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1 Introduction

Several applications of learning in artificial intelligence use a predicate logic
formalism. The theoretical study of efficient learnability in this area, in the
framework of computational learning theory started relatively recently, con-
sidering, for example, the PAC ( Probably Approximately Correct ) learn-
ability of logic programs and description logic ( see Cohen and Hirsh [6] ,
the survey of Kietz and Dzeroski [11] and the further references in these
papers ).

In this paper we discuss a model theoretic approach to learnability in
predicate logic. Results in this direction were obtained by Osherson, Stob
and Weinstein [15]. It is assumed that there is a first-order structure given.
Instances are tuples of elements of the universe of the model, and concepts
are relations that are definable in the model by formulas from some pre-
specified class. The goal of the learner is to identify an unknown target
concept in some specific model of learning. ( A standard example is that of
a finite database containing data describing the relations father and mother.
The goal is to learn the relation grandparent, given positive and negative
examples of this concept. ) Properties of classes of definable sets are well
studied in model theory. It is interesting to note that one of the several si-
nmltaneous sources for the notion of the Vapnik-Chervonenlds dimension (
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VC-dimension ) that plays a central role in computational learning theory is
the work of Shelah [17] in stability theory. In view of the strong connections
between the VC-dimension and PAC learnability, model theoretic results on
the VC-dimension have direct implications for learnability.

Learnability also raises new types of related questions as well, for in-
stance when one studies learnability with different kinds of queries such as
equivalence queries. Another general question ( that is not discussed in the
present paper ) is the complexity of finding a hypothesis that is consistent
with a set of positive and negative examples.

The results of this paper give a rough classification of the difficulty of
learning problems depending on the language, i.e on the number and arities
of its predicate and function symbols, and on the number of quantifiers
allowed.

Given a first-order language £, a class ~ of formulas over £, a model M
and a model of learning such as PAC learning, we consider the problem of
learning a target concept in M defined by a formula ~ E ̄  ¯ We look at the
following question. When is the complezity of this learning problem ( such as
the number of examples or the number of queries ) bounded independently
of the size of M ? If this is the case then ~ is called an easy class of
formulas with respect to the learning model considered. As we do not take
into consideration any additional information that might be available about
the database (besides the arities of its predicate and function symbols) , 
is to be expected that the range of positive results is rather limited.

If the language contains at least one predicate or function of arity greater
than one then a standard example described in Section 2 shows that the com-
plexity of learning quantifier free formulas in the learning models considered
can grow with the size of the universe. Hence positive results about easiness
in the sense mentioned above can be hoped for only if the language contains
only unary predicates and functions. Even in this case, if there are at least
two unary functions, then the example mentioned above can be modified to
show that a positive result does not hold for formulas that contain at least
one quantifier. It turns out that in the two cases left open by these consid-
erations one can indeed prove positive results. These cases are discussed in
Sections 3 and 4.

In Section 3 it is shown that if the language contains only unary predi-
cates and functions then the class of quantifier free formulas in conjunctive
normal form , having bounded size , is easy for learning with equivalence
queries. The algorithm described uses an idea of Blum [4] ( introduced in
the context of learning with infinitely many attributes ) to handle
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negations.
In Section 4 it is shown that if the language contains only unary pred-

icates and a single unary function then arbitrary first-order formulas of
bounded size are easy for PAC learning. In view of the general results
on PAC learnability and the VC - dimension this follows from the following
known result in model theory: the VC -dimensions of the concept classes
involved have a finite upper bound ( Korec and Rautenberg [12], Shelah [16]
) . Here we give a proof of this result that provides an ezplicit ( although
very large ) upper bound for the VC - dimension and uses only finite com-
binatorial methods that are useful in the study of finite models in general.
These are Ramsey’s theorem, Fraissd - Ehrenfeucht games, a result of Mar-
cus [14] and Gaifman [7] on local properties and a result of Laskowski [13]
on definability with a single parameter (see also Shelah [16], Baldwin and
Shelah [3] ) . We note that some related questions on definability in finite
models are discussed in Babai and Turin [2] and Hella, Kolaitis and Luosto

