coding with single spikes, the outputs from different neural subsystems
(which may operate at different time scales) can be collected and integrated
by a larger neural system.

3 Universal Approximation Properties of Networks of Noisy Spiking
Neurons in Temporal Coding

One of the most interesting and useful features of sigmoidal neural nets N
is the fact that if [0, y] is the range of their activation functions, they can
approximate for any given natural numbers n and k any given continuous
function F from [0, y]" into [0, y ]¢ within any given ¢ > 0 (with regard to
uniform convergence, i.e., the Lo, norm). Furthermore it suffices to consider
for this purpose feedforward nets N with just one hidden layer of neurons
and (roughly) any activation function ¢ that is not a polynomial (Leshno
et al. 1993). In addition, many years of experiments with backpropagation
and other learning rules for sigmoidal neural nets have shown that for most
concrete application problems, sigmoidal neural nets with relatively few
hidden units allow a satisfactory approximation of the underlying target
function F.

The result from the preceding section allows us to transfer these results
to networks of spiking neurons with temporal coding. If some feedforward
sigmoidal neural net N approximates an arbitrary given continuous func-
tion F: [0, y]* — [0, y]¢ within an & (with regard to the Lo, norm), then
with probability > 1 — § the network Ny .5 of spiking neurons that we
constructed in Section 2 approximates the same F within 2¢ (with regard
to the Lo, norm). Furthermore, if N has only a small number p of layers,
the computation time of My . s can be bounded (for biologically reasonable
choices of the parameters involved) by 10 - p ms.

Thus if one neglects the fact that the fan-in of biological neurons is
bounded by some fixed (although rather large) constant, the preceding the-
oretical results suggest that networks of biological neurons can (in spite of
their “slowness”) approximate arbitrary continuous functions F: [0, y]* —
[0, y]¥ within any given & with a computation time of not more than 20 ms.

Finally, we would like to point out that our approximation result holds
not only for the particular way of encoding analog inputs and outputs by
firing times that was considered in the previous section but basically for any
coding that is continuously related to it. More precisely, let n, 11, k, k be arbi-
trary natural numbers. Let Q: [0, y]" — [0, 17" be any continuous function
that specifies a method of “decoding” 7 variables ranging over [0, 1] from
the firing times of n neurons during some time window of length y (whose
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end point is marked by the firing time of the first one of these n neurons),
and let R: [0, 1]’2 — [0, y]* be any continuous and invertible function that
describes a method for “encoding” k output variables ranging over [0,1] by
the firing times of k neurons during some time window of length y (whose
end point is marked by the firing time of the first one of these k neurons).
Then for any given continuous function F: [0, 1] — [0, 1] the composition
F: RoFoQ of these three functions is a continuous function from [0, y]" into
[0, y1*. According to our preceding argument, there exists a network N s of
noisy spiking neurons (with one “hiddenlayer”) such that forany x € [0, y "
one has for the output ./\75‘5 (x) of this network _/\75‘5 that || F(x) —Nes(x) | < e
with probability > 1 — §, where || - || can be any common norm. Hence -/\75.5
approximates for arbitrary inputs the given function F: [0,1]" — [0, 1]¥
for arbitrarily chosen continuous functions R, Q for coding and decoding of
analog variables by firing times of spiking neurons with a precision of at least
sup {| R7*) —= R W) I: v,y € [0, 1] and | y =y |l < ¢}. Thus, if the in-
verse R™! of the function R is uniformly continuous, one can approximate
F with regard to neural coding and decoding described by R and Q with
arbitrarily high precision by networks of noisy spiking neurons with just
one hidden layer.

4 Consequences for Learning

In the traditional interpretation of (unsupervised) Hebbian learning, a
synapse is strengthened if both the presynaptic and the postsynaptic neu-
rons are simultaneously “active” (i.e., both give high output values in terms
of their current firing rates). In the implementation of a sigmoidal neural net
N by a network of spiking neurons Ny . 5 in Section 2, the “weights” r; of
N are in fact modeled by the “strengths” w; of corresponding synapses be-
tween spiking neurons. However, the information whether both the presy-
naptic and postsynaptic neurons give high output values in temporal cod-
ing can no longer be read off from their “activity” but only from the time
difference T; between their firing times.

