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A degree a 1s sald to be high if a' =0'' where 3a' is
the jump of a and O is the degree of the empty set., Thus O
is a high degree but in ordinary recursion theory (ORT) there
exist as well high recursively enumerable (r.e.) degrees below o'
according to a theorem of Sacks {123. The proof of this result is
a very nice application of the infinite injury priority method.

It follows from the theorem of Sacks that the notion high is
not trivial. Further results show that the notions high end low
(a 1is low if a' = 0' ) are in fact impértant for the study of
the fine structure of the r.e. degrees in ORT. The intuitive
meaning is that a 1is high if a is near to 0' and a is low
if a is near to O in the upper semilattice of the r.e. degrees.
Therefore these notions are useful f;r the study of non-uniformity
effects in this structure where one looks for theorems which hold
in some regions of this semilattice but not everywhere (see e.g.
Lachlan [4]).

In addition high degrees are interesting for technical
reasons. Some results have been proved for high degrees and it is
not yet known whether they are true for all r.e. degrees (see e.g.
Cooper L11).

Finally high degrees are a link between the structure of r.e.
degrees and the structure of r.e. sets according to a theorem of
Martin (see [15]): A degree contains a maximal r.e. set if and
only if it is a high r.e. degree.

In a-recursion theory for admissible ordinels o the deeper
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properties of r.e. degrees and r.e. sets are explored in a general
setting and one tries to find out which assumptions are really
needed in order to do certain constructions. We refer the reader to
the survey papers by Lerman and Shore in this volume for more in-
formation.

It turned out that in fact several priority arguments can be
transferred to wo-recursion theory (see e.g. Sacks-Simpson [14],
Shore [16), Shore [18)). Other results of ORT have been proved for
many admissible o but it 1s still open whether they hold for all
admissible o( e.g. the existence of minimal pairs of o-r.e. de-
grees [6]) ,[21) and the existence of minimal ea-degrees [17],[71).
Lerman [5) closed the gap between provable existence and provable
non-existence in the case of maximel «-r.e. sets. .

For some time one thought that the existence of high a-r.e.
degrees below O' was as well completely settled by Shore [20],
but an error was found in the proof of Theorem 2.3, in [201%. The
problem was then open again except for Zz-admissible o. where the
existence proof from ORT works and for o such that O' 1is the
only non-hyperregular a-r.e, degree where every o.-r.e. degree
below O' 4is low according to [20] (these are the types (1) and
(4) in our characterization in §3 ).

We close the gap in this paper by proving that high a-r.e.
degrees below O' exist if and only if o2cfo » 02p oo , This re-
sult was not expected and is different from the result in (20]. We
think that the new result is a lucky circumstance for o-~recursion
theory since 1t was thought in [20] that the situation is somewhat
trivial (every non-hyperregular o-r.e. degree is high). Now it
turns out that inadmissibility (in form of non-hyperregularity)

influences the behaviour of the jump of an o-r.e, degree but is

*I would like to thank R.A, Shore for informing me about this.



HIGH o-RECURSIVELY ENUMERABLE DEGREES 241

not so strong that it overruns everything (this will become even

clearer in our forthcoming paper [11).

The plan of this paper is as follows:
§0. contains some basic definitions and facts.
In §1. we construct high a-r.e. degreea'below 0' for the case
o > o2cfa 3 v2pa ., We give some motivation for the construction
so that this chapter should be readable for anyone who has seen be-
fore an infinite injury priority argument in ORT (e.g.023}). The
construction reflects several typical features of a-recursion
theory and uses strategies which would not work in ORT,
In ﬁgé we prove that there exist no high o-r.e. degrees below
0! in the case o2cfa < o¢2po by using some basic properties of
strongly inadmissible structures. Along the way some first results
are proved about a distinguished degree between O' and o't for
which we write 03/2.
A summary is given in §3. . Four types of admissible ordinals have
to be distinguished as far as the behaviour of the jump of r.e. de-

grees is concerned.
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§0, Preliminaries

Lowcase greek letters are always ordinals, 8 and A are
always 1limit ordinals and o 1is always admissible in this paper.
We consider only structures b =< 1a,B> where B ¢ L and B is
regular over Lp , 1.e. Vx < f3 (Lb' n Be L(; ) . We say that a set
DelLy 18 Z % 1if D is definable by seme 2  formula (which
may contain elements of Lp as parameters) over the structure o .

For 1+ one writes q'nci‘\'f’h for the least d < X such
that some Zn‘{r function maps & cofinally into A and one
writes o‘npq’() for the least 4« (? such that some Zniy function
p projects (3 into & (i.e. p maps (3 1-1 into & ). We write

L L,

gncf ¢ 1instead of oncf ®e and vnpo Iinstead of onp *q .

A set D e Ly is called $-r.e. (% -recursive) if D 1is
2—1‘5 (A1‘Ir). We say that a set D is tame- fné if the set of
"pogitive neighborhoods" { K e Lol KeD} |is En‘;b— . A set
K ¢ LB is called f-finite if K « Lﬂ .

An ordinal &« (3 1is called a (regular) -cardinal 1if

Ly k[ § is a (regular) cardinal].

We fix for the following universal Zn‘[r sets U:’

(i.e. for
every set D < Ly : D is Zn‘b if and only if D =

{x!| <e,x> & U;‘f’} for some e € 3 ) which are given by some Zn‘fy
definition., In the special case n = 1 we write We’ev for
{xVce,xr 6 Uf’] i

For sets A ,D ¢ L'.j one says that A is ‘-reducible to D

(written A s!’D ) if there is some index e e (¢ such that for
all K e Lﬂ

WL
Ke Ao 3 H1 Hze Lo(<K,0,H1,H2>eWe A H19 Da HZE LB'D)

and

Ll

KelLn,- A3H, HyeL, ( <K,1,H,,0.> e W& A H e Da Hy s L,-D ).
6 1 2% 1012 e 1 2 6
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The index e can be communicated by writing A sz'D :

One further defines that A 1is weakly & -reducible to D
in the same way but with the sets K e L(3 restricted to single-
tons {x) (written A £ 4D ).