2 Preliminaries

A first-order language f_. contains predicate or relation symbols P1 .... , P~
and function symbols fl,... ,f, ¯ Terms and atomic formulas are as usual.
A literal is an atomic formula or its negation. A structure or model for £ is
a pair M = (A, I), where A is a set and I is the interpretation of predicate
and function symbols in £ as relations and functions on A. For the results
of this paper it does not have to be assumed that A is finite. A formula 99
with free variables from x = (at,... ,an) is written as 99(at, ...,an) 
99(x) . The compleaity of a formula is the number of symbols it contains. If
99(x) is a formula and M is a structure then the relation, or concept defined
by 99 on M is C~.M := {a = (al,...,am) ean : M~99(a)}.
More generally, let 99(x,y) be a formula, where x = (zl, ..., an) and 
(91, ...,ym) ¯ Thus the free variables of~ are from at, ...,a~,yl, ..., y~ ̄  Here
a 1, ..., a~ are called the variables of 99 and Yt, -.., Ym are called the parameters
of 99 . We write par(99) = m for the number of parameters of 99 . Then for
b = (bt,...,bm) E m , th e relation or concept defined by 99 on M wit h
parameters b is C~,,b,M := {a = (at,. .. ,a~) E n :M ~ 99(a, b)

Let ¯ be a class of formulas. Then the class of relations defined by
fornmlas in @ on M , or the concept class corresponding to eli on M is
C¢(M) :- {C~.b.M : 99 E ~,b E Apar(~)) ¯ Thus, we consider the class of
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concepts defined by formulas in ~ with all possible choices of the parameters.
It will be assumed that formulas in ~ have the same number of variables,
although they may have a different number of parameters.

Now we give a brief description of the learning models considered in this
paper. For a generM introduction to computational learning theory we refer
to Kearns and Vazirani [10] . In the general framework a learning problem
is specified by a domain X and a concept class C consisting of some subsets
of X. Thus in our case the domain is A’~ for some n, and C is of the form
C~(M) as above. It is assumed that there is an unknown target concept CT
belonging to C. The goal of the learner is to identify the target concept.

In the model of learning with equivalence queries ( Angluin [1] ) the
learning process consists of a sequence of equivalence queries. An equivalence
query is a concept C E C . The respor~e to such a query is either yes
if C~ = C , or a counterezample from CT/xC. The learning process is
completed when the response yes is received. The complezity of a learning
algorithm is the number of queries it asks in the worst case.

In the P AC ( Probably Approzimately Correct ) learning model of Valiant
[18] it is assumed that there is an unknown probability distribution P on the
domain. A learning algorithm draws a set of m ezamples, i.e. a set of pairs
of the form (a, e) , where is an element of thedomain and e is + or - ,
indicating whether a belongs to the target concept. The learning algorithm
then outputs a hypothesis H E C. A learning algorithm is an (e, 8)-learning
algorithm with sample complezity m if for every target concept CT E C and
for every probability distribution P it holds that Prob(error~,(HACT) 
~) < 5 . Here Prob is probability with respect to the product distribution
pm on samples of size m and errorp(HZ~CT) is the probability of HACT

under the distribution P.
A subset Y of the domain X is shattered if for every Z C Y there is

a concept C E C such that Z = Y f~C . The Vapnik - Chervonenkis
dimension ( VC-dimension ) VC(C) of the concept class C is the size of a
largest shattered set.

The Vapnik - Chervonenkis dimension VC(C) provides a lower bound for
the complexity of every algorithm that learns C with equivalence queries.

The main result on PAC - learnability and the VC - dimension is due
to Blumer, Ehrenfeucht, Hanssler and Warmuth [5] , based on the work of
Vapnik and Chervonenkis [19] . It states the following: if VC(C) is finite,
then any learning algorithm that draws O(~ log ~ + vc-~c log~) examples
and outputs a consistent hypothesis is an (~, 5) -learning algorithm. ( 
theorem assumes some measure theoretic conditions that axe omitted. These
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conditions always hold, for example, for finite structures.) On the other
hand, if ¢ is a non-trivial concept class then every (E, 6) -learning algorithm
must use samples of size fl(~ log ~ + vc_.~) ( A concept class is non-trivial
if it either consists of a single concept, or of two concepts partitioning the
domain. )

Now let us introduce the notion of easy classes of formulas that is used
for convenience throughout this paper.