This observation gives rise to the question of whether there are bio-
logical mechanisms known that support a modulation of the efficacy (i.e.
“strength”) w; of a synapse as a function of this time difference T;. If one
works in the linear range of the simulation AV, of a ,-gate G according
to Section 2 (where G computes the function (s1, ..., s,) > Yy ri-si)and
hi(t) describes an EPSP, then for Hebbian learning it would be desirable to
increase w; = A - rjif s;is close to ) 1. ; #i - s;; that is, if the difference in firing
times T := ty — (Tin — ;) = Tour— Y _1q ti+8i— Tin+5; is close to Toyus — Tin. On
the other hand, one would like to “decrease” w; if T; is substantially smaller



Fast Sigmoidal Networks via Spiking Neurons 299

or larger than T, — Tin. Hence, a Hebbian-style unsupervised learning rule
of the form

1
T 148 (Ti— (Towt —Ti)?

~BTi=Tou=Tu))* _ 4.1)

Aw;

p or
Aw; =e

(for suitable parameters g, p > 0) would be meaningful in this context.

Recent results from neurobiology (Stuart and Sakmann 1994) show that
action potentials in neocortical pyramidal cells are actively (i.e., supported
by voltage-dependent channels) propagated backward from the soma into
the dendrites (see also Jaffe et al. 1992). Hence the time difference T; be-
tween the firing of the presynaptic and the postsynaptic neurons is in
principle available to each synapse. Furthermore new experimental results
(Markram 1995; Markram and Sakmann 1995) show that in vitro, the effi-
cacy of synapses of neocortical pyramidal neurons is in fact modulated as
a function of this time difference T;.

There exists one interesting structural difference between this interpre-
tation of Hebbian learning in temporal coding and its traditional interpre-
tation: the time difference T; provides a synapse with the full information
about the correlation between the output values of the pre- and postsynap-
tic neurons in temporal coding, no matter whether both neurons give high
or low output values. However, in the traditional interpretation of Hebbian
learning in terms of firing rates, the efficacy of a synapse is increased only
if both neurons give high output values (in frequency coding).

An implementation of Hebbian learning in the temporal domain is also
appealing in the context of pulse stream VLSI (i.e., “silicon spiking neu-
rons”). These artificial neural nets are much faster than biological spiking
neurons: they can work with interspike intervals in the microsecond range.
If for a hardware implementation of a sigmoidal gate with pulse stream
VLSI according to the construction of Section 2, a Hebbian learning rule can
be applied in the temporal domain after each pulse, such a chip may be
able to carry out so many learning steps per second that it could in princi-
ple (neglecting input-output constraints) overcome the main impediment
of traditional artificial neural nets: their low learning speeds.

So far we have assumed in the construction of Ay . s in Section 2 that
the time delays d; between the presynaptic neurons 4; and the postsynaptic
neuron v (i.e., the time needed until an action potential from a; can influ-
ence the potential at the trigger zone of v) were the same for all neurons
a;. Differences among these delays have the effect of providing an additive
correction s; — s;+d; to the variable that is communicated in temporal cod-
ing from a; to v. Hence, they also have the ability to give different “weights”
to different input variables. In a biological context, they appear to be useful
for providing to the network a priori information about its computational
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task, so that Hebbian learning can be viewed as “fine-tuning” on top of
this preprogrammed information. If there exist biological mechanisms for
modulating such delays (see Hopfield 1995; Kempter et al. 1996), they would
provide inaddition to a short-term memory via synaptic modulation a sepa-
rate mechanism for storing and adapting long-term memory via differences
in the delays.