An equivalence relation A =£,D is defined by A sﬁ_D A

D A and the equivalence classes are called 13-degrees . One

FA
'
says that a degree & has certain properties if there exist a set

Aegn which has all these properties.

We study in this paper the o-jump operator (see Shore L20]

for a discussion of the definition) :

A' := lce,x> 13 H, Hy e I, (¢x,Hy,Hy> € Woa Hyg AaHy<s I- A)
is the jump of a set A< L, in «-recursion theory (we always
write W, instead of WeL“ }. Since we have A &, D > A' ¢ D'

this définition gives rise to the definition of the o, = jump

operator aw a' for «-degrees a .

We write O for the a-degree of the empty set and o'* in-
stead of (0')' . Observe that U1Lm e 0' and (using the admissi-

bility) U Do ¢ 0'' , Furthermore we have for regular sets A that

U1<I‘nuA’

2

= A",
oL
One says that an a-r.e. set A 1is complete if A € o' H

otherwise A 1is called incomplete.

We often use without further mentioning the regular sef
theorem of Sacks which says that every a-r.e. degree contains a

regular o-r.e. set (see [131, [22),[8] for proofs).

For a set A ¢ L, one writes ref A for the least & & o« -
such that a cofinal function f : § 9 a exlsts which is weakly
o -reducible to A . The set A is called hyperregular if

ref A = oo , otherwise A 1is called non-hyperregular.
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Observe that we have for regular A rcf A = v1cf(L°-’A> o, in par-
ticular A is non-hyperregular iff <L,,Ay 18 inadmissible.
Hyperregularity is ~-contrary to regularity- a property of de-
grees rather than of single representativs : if a 1is an a-de-
gree then rcf A is the same for every Ae a .

Simpson proved in his thesis L22] that for any y € x we
have that y = ref A for some w-r.e. A iff y is a regular
o -cardinal and UZch"’( =02cf o , The following Lemma combines
in b) Simpson's result with Theorem 2.1. of Shore £19) . The proofs
of a) and ¢) are straightforward (consider a Z2 projection from x

into e¢2pe for ¢) ).

Lemma 1 :
a) O' is a non-hyperregular o-degree iff o2cfea ¢ o .
b) There exists an incomplete non-hyperregular o-r.e. degree iff
either 02pax s o2cfe < o or o2¢fa ¢o2pe < o and there is a
regular «-cardinal x 3 c2pea such that vchL“x =ov2cfa .
c) We have 02cf1’°‘x = ¢2¢fo for every regular o -cardinal x

such that o2pa < x and o2cfa <« X.

Finally define for any structure = <Lg,B>
fn",bp t= ,4.65(1( a Z,0L set M s 6 exists such that M ¢ Lg)
L
(we write $n,p instead of fn,.\A ).

According to Jensen's Uniformization Theorem {21 we have

n o =onpf} for every n » O and every limit ordinal (3.
1
We will often use without further mentioning the egqualities
% o« = "0P for n =1,2 which are easler to show because 12 -
?

uniformization is trivial for admissible o .
We refer the reader to Dsvlin [2) for all details concerning

constructibility,
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§1. Construction of high a-r.e. degrees

At first we sketch the construction of incomplete high r.e.
gets in ORT. The original proof is due to Sacks [12). Additional
ideas of Lachlan and Soare are used in the very persplcuous version
of the construction as it is presented in Soare[23] (we refer the
reader to this paper for more motivation and detalls concerning the

proof in ORT ).

In order to bring the requirement A' € O'' in the reach of
a recursive construction we associate with a fixed fé set
S e 0'' ar.e, set BS which is defined by
<e,y» &« By & Yy's yaz-|¢(e,y',z)
where 3yYzd(-,y,2) is a fixed Zé definitlion of S over I .

Then we have for every e e w 1-S(e) = 1lim BS(<e,y>) and it
y-’k)

is enough to lnsure that for all ee&w 1lim A<e,y>) =
ydol.)

1im B(ce,yy) in order to get A' € 0'' . So for every e we set
yrw

up a positive requirement P_ : 1lim Alce,yr) = 1im B{ce,y?) .
e yow yro

Pe is a requirement which is hard to satisfy if e ¢ S since in
this case we have to put all but finitely many elements of
{ece,y>lyew}l into A .

A conflict arises because we have to satisfy as well for all
eew N, : 1C = ¢e(A) where C € 0' 1is a fixed r.e. set. The
requirements Ne are satlsfied by preserving a disagreement bet-
ween Ct(x) and ¢e't(At,x) for a suitable argument x and by
fprcing the appearance of such a disagreement (respectively of an
argument x such that ¢e(A,x)? ) on the way of preserving as
well agreements between Ct(x) and ¢e,t(At’x) for all x out
of an initial segment ¥y of © which is chosen as long as
possible (3-5 w ) .(We have written ¢e(A,-) for the function

which is partially recursive im A with index e.)
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This strategy of preservation in order to get C 58 A is on

first sight contrary to intuition. But if we preserve -as soon as
it appears during the construction- agreement between Ct(x) and
¢ e,t(At'x) for every x € y we actually try to make Cly re-

cursive. Since C = Clw is not recursive we must then have y<w

and therefore 1¢e(A,x) = C(X) .

We write Ie for the injury set of Ne which is the set of
all elements x +that are put into A -as demanded by some posi-
tive requirement Pe, with e' < e - although they destroy a
computation in A which should be preserved in order to satisfy
Ne « Then we can be a 1ittle more exact in our description of the
preservation strategy and say that although we try to make C lx
recursive we only succeed in making Ciy recursgive in Ie (X- as
before). But we can still get the wanted conclusion Yy <w even
if Ie is infinite since we need only c ¢ Ie for the argu-
ment above. Since Ie is recursive in {ce',y> e Ale' ¢« eny ewl
we can prove C ¢ Ie for every e e o during the inductive argu-
ment where one shows that for évery. eew 2C < A and

1im A(<e,yy) = 1im B(<ce,y>) (we use here that C ¢ {<e',y> e B
¥y oo ¥y

e'« e A yew) for every e ).
Observe that in writing C(g) etc. we have followed the usual

convention to identify a set with its characteristic function,

The construction from ORT works as well for 22 admissible o
(Shore [20)). But there are several reasons why this construction
does not work for the other admissible o . We discuss five of
these problems in the following and we simultaneously try to moti-
vate the new features of the subsequent construction for the case

o yo2cfe 2 ¢2po .