Let £ be a first-order language and ̄  be a class of formulas over £. Then
is easy for learning with equivalence queries if there is an N such that

for every model M the concept class Co(M) can be learned with at most
N equivalence queries. Similarly, ~ is easy for PAC learning if for every
~, 6 > 0 there is an N = N(~, 6) such that for every model M there is 
(e, 6)-learning algorithm for the concept class Co(M) of sample complexity
at most N . Easiness for learning with equivalence queries implies easiness
for PAC learning.

In the remainder of this section we describe the examples showing that
the class of subsets defined by simple formulas can have high VC-dimension
if the language contains at least one binary predicate or at least two unary
flmctions.

Let R be a binary predicate and ̄  := (R(x, y)}. Here x is a variable
and y is a parameter. The following example is standard. Let M be a
structure with A = A1 UA~ ,[AII = n, IA2[ = 2n, such that the sets
{a E A~ : R(a, b)) are different for every b E A2 ̄  Then Co(M) shatters 
and so VC(Co(M)) >_ 

A similar example can be given if the language contains two unary func-
tions f and g. Let ~ := (3z(f(z) = xAg(z) = y)). Let M’ be the structure
obtained from M above as follows. If R(a,b) holds in M for a E At, b E A2
then a new element e is added such that f(c) = a and g(c) = b. Then again
C~(M’) shatters A1 and so VC(C,~(M’)) > 

In view of the general lower bounds mentioned above these examples
indicate that for positive results about easiness with respect to learning
with equivalence queries or PAC learning one should consider languages
with only unary predicates and functions. If there are at least two unary
functions then the formulas should be quantifier frce.
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3 Quantifier free unary formulas are easy for learn-
ing with equivalence queries

In this section we consider languages that contain only unary predicate
and function symbols. Quantifier free formulas are Boolean combinations
of atomic formulas. We win consider quantifier free formulas in conjunc-
tive normal form, i.e. as a conjunction of clauses, where each clause is a
disjunction of literals.

Let CNFn,c,l,d be the class of quantifier free formulas in conjunctive
normal form, with variables from xz,..., zn, consisting of at most c clauses,
each containing at most I llterals and assuming that each term occurring has
depth at most d. For fixed n, e, l and d formulas belonging to CNFn,c,I,d will
be referred to as permissible formulas. Atomic formulas containing terms of
depth at most d will be called permissible atomic formulas.

Theorem 1 For every n,c,l and d the class of formulas CN F~,~,r,d is easy
for learning with equivalence queries.

Outline of the proof. Let M be a model. The goal of the learning
algorithm to be described is to identify a permissible defining formula for
the target concept. The only variables occurring in the defining formula are
xt,..., z, , as the parameters are replaced by elements of the universe.

The first observation is that every n-tuple a = (az,..., an) E n satisfies
O(rsan Jr S2dn2) permissible atomic formulas, denoted by 0a,~ ,
i = 1,...,Na ¯

The learning algorithm can be thought of as building and traversing a
search tree of hypotheses based on the counterexamples it receives. Each
node is labelled by a permissible formula, corresponding to the equivalence
query asked when the algorithm gets to that node. When used as node
labels, permissible formulas are allowed to contain multiple occurrences of
the same clause. In addition, each inner node (already being queried) 
labelled by the counterexample obtained and the sign ( + or - ) of the
counterexample. The next equivalence query is the label of the first leaf.
If the response to the query is yes then the algorithm terminates. If a
counterexample is received then the node is labelled by the counterexample
and the tree is updated according to the rules specified below. The node just
queried will either become an inner node or it will be removed. If an inner
node has no further children that are leaves then it is removed. Initially the
tree consists of a single node labelled by the hypothesis 0 corresponding to
an empty disjunction.
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Thus the first equivalence query of the algorithm is 0 ¯ If the response
is yes then we are done. Otherwise, let a be the positive counterexample
received. Let 0a,i, i = 1, .... Na be the permissible atomic formulas satisfied
by a . Then for every multiset {0a.i~,...,0a.i,} , 0 < p _~ c , the root will
have a child labelled by 0a#, A ... A 0a,i, ¯ For p = 0 we get the empty
conjunction, corresponding to the hypothesis An .