5 Conclusions

We have shown in this article that there exists a rather simple way to com-
pute linear functions and to simulate feedforward as well as recurrent sig-
moidal neural nets in temporal coding by networks of noisy spiking neu-
rons. In contrast to the traditionally considered implementation via fre-
quency coding, the new approach yields a computation speed that is faster
by several orders of magnitude. In fact, to the best of our knowledge, it pro-
vides the first theoretical model that is able to explain the experimentally
observed speed of fast information processing in the cortex on the basis of
relatively slow spiking neurons as computational units.

Further experiments will be needed to determine whether this theoretical
model is biologically relevant. One problem is that we do not know in
which way batch inputs (consisting of many analog variables in parallel)
are encoded by biological neural systems. The existing results on neural
coding (see Rieke et al. 1996) address only the coding of time series, that
is, sequential analog inputs. However, if further experiments showed that
the input-dependent firing times in visual cortex, as reported in Bair et al.
(1994), vary in a continuous (i.e., piecewise continuous) manner in response
to smooth changes of complex inputs, this would provide some support to
the style of theoretical models for analog computation with spiking neurons
that is considered here.

Furthermore, a biological realization of recurrent neural nets (e.g., Hop-
field nets) in temporal coding with spiking neurons, as proposed in Re-
mark 7 in Section 2, would predict the occurrence of oscillations in neural
systems (especially systems involved in pattern recognition and working
memory), where the phase of individual neurons (or of pools of neurons)
with regard to this oscillation is input dependent.

A noteworthy feature of the constructions presented here is that the
“weights” (efficacies) of synapses are in principle able to play in tempo-
ral coding the same role as in the more familiar context of firing rate coding.
Hence, all theories and experimental results regarding adaptation of neu-
ral circuits via synaptic plasticity can in principle also be applied to such
computations in temporal coding.

Furthermore, a closer look shows that the networks that we have con-
structed for analog computations in temporal coding can compute the same
analog function on a different time scale in firing rate coding. This possible
dual role of the circuits of spiking neurons constructed here is of interest in



Fast Sigmoidal Networks via Spiking Neurons 301

the context of biology. There exists empirical evidence that some neural sys-
tems carry out in addition to a very fast preliminary computation a more
thorough subsequent computation in terms of firing rates, which has the
ability to integrate relevant contributions from several neural subsystems
but takes several hundred milliseconds longer (see, e.g., Heller et al. 1995).

So far it is not known whether there exists a biological neural system
whose computational organization can be understood as an implementa-
tion of a sigmoidal neural net. However, one may argue that this conjecture
can be supported by a heuristic “optimality principle” (whereby biological
systems often find the theoretically best use for their “hardware”). Feed-
forward sigmoidal neural nets with few layers are the most powerful and
fastest parallel computational model that is known to date, from the point
of view of computational complexity theory and engineering applications.
In addition, feedforward and recurrent sigmoidal neural nets are the only
parallel computational models known that support self-organization (and
hence do not require cumbersome and error-prone central “programming”).
Hence if the “hardware” of biological neural systems allows in principle an
efficient implementation of sigmoidal neural nets, it is not unreasonable
to assume that this possibility has been realized by at least some biolog-
ical neural systems (in spite of our lack of knowledge about the concrete
functions that they compute).

Apart from their biological interpretation, the construction of this article
appears to be of interest also in the context of hardware implementations
of neural nets via pulse-stream VLSI (see, e.g., Pratt 1989; Horinchi et al.
1991; Murray and Tarassenko 1994; Jahnke et al. 1995). A simulation of a
teedforward sigmoidal neural net by pulse stream VLSI along the lines of
this construction offers the possibility of combining extremely high com-
putation speed (simulating one parallel computation step of the sigmoidal
neural net per pulse) with a noise-robust and fast transmission of inter-
nal analog variables via the relative timing of pulses from different gates.
Furthermore, an implementation of Hopfield nets according to Remark 7
provides a new idea for the technological realization of content-addressable
memory.

We have shown in this article that networks of spiking neurons with
temporal coding have at least the same computational power as sigmoidal
neural nets of roughly the same size and depth. Together with a recent sep-
aration result (Maass 1996b) this implies that networks of spiking neurons
have in fact strictly more computational power.
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