1) Assume that we succeed in constructing the set A in such
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a way that Ve ew (A(e) =* Bs(e)) with S and Bg as before

(define for any set M : M(e) i= Ma ((ed x Ly) 5 My =%M,
means that M, - M, e L, and M, - M, € L,).

This doesn't imply in general that S ¢, A if oe2cfe < & &

We have of course for every e e« that e €S «

Iy Vy2y,hceyre ) Ty (r<pe,yy A"

for some fixed parameter p . But if we want to reduce In the same
way questions "K s S" to questions about A' we need Fhe
existence of a bound for the set [ye| e ¢ K} of witnesses. Since
S € 0'' can't be tame- X, L, if « is not Z, admissible (see
§2.) we can hardly expect that this bound exists for all a-finite
K such that K ¢ S .

We overcome this difficulty by using in e positive way that e
is not 22 admissible. For these « there exist non-hyperregular
oo -r.e. sets and in the case o » 02cfoe > r2poc there exist even
incomplete non-hyperregular o-r.e. sets according to Shore 191.
But for non-hyperregular A we can avold the search for witnesses
Ye ¢ Take a cofinal function f : ref A - « which is weakly
ot -recursive in' A , Then we have
eeSeo VYxeref Adyaz(y=1f(x)a z >y ai1ce,z2>e A) &

{p) « Tef A x {e) A
for some fixed parameter p which implies that for every wa-finite
K we have

KeS o IplxrefAxK € A .

Convention: We say " w-recursive in" and ‘"weakly w-recursive in"
for " ¢o" respectively " Swur as usual., But there is a pro-

blem with this interpretation, see[9].

_2_1 For the considered o where a » e2cfa 2 oc2pa. it can

happen that O0'' does not contain a regular 22 L, set. According
to [11) this occurs if and only if e3¢cfe < o3p ¢ . We will con-
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struct in [11] an o where o3cfo < o3pa < o2pa < c2cfa < o &
This example 1s the most difficult one with respect to our con-
struction of incomplete high a-r.e. degrees since O0'' does not
contain a regular 22 set and we have o 2pe < toe2p e (see [6] for

the definition of the tame Zz projectum to2pa ).

jl In consequence of the preceding the plan for our construc-
tion is as follows : We take a fixed incomplete non-hyperregular
o~r.,e, set D eand make sure that A(O) =% D in order to make A
non-hypefregular. Further for e » 0 we want to have that
A(e) =* Bs(e) . As before we set up for every e € ¢ a positive
requirement Pe which tries to satisfy this condition concerning
ate)

It is crucial for the infinite injury argument that the set
of those elements which should be put into A in order to satisfy
all requirements out of an initial segment of the priority list is
not too complicated. According to point 2) this forces us to make
our priority list no longer than o2pa« because only for a-~finite
sets K of a-cardinality less than o2pa 1t is guaranteed that

Bon K x L, 18 o ~-recursive. It 1s not easy to work with such a

S
short priority 1ist in an infinite injury construction since the
o -recursive approximation to this list is very weak if e¢2pe <
e2cf e . We introduce a clause b) in the construction which makes
it possible to control in many situations those unwanted injuries

which are merely due to bad guessing of priorities.

4) We want to prove by induction on the priority p(e) that
for every e we have A(e) =% B(e) . There is a problém in the
case that p(e) 4is a limit ordinal since the induction hypothesis
doesn't imply then that U (A(i)| p(i) < p(e)} é‘LJ(B(i)I
p(1) < p(e)} and we can't control the degree of the injury set
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Ie . We use the fact that this situation is only possible if

o2cfoa > w since ov2¢fe » 02pa . 02¢fa > w implies that there

are enough fixpoint stages in the construction so that it is in

fact not necessary to determine the degree of the injury set Ie B

5) There is a problem with the preservation strategy of
Sacks in the case that there are non-hyperregular injury sets Ie
(which will occur in our construction since A(O) is non-hyper-
regular). If we want to preserve then agreements C(x) = ¢e(A,x)
for x <y these computations may altogether use an unbounded
part of A even if y < o« , Since this would endanger the positive
requirements of lower priority we have to be much more careful with
preservations. For this sake we introduce "e-fixpoints" in the
case 0 2cfe >w . In the case o2cfea = we divide e into
ref D many blocks as in Shore [18] (doing the same thing in the

case o02cfa 2 ¢2Ppa > w would be troublesome because of 1limit

points in the priority 1ist).

Theorem 1 : Assume that o > o2cfe 202pe . If C and D
are «-r.e., sets such that C ¢q D and D is non-hyperregular
then there exists an w-r.e. set A such that D s, A, C *u A

and A' =, O'' .

The rest of this chapter 1s devoted to the proof of this
theorem. After some preparations we will describe the construction
of the set A for the case o2¢foa » w . We will show in the
Lemmata 3,4,5 that this set A has the properties we want. The
construction for the case e2cfa =w is rather close to the con-

struction in ORT and will be discussed briefly afterwards.
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We fix for the following regular a-r.e. sets C,D € ¢ such
that C ¢, D end D is non-hyperregular. (c, )Q‘ o and
(Dg)g< « @ere in the following fixed w-recursive enumerations of
these sets.

Take a 22 L, set 5 ge s8uch thet S e O'' and fix a
A, fornula Y such that g ¢ S e I, bk3yVxV¥p,yx) .

Define the o-r.e, set B ¢ a xo as follows :
«@,y* 8 B 1 ((p=0 =& yeD)v (p>0 &
Lel.': VY' sy I x 'IW((i.X'lx))) .
Then we have for @ > O :
pEC L E Y x¥(R,8,x)) < o and

oL .

pes »iylep,yr & BY

ABes »fylcpiyr ¢ B}
Fix an a-recursive enumeration (Bu,)(7< « of B for the
following.