In general, let a node v be labelled by a permissible formula ~o - ~1 A
... A ~p , p _< c and let us assume that the equivalence query ~ is asked.
If the response is yes then we are done. Otherwise, let the counterexample
received be a and let the permissible atomic formulas satisfied by a
be Oa.i , i = 1,...,Na .

If a is a positive counterexample, then for every j = 1,... ,p and every
i = 1, .... Na such that ~1 A ... A ~j-i A (~j V Oa.i) A ~j+~ A ... A ~op is
permissible, v will have a child labelled by this formula. If there are no such
formulas then v is removed.

If a is a negative counterexample, then for every nonemtpy set
{0a.i, .... ,0a#o} such that ~i A... A ~op A (0a,i, V... V 0a#,) is permissible,
v will have a child that is labelled by that formula. If there are no such
formulas then v is removed.

This completes the description of the algorithm.
Now we turn to proving the correctness of the algorithm. Let the target

concept be ~/, and write ~ in the form

: ’~ n... A ~ A’~" A... A’~

where ~+,..., ~ contain only unnegated atomic formulas and ~i-,.--,~
pach contain at ]east one negated atomic formula.

We claim that after the first query the tree always contains a node la-
belled by a formula ~ such that the following holds:

¯ ~ = ~+ A...A ~o+ A ~" A... A ~ where bs _< b2 ,

¯ the literals in ~o+ form a subset of the literals in ~+ for i = 1,..., bl ,

¯ the literals in ~- form a subset of the literals in ~b~" that contains all
the negated Hterals from ~b;" for i = 1 ..... /~.

This claim can be proved by induction and it implies the correctness of
the algorithm. The easiness of CNF~.~j.~ then follows directly. We note that
the number of equivalence queries required by the algorithm is polynomial
in ~, , the number of variables.

[]
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4 First-order formulas over unary predicates and a
single unary function are easy for PAC learning

The examples described in Section 2 indicate that easiness results for classes
of formulas containing ~antifiers can only be hoped for if the language
contains unary predicates and a single unary function. Let £ consist of
unary predicate symbols P1,..., Pr and a single unary function symbol f.
Let ~,0 denote the class of first-order formulas of size at most s with free
variables from zl,... ,z,, .

Theorem 2 For every n and s , the class of formulas ~n., is easy for PAC
learning.

Outline of the proof. Let M = (A, I) be a model over £ . 
view of the general upper bound on PAC learning mentioned in Section 2,
it is sufficient to show that VC(C#,.,(M)) is bounded from above by some
constant depending only on n and s.

Let the language £1 consist of P1,..., P, and a binary relation R. Let
the interpretation of R on A be defined by R(a, b) 0 f(a) = b and let M1
be the model over the language £1 defined on A by replacing f by R ( 
can also be viewed as the edge set of a directed graph ) . Thus M1 is the
relational version of M. Then every formula of the original language £ can
be transformed into a formula over £1 that represents the same concept.
In what follows we consider the class ~.o of first-order formulas over £1 of
size at most 8 , with free variables from Zl,... ,z,, . In order to prove the
theorem it is sufficient to show that VC(C~,.,(M1)) is bounded from above
by some constant depending only on n and s.