For any set M and any X & Ly we will use in the following
M(x) as an sbbreviation for M a ({x} «x La) )

A, will be the set of elements which have been put into A

before stage o .

Lemma 2 : Assume that K 1s an oa-finite set of " o-cardi-
nality less than e2cfa . Further assume that W 1is an e&-T.e.
set such that W(x) is regular for every X & K . Then
V) {w(x)| x ¢ K} is regular.

Proof : FPix an enumeration (W ). . ©°f W ., For given
B < o define a X, function f:K=»>ea by
f(x) :=/ur(w0. n w(") n Lg = w(x)n Lp ) . There exists a bound
¢. for Rg f and we have U{W(x)lxel{}n L,ec W .
0 Qa cro

In the following we will write x & We « for

1

Le B $(ce,x?) where ¢ 1is a fizxed %, L, definition of

Lo
U1 .
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For the considered o-r.e. sets A and C and their
enumerations (A ), ., and (C.), .o we will say that

at stage @ there exists a computation of '"C <® A" for

"K & Ly ~ C" with negative neighborhood H if

I H' ¢ L,(<K,1,H',H> eWg ,aH' s A aHel, -4, .

Case 1) : o » c2cfe 3 o2pa and o2cfo » w .

ihe next definition is the fixpoint device which was mentioned
in point 5) of the motivation. '

A 1s an e-fixpoint at stage 223 :®

for every % < A there is a «' such that T s =' ¢ M and there
is a stage o < A such that at stage o ° there exists a computa-
tion of "C <® A" for ny - CA ¢ L, - C" with negative neigh-
borhood H and we have H & L, - Aﬂ .

We say that this e-fixpoint A is inactive at stage (3 if
CA!\ A # ca n R .

The "restraint function" r : ax o 5 o will play a similar

role as in Soare [23] and is defined by cases :

Case 1!: There exists a stage o< {! such that some A <« o is an
inactive e-fixpoint at all stages in [o,(3) i= fx | v s« «p0) .
Take the least such o . Define r(e,) to be the least A <« ¢
which 1s an inact}ive e-fixpoint at all stages in T.cr,(!].

Case 2): Define r(e,8) to be the union of all e-fixpoints A at

f otherwise.

We fix an 1-~1 22 Lo function g which maps o2pa partially
onto e . g'1(e) will be the priority of the requirements P,,Ng
for e € ¢ . Using the assumption o2pe so2¢fa it is easy to
see that gf"(x- n dom g) is a-finite and B(<¥) 44D for every
¥y <o2pa  where pl<¥) .o U { se) | g'1(e) < ¥yl .
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We further need an a-recursive approximation function g ()
(of two arguments) with a-recursive domain which has the property
that for allly < or2pa there exists an ordinal v, < o such that
for 11 x & yn dom g and all ¥ 3> ¥, we have g¥(x) = g(x) .
In addition we want to have that
(1) g(x)d & oy Vo oy g7(x)) and
(2) V 1imits A <a(g(x)$ & Joge A Vo(ogeocd » &(x)4))

and that g%(¢) is 1-1 for every o <o ,
Because of the distinguished role of the requirement PO we
further need that g(0) ¥ 0 and g%(0) ¢ 0 for all o < e .

The definition of an approximation function g'(-) with these
properties 1s routine.

Observe that in general we can't get the following property
which one would really like to have :
Vy <« o2padaVazeyV o 2o g’(z) ¥ alz) )
(see the points 2) and 3) ).

Construction :
At stage © we conslder every <f3,y> € B, such that g”(z) =3
for some 2 < o2po .
If (ﬂ,y) is not already an element of A, we put <p,3> into A

at stage o if
a) <fyy> 2 r(g%(z'),¢) for all z' € (z+1) n dom g° and

b) <f,y»3>%* for all =x <o such that not (z41) n dom g% ¢

(z+1) n dom g* .

End of construction.
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For a negative requirement Ne there are in general un-
boundedly many stages ¢ where some positive requiremenf Pe' of
truly lower priority (i.e. gf1(e) < g-1(e'))'th1nks that 1t may
injure N, Dbecause of the weak approximation property of g°(:) .
The following ILemma shows that in some spécial situations these
unwanted injuries will not occur because of clause b) in the con~
struction.

In the following we always write rr for the least =¥ such

that Ve Vxe y o dom g (g”(x) » g(x)) .

Lemma 3 : Assume that y <o2pa , T @ sT ,
¥ n dom g" = Yy n dom g and 2z €& yn dom g . If at stage t an
element <ﬂ,6> is put into A such that <f,8> < ¢ and
<Byd> ¢ r(g¥(z),t) then there exists a 2z'< 2 such that

z'e y n dom g and g(z') = ﬁ .

Proof : According to the construction there exists a z'
such that g%(z') =~ (# . Since clause b) does not restrain <(,§>
at stage ¥ we have (z'+1) n dom g% & (2'+1) n dom g% . We
further have z' < 2z because <f3,d» ¢ r(g'(z),T) and «(3,4> is
not restrained by clause a) at stage T . Since ¥ %20 2 ﬁr it
follows that (z'+%) n dom g¥ = (2'+1) n dom g and
gt ((z'+1) ndom g ) = gP ((2'+1) an dom g ) . In particular we
have that z' ¢ dom g and g(z') = g (z') =Q .

The following Lemma will solve the problem which was described
in point 3) of the motivation-: In the case where the priority
g'1(e) of some negative requirement N, is a limit ordinal we
have problems to control U (A(i)| g-1(i) < g'1(e)} and the
injury set Ie . Lemma 4 gives a sufficlient condition for a stage
o that some computation which exists at stage o will not be de-

stroyed later. It is lmportant that this condition can be expressed
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by using Just U (B(i) 1 g'1(1) < g'1(e)l , not U [A(i) |
g-1(i) < g'1(e)} . A fizpoint argument in Lemma 5 will show that
this condition will be met by an unbounded set of stages.

The properties of ¢2pe and the assumption o2po ¢ o 2cfa
imply that for every y < o2pe there exists a stage ' 2 ty such
that for every z € yn dom g
353 2( A 1is an inactive g(z)-fixpoint at all stages o2 d ) >
32 (A 1is an inactive g(z)-fixpoint at all stages o 2 7 ) .

In the following we write "X' for the least such v 2 'cX .

We further define p<¥) .- v [B(e)l g (e) < b's } and
Bg,"Y) = %) A B, .

Lemma 4 : Assume that @2 't‘y’ is a stage such that
¥y ndomg¥ = yndomg, B((r'“x) ne =384 ae  and no element
x < sup {r(g(z),s) |z ey n dom g} 1is put into A at stage ¢ .
Then we have for every 2z € yn dom g and for every stage t 20 @
r(e(z),x) » r(g(z),r) and no element x < ¢ with

x < r(g(z),t) is put into A at stage T .

Proof : Induction on =z & y n dom g .
Assume for a contradiction that some x < ¢ with x < r(g(z), 0’0)
i1s put into A at stage 0'0 .
By Lemma 3 there 1s some 3z' < 2z such that z'e dom g and
g(z')*  where x = <@,d> for some § . Therefore we have
xe 3% ae = B((:x) ne . We consider two cases :
a) x was not put into A at stage o since x < r(g(z''),o)
where z'' € (2'+1) A dom g . By our induction hypothesis we have
r(g(z''),r) ¢ r(g(z"),cro) = r(g%(z'"), 0'0) and x will not be
put into A at stage ¢, either.
b) x was not put into A at stage @ since there exists ¢'<@

- 1
such that o' > x and not (z'+1)n dom g7 e (z'+1) n dom g? .
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Since (2z'+1) n dom g” & (z'+1) n dom g0 x is not put into A

at stage o) because of clause b) in the construction.

1t remains to prove that r(g(z),*) > r(g(z),r) for all
T 2 ¢, Assume that there is a minimal stage °b > ¢ such that
r(g(z),Gb) < r(g(z),o) . By the preceding no element y < r(g(z),o)
will be put into A at some stage % where o ¢ T ¢ o .
r(g(z),ab) < r(g(z),6) is therefore only possible if r(g(z),ob)
is defined according to case 1) of the definition of r whereas
r(g(z),) is defined according to case 2). Since r(g(z), %) < @
no element y < r(g(z),ob) will be put into A at any stage
LRI Otherwise assume that ) is the minimal such <% . Since
r(g(z),ub) is defined according to case 1) we have r(g v1(z),%)
= r(g(z),ob) >y and y can't be put into A el stage oy as
it was shown in the first part of this proof. Thus we have proved
that some A < o 1s an inactive g(z)-fixpoint at all stages in
[Ob,u) whereas there is no inactive g(z)-fixpoint at stage @ .
Since we have Ty' &« this gives a contradiction to the
definition of <%, and we have proved that r(g(z),x) 2 r(g(z),r)

for all © »a .

Remark: If o satisfies the assumptions of Lemma 4 then no ele-
ment x < sup Er(g(z),0) |l z ey n dom g } is put into A at any
stage T » ¢ . Therefore these stages ¢ play a role in this proof
which is similar to the role of "true stages" (see Soare [23]) in

the proof in ORT.

Lemma 5 : For every e € o we have

a) ~C ¢S5 4 and
b) A(e) = B(e)

Proof : For éonvenience we prove a) and b) simultaneously by
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induction on g'1(e) . Assume for the following that g—1(e) =z
and that a) and b) are true for all e' such that g'j(e') < 3z
Observe that this assumption does in general not imply that
V) [A(e')l g'1(e')< z} =" U {B(e')l g_1(e') <« z3} if we have
o3fo ¢« Z , which is of course possible (see point 3) of the
motivation). But we get the information that U [A(e')l
g-1(e') ¢ 2z} is regular : Since every B(e') is regular we get
from A(e') =* B(e') that every A(e') is regular as well, Then
Lemma 2 implies that U [A{®')1 g "(e') < 21 1is regular. This
is the only fact which we use from our induction hypothesis so that
in the case c¢1pa = a we don't need an induction at all (this is
rather surprising if compared with the situation in ORT , seel23]).
For ¥yi= z+1 we write M for the set of those stages o
where the assumptions of Lemma 4 are satisfied. We want to prove
that M is unbounded in o by using the regularity of A(<z) =
Vit g e cz) .

For ln ¢ o define A = px > A, (Vye (((z+1) o dom g’n)

n+1
~domg)d s (e¥M) A Bl 2, =20 2, A
alezdn o =al®y .

By using property (1) of g"(+) and the fact that 3¥) ana

A(‘z) are regular o-r.e. sets it is easy to see that An+1 < o
exists. For every given 10 < o with RO > ty' define then
A= sup [Rnl newl . We have A ¢ « since the function
n w ln is fz Ly - It follows from property (2) of the appoxi-

mating function and Lemma 3 that 2 e M.

We write IN for the a-finite set of all =z' < z such that
some A < o i3 an inactive g(z')-fixpoint in f{r,a) for some
T <o ([r,x) := fv'l ¥ ¢ v <« «} ) . Then we have that r(g(z'),*)

is constant in [ob,u) for every 2z' € IN according to Lemma 4 ,
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where % is the least element of M . Therefore it is enough to
show sup (r{g(z'),e)!l c e M Ao z' € ((2+1) ndomg - IN)} <
in order to prove that sup {r(g(z'),e) | ceM .
z'e (z241) n dom g} < & ,
Thus assume for a contradiction that

Vecowdoe M32' € ((241) n dom g - IN)(T < r(g(z'),o)) .
This implies that for every K e I,
Kel,-C & JoceMIz'e ((3+1) n dom g - IN)