The distance d(a, b) of a, b G A is the graph theoretic distance of a and
b in the undirected graph formed by deleting the directions of the edges in
R . For a E A let N(P)(a) be the £1-substructure of MI containing all ele-
ments within distance p to a. N(P)(a) is called the neighborhood of a of radius
p, or the p-neighborhood of a . If A~ C_ A then N(P)(A~) = U4ea, N(P)(a) is
the p-neighborhood of A’ . If a = (al, .... a,~) E n t hen the q-type of
the p-neighborhood of a is the set of formulas ~(zl,... ,zn) having at most
q quantifiers such that N(P)(a) ~(al,...,an) ¯ The number ofdif fer-
ent q -types is bounded from above by some function of n and q . Let
a = (al,...,a~), b = (bl,...,bn) G A". If the p-neighborhoods N(P)(a)and
N(P)(b) have sameq-type then a andb are called q-equivalent. This is
written as N(P)(a) -q N(P)(b) QI(MI,p,q) be thenumber of diff erent
q - types of the neighborhoods N(P)(a) for a G A .
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If an element a does not belong to a cycle of R then one can consider
the subtree To rooted at a , containing all elements a~ such that fi(al) -- a
for some i . If at is such an element then the q -type of the pair (To,a~) is
the set of formulas X(:Ct,z2) having quantifier depth at most q such that
T~ ~ x(a,a ~) . The number of different q -types is bounded from above
by a constant depending only on q. Two pairs (T~,a~) and (Tb, ~) are q
-equivalent if they have the same q -type . Let Q~(M1, q) be the number 
different q -types of the pairs (T,,a~) for a,a~ E A such that f~(a~) = a for
some i.

The following lemma was proved by Marcus [14]. Gaifman [7] general-
ized the result and improved the bounds involved. Here we give the original
formulation [14] as it is convenient for our purposes. The functions/~(n, k)
and ~(n, k) can be explicitly given.

Lemma 3 (’ Mareu8 [14], Gaifman [7] ) There are functions ~(n, k) 
~( u, k) such that for every formula ~(zl,...~ =:~) with k quantifiers and every
a - (al,...,a~), b - (bl,...,b~) ~ i.f NP(~’k)(a) --#(~,k) NP(~’h)(b) then

Let p := 15(s,s) , q := {(s,s), Q ma==(QiCMl,p,q),Q2(Ml,q),3) and
N := (16psQ)O6~*q) . We note that N < F(s) for an explicit function F.

Lemma 4 VC(C#,.o(M1)) 

Outline of the proof of the lemma. Let S be a shattered subset of
size N. Ramsey’s theorem implies that either there are (4s-1)Q+l elements
in S with pairwise distance greater than 4p or there are 4p((48-1)Q+3)4p+ 
elements in S with pairwise distance at most 4p. We consider the two cases
separately.

Case 1 There are at least (4s - 1)Q -t- 1 elements in S with pairwise
distance greater than 4p.

By the definition of Q there is a set $1 of 4s elements from S, such that
their pairwise distances are greater than 4p and their p-neighborhoods have
the same q-type. We claim that ,cl is not shattered by Ct..,(MI) 

Let ~(Z,yl, .... y,,) , m <_ bea f ormula from ~1.° ¯ Let
c - (cl .... , c,,) E m be an arbitrary s etting of t he parameters. For every
ci there can be at most one a E $1 such that d(c~,a) <_ 2p. Hence there is
a set $2 of at least 3s a’s in $1 such that for every c~ it holds that
d(a, ci) > 2p. Thus for every a E $2 one has N(P)(a)nN(P)(c) = 0 ¯ A
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standard argument implies that for every a, b E $2 it holds that N(P)(a, c) 
N(P)(b, c) . Lemma 3 implies that M1 ~ ~(a, c) iff M1 ~ ~(b, c) . 
C~.c,MI either contains all S~ or it is disjoint from it. Therefore IC~,c,M, NSII
is either at least 38 or at most 8 . Hence, for example, C~,C,M~ cannot cut
.~’1 in half, and thus indeeed Sl is not shattered by C#~..(M1) 

Case 2 There are (4p - 1)((48 - 1)Q 4~+ 1 elements in S such that
their palrwise distances are at most 4p.

In this case a similar argument is used by finding several q - equivalent
pairs (T,, a’) such that the roots are adjacent to the same vertex. The details
are omitted.

[]
The proof of the Theorem 2 is completed by using a general result of

Laskowski [13] . The details are again omitted.
[]
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