(sup K < r(g(z'),”) A K ¢ Ly = Cp)
The part "o " of this equivalence is obvious from our
assumptions. For a proof of "" we assume that o,z',K do
satisfy the right side. By Lemma 4 we have that r(g(z'),¢) is
defined according to case 2) of the definition of r since
12' € IN . Therefore there is at o some g(z')-fixpoint A =
r(g(z'),o) such that sup K < X and A 18 not an inactive g(z')-
fixpoint at o which means that C, n 2 = CAI\ A « By Lemma 4
there is no stage =« LE s such that an element y < A 18 put into
A at stage . Therefore there 1s no y < A and = » ¢ such

that y ¢ C,‘ - C, since otherwise some ' e« ) would be an in-

+1
active g(z')~fixpoint in [x,x) , contradicting 1z' e IN , Thus
we have proved that C_,n A =C n )2 which shows that K ¢ L, - C .
The equivalence which was just proved implies that ¢ y B(<3’)
since "o ¢ M" can be expressed «-recursively in B(< ¥) » But
this is absurd because we have B(<3') ¢4 D . Thus we have proved

that S := sup {r(g(z')yo) l ce M a 2' € (2+1) ndom g} < &« ,

In order to prove a) assume for a contradiction that C si A .
For Ar'l <o we define 2;l+1 <a by

Anaq 1= pro> lﬁ((the gsame as in the definition of Rn+1) A

C'r n l!'l =Can Al'l a (at stage v there exlsts a computation of
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ng ¢® A" for 2! = C e L, - C" with negative neighborhood H
o n ol

such that H g L, - 4)) .

We have again that ' := sup [Ar'l\ new} < a for every
given A} < = since the function n e Al s Zz definable and
if we start with some 2(') 7'cx‘ it is obvious that ' ¢ M and '
is a g(z)-fixpoint at 2a' . Now it can't be the case that
r(g(z),») 1is defined for some o & M according to case 1) of the
definition of r because this contradicts C <3 A (use Lemma 4) .
This implies that r(é(z), 2) = 2 for all these stages A e M

which is absurd since we have proved just before that S < a.

For the proof of b) we choose o eM such that o3 > S . It
follows from Lemma 4 that A(e) n 0’ N A(e) no, . Further we
have A(e) -0y = B(e) - o by the definition of S which to-

gether shows that ale) _«ple)

The proof of Theorem 1 is now very easy. We get 2C s“A
and D = B(O) = A(o) ¢y A from Lemma 5 . In order to show
S5 &yA' we fix a cofinal function f : ref A 9 o which is weakly
o -recursive in A (A is non-hyperregular since D is non-
hyperregular and D %, A ). Lemma 5 b) implies that for every Bea
BesSew Yx<refA IS £(x) (R8> e A)
(we may assume without loss of generality that 0 € S )

There is a parameter p €& o such that for all @ and x
x <ref A o 38> £f(x) (1¢B,8> €A ) & <p,x,B> € A' . Then we
have K $S & (p) nref A x K ¢ A' .,

Concerning the computation for "K ¢ L, - S" we observe that
"k € L, - 8" can be written as a ]T2 formuls. Since we have
R2 swaA' (see the first part of the proof of Theorem 2 b) in

2
§2.) this TT2 fact can be expressed a-recursively in A' ,
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Case il) : a » o2cfa = 02pe = w .,

The proof of Theorem 1 1is simpler in this case since the
problem at limits of the priority list doesn't occur (see point 4)
of the motivation), The construction is closer to the one in ORT
[23] but we have to be aware of the other points in the motivation
and the fact that we can't use the regularity of A as it is done
in ORT ("true stages").

According to point 5) of the motivation we fix a strictly

increasing cofinal function f : ref D -» o which is weakly o-

recursive in B(o) with an index e . We define then
f7(x)d o Jrnee 3y IH (<x,y,H> & Wo o H 200} x I, - Ag_o)).
: o

If f°(x)l we go to the least such = so¢ and choose <x,§,ﬁ>
minimal (with respect to a fixed canonical A1 L, well ordering

£
say that f%(x) = ¥ and H is the negative neighborhood of this

‘4 : (0)
of L,) such that <x,y,H> ¢ W aHe L, - A, . We then

L e,r

computation.

Further we fix a Eé L, function g such that domg = w
end g maps w 1-1 onto o . We have in thls case a very nice
approximation g°(:) to g where dom g'(+) = «w x w and
YVnc<w Jo¥VmsnVesre (g¥m) > g(m)) . We require further
that g%(+) 1is 1-1 for every o and that “g(0) # g'(0) ¥ 0 for

all o .

Analogously as in Soare [23] we define functions 1 and r

relative to fixed enumerations (C,). o and (Agly ( o -

For e,o € o choose 1l(e,r) ¢ ref D maximal such that for
all x < 1(e,v) the following holds :
There is a stage T <o such that f%¥(x) ! and the negative
neighborhood H of this computation satisfies ﬁ € Ly,- A, and

at stage * +there exists a computation of "C si A" for
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"Kx,¥ t= £¥(x) -~ C, € L, - C" with negative neighborhood H and
H satisfies H e L, - A, {(we then write % for the minimal such
* ¢o and H for the minimel such H ) .

For u(e,x,o) := ,ax(ﬁ ey A fle y ) we then demand in the case
that o is a successor stage that no ¥y < u(e,x,e) was put into

A at stage co-1 .
Finally we demand (for any ¢ ) that C; n £7(x) = C, n 9(x) .

If we then have for this 1(e,r) that 1(e,o) < ref D and
for x = 1(e,s) all the conditions in the definition are satis-
fied except the last one (i.e. Cx n %(x) = C, n £f%(x) ) we say
that e 1is inactive at stage o and define
r(e,0) := sup fu(e,x,o) | x ¢ 1(e,0)} .

Otherwise we define

r(e,0) := sup {u(e,x,0)l x < 1(e,0)} .

It is convenient to choose the universal enumeration (we)e<q

in such a way that W, = f so that we have 1(0,¢’) = r(0,0) = O

for all o .

Construction :

At stage © we consider every <f,y> € Er+1 such that
< Rg g”(+) . If <R,y> 1is not already an element of A, we put
@,y> Into A at stage o if

Bry> 2 r(g%(m),0) for a1 m ¢n where g%(n)=( .

End of comstruction,

The claims of Theorem 1 follow as in case i) from the

following Lemma .
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Lemma 6 : For every n & w we have

a) A(g(n)) ___"B(g(n)) and

b) 1c <&M 4,

Proof: Induction on n ., a) and b) are trivial for n =0
since W, = 4 and for all v g°(0) 2 0 . Assume for the following
that n»y» O, )

a) We get from the properties of B and the induction hypothesis
that a(¢™) .o V) {A(e) [e(e) < n} is regular. Choose o, such
that Vo3 % Vo en (g"(m) 2 g(m)) and define

Tn = {o >a, | o is a successor stage and an element y is put

into a¢R) gt stage o-1 such that y a A4™) =y 4 A(;“) ).
Define I := f{m<n |30 @ T, ( g(m) 1is inactive at ¢ )} .

Then there 1s a stage o, 3 0 such’ that
Voir ey, Vmel(r(gn),r) =r(gln),o)) .

Take further any m e (n+1)-] and assume that sup { r(g(m),e)|
ce Tn} = o, Then we have supf{ 1(g(m),e¢) | o e Tn] =ref D
(by the definition of rcf D) which implies the contradiction
c s“A(‘n) ¢o, D . Thus we have shown that sup {r(g(m),o) |
me<naoaoe Tn Y ¢ o which is used for the proof of

A(g(n)) —* B(g(n)) as usual.

b) © sﬁ(“) A implies that sup t1(g(n),0) lo @ T,} = ref D

which is absurd according to the preceding.

The proof of Theorem 1 is now finished. We have proved

Theorem 1 in order to get the following corollary :

Corollary : Assume that e2cfa 3e02pa ., Then there exist

incomplete high o-r.e. degrees.
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Proof of the corollary: The case o = 02cfo 1is proved in

Shore [203 . For the other admissible o there exist incomplete
non-hyperregular o -r.e. sets D If o2¢cfe 3 ¢2po according to
shore [19] (see also [11) for another proof of this fact). Apply

Theorem 1 to this set D and en a-r.e, set C & O' .,

§2. The degree 03/2

For those & where incomplete non-hyperregular o-r.e.
degrees exlst there exists a distingulshed o-degree between ot
and O0'* for which we write 03/2 . We will show in the following
and in [11] that there 1s a close connection between 03/2 and the

Jump of non-hyperregular o-r.e. degrees.

Lemma : Assume o 1is such that incomplete non-hyperregular
o -r.e, degrees exist., Then there is an o -degree 03/2 such that
a) O <o 03/2 <, o
b) 0-‘1’/2 is the greatest A2 L, degree (1.e. 03/2 contains a

A2 L, set and D sq03/2 for every A,Ly set D )

c) 03/2 is the greatest tame- X, L, degree (1.e. 03/2 contains
a set S such that {K ¢ L | K ¢ 8} 1is fz L, and we have
D £, 03/2 for every set D with this property )

d) UéLu tua 2 O 03/2 $, 2 for the set UZL“ e0'' and any g .

Remark: If « 1is 22 admissible then O' 1is the greatest
A2 L, degree and O'' is the greatest tame 22 L degree., Thus
for the ot of the Lemma they meet together in the middle, one

coming from below, the other coming from above.
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Proof: &H:= <L,,0> with CeO' regular and a-r.e. is inad-
missible.A set S & L, 1is A,L, (tame- ¥, L“) if and only if
S is A1‘:fr (tamg- 2'1‘.(,). Friedman [ 3] observed that for inad-
missible (3 a greatest A1 L(; (B-degree exists which lies strictly
between O and O' and which is an upper bound for the tame-
21 L(; degrees, This result can't be generalized to all inad-
missible structures <Lﬂ,D> even if D 1is regular over ILpq:
The structure % =<¢L L,C> with C € O NOL—r.e. and'regular is
*’Nf: cotp®l < Al bt o

W
inadmissible (we have w = olcf »

is the greatest A1‘-‘{r degree . But Friedman's argument works as
well for those inadmissible structures ¥ = <Lp,B> where

¢1p!'ﬂ < (3 . ‘According to Lemma 1 we have o¢2poa <« o for those
oo where incomplete non-hyperregular o-r.e., degrees exist. Since
we have 0‘1p‘£’ol =eo2po for the considered structure B = 4L,,C>

there is no problem with the additional assumption in this case,

Take a A1:fy set M e o out of the greatest A1‘.£» B-degree
r and define 03/2 4o be the o -degree of the A, L, set
Cv M 1= {2x1xeCyul2x+1 )1 x e M}. Then we have for every
set S ¢ L, that S 1s (weakly) ¥r-recursive in M if and only
if S is (weakly) oa-recursive in C v M ., Therefore we can prove
a) and b) for the so defined o -degree 03/2 by using the corres-

ponding properties of the :6-—degree I

In order to prove c) it remains to show that x contains a
tame-~ Z'1 Yy set. In the case o 2cfeo 2 e2p o this follows from
Theorem 1 in [97 . If we have o2cfe < 02pe then & is
strongly inadmissible and tame- f1 ¥> sets which are not of de-
gree 0O may or may not exist for these oI , depending on the
fine structure of ¥ as it is shown in §2 of [9] . However in our
situation where incomplete non-hyperregular o -r.e. degrees exist

we have an o-cardinal x 3 ¢2pe such that o2efl%y = o20f o
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according to Lemma 1 , Therefore we can apply the construction of
Lemma 5 . in [9) and get a tame- 2'1‘;{, set of degree r .
Property d) follows from Theorem 2 in [91 .

Remark ¢ The greatest A2 L, and the greatest tame~
2'2 Ly degree can be determined for the other admissible o as
well, The results might be useful for the study of 1'2 L, de-
grees,

For o with o2cfea < o2pe = o« we have that the greatest
A2 L, degree is equal to 0'' and the greatest tame- 22 Lo
degree is equal to O' (thus these two degrees have switched their
places compared with 2'2 admissible o ),

For the other o with the property that O0' is the only
non-hyperregular o -r.e. degree we have that o2cfa < o2pa < o
and in this case there is a greatest A2 L degree strictly bet-
ween O!' and O'' whereas the greatest tame- fz degree 1s either
equal to the greatest 42 degree (1if chfL"(o-Zpu) =o2cfa) or
i8 equal to 0' (otherwise) as one can see by using Lemma 1
and arguments of §2 in [9] .

For all o which are not 2'2 admissible we have that the
greatest A2 L, degree x has the property tha}t UZL‘ ta 2

r ¢, a for every a-degree a .

The following rather technical Lemma will be the heart of the
proof of Theorem 2 . It generalizes an observation of Shore
(Lemma 3.3 in{18]) which also has important applications in (3-

recursion theory (see Lemma 3 , §2 in [9] ).
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Lemma 8 : Consider a structure = <Lj,By and a limit
ordinal 2 «p such that c1cf*'($ < g*’ and «101"’) < -
1,4 91,4
(see §0. for definitions).
If D=L, is regular over L, and (K ¢ L,JK < D} is f1‘£,.then

{KeILlKeD, -D} is 2116 as well,

Proof: The same trick as in Shore [18] is used. Fix a zZ,%
definition V¥ of the set {K ¢ LK & D}, a cofinal Z, b A
function p : «1cf£1 -+ 2 and a cofinal Z, J function
q ¢ o-1cf£(; » A . Define a 1T1'£ set M .C.c1cf{':\ x e-1ef£($ by

<y, el e VYxe Lp(x) (xeD _’<I'q(6)’1'q(6)" B> k
L3k (xeKk a%EK))D.
Then we have in fact M & Ly and thus get a 71 $ definition
of {Ke L,AleLa-D] as follows :
KeLya Ksl, -D& 3¥5(<¥,d';e. MaK st(y)A KeLq(J)A

<To(s)rlq(s) ® B> ELYxe K13k (xe K aW(K)]),

PN

Theorem 2 : Assume that o2cfea < oc2pa and a is an in-

complete o-r.,e, degree. Then we have

a) a' =0' if g is hyperregular (Shore) and
b) a' = 03/2 if a 1s non-hyperregular .

Proof ¢ a) 1s contalned in Shore [20) ., It follows
inmediately from Lemma 8 : Choose ¥ :=¢L,,C> with C ¢ O'
«-r.e., and regular, A:=o, De a' regular and 11 < DLy,A»

where A € g is a-r.e, and regular .

b) Assume that A ¢ 8 is o-r.e., incomplete, regular and
non-hyperregular, Then we have o« > v1cf<1""‘ncl Y o1p‘I’°"A’oL
according to Shore [18] (this fact follows immediately from Lemma

8 ). For t := 1ot ParA o can find a }'1<L.,.,A> function ¢
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which maps & 1-1 onto ® . Take any set S which 1s defined by
a Z, formula 3y Yz¢(x,y,2) over L, . Then we have
x¢sS o Vy 3zi1d(x,y,2) @ Vyexw 373z (g(§) =y &

1¢(x,¥,2) ) & fe} »w x {x} e A’
for some fixed index e . This implies S e A' (it is this fact
which is actually proved in Theorem 2.3. in [20]). We get then
03/2 $, A' from Lemma 7 d).

In order to get 03/2 =, A' we show that A' |is A2 Ly
(this implies A' ¢, 03/2 by Lemma 7 b) . Since A' is obviously
2'2 L, 1t is enough to show that A is |T2 L, - We do this by
showing that K := £f[A'] is W, L, where f : « e1p<Tartoy
is a 1-1 21 ¢LysA> map. We apply Lemma 8 to the structure
¥ :=¢L,,C> with C e 0' a-r.e. and regular,

A 5= o'1p<L°L’A>oL and D := A , The assumptions of the Lemma are
all satisfied in this situwation :
We have elofhh =o2cfa < o2pn = ff:u i v10f$l ¢ v2cfa < ?1{:1

(take a cofinal 2'2 Ly function q : ¢2cfa 2o ; f e q 18 then

cofinal in A because according to Shore [18] we have
gﬁ&x"b <Ly A>

is bounded for every y < ),

= olp o ¢ glof Ty , therefore £ 'Rg £ o vl

X 1s regular over L; (because Rk 1s I, <Ly,A? ) and

¢Lyyh> ).

{KeI,JKe K}y s Z <Dy,A> (since 1< olcf
Therefore (K ¢ L,1K s L, - X} is Z1‘£y according to

Lemma 8 which implies that £ is TT2 Ly o
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§3. Summary
Two factors determine the results about the jump of o-r.e.
degrees : the relative size of o02cfa and 02pe and
the existence of incomplete non-hyperregular w-r.e. degrees.
Therefore we distingulsh four different types of admissible
ordinals e :
ji). o2cfa 2 0r2peL and there exist no incomplete non-hyper-
regular o-r,e, degrees /

(these are exactly those o which are 2’2 admissible)

(2) o2cfo 3 02pa and there exist incomplete non-hyperregular
o -r,e, degrees

(these are exactly those e which satisfy o » ¢2cfe 2 ¢2p « )

{22 oc2cfa < or2pat and there exist incomplete non-hyperregular

o.~-r.e, degrees

(4) oc2cfa ¢ 02pat and there exist no incomplete non-hyper-

regular olL-r.e. degrees .

For the types (2) and (3) there exists the distinguished
degree 03/2 between O!' and O'' with the properties that have

been described in lLemma 7 .

For o of type (4) we have ga' = 0' for every incomplete
o -r,e, degree g (Shore [20]).
For & of type (3) we have for incomplete oa-r,e, degrees a
that @' = 0' if a is hyperregular respectively a' = 03/2 LAf

a 1s non-hyperregular according to Theorem 2 .,

For o of type (1) and (2) there exist incomplete o-r.e.

degrees a such that a' = 0'' according to §t. (see Shore [20]

~

for type (1) ).



268 WOLFGANG MAASS

In particular we have thus shown the following :

Corollary: Assume that « is admissible. Then there exist

high incomplete a-~r.e, degrees if and only if o2c¢fe 3 o2po .

We will continue the study of type (1) and (2) in [11]1, It
turns out that (2) is the most interesting type as far as results

about the jump of a-r.e, degrees are concerned.
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