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AbstractWe characterize the class of functions with real-valued input and out-put which can be computed by networks of spiking neurons with piecewiselinear response- and threshold-functions and unlimited timing precision.We show that this class coincides with the class of functions computableby recurrent analog neural nets with piecewise linear activation functions,and with the class of functions computable on a certain type of randomaccess machine (N-RAM) which we introduce in this article. This resultis proven via constructive real-time simulations. Hence it provides in par-ticular a convenient method for constructing networks of spiking neuronsthat compute a given real-valued function f : it now su�ces to write aprogram for computing f on an N-RAM; that program can be \automat-ically" transformed into an equivalent network of spiking neurons (by oursimulation result).Finally, one learns from the results of this paper that certain very sim-ple piecewise linear response- and threshold-functions for spiking neuronsare universal, in the sense that neurons with these particular response-and threshold-functions can simulate networks of spiking neurons with ar-bitrary piecewise linear response- and threshold-functions. The results ofthis paper also show that certain very simple piecewise linear activationfunctions are in a corresponding sense universal for recurrent analog neuralnets.Keywords: mathematical models for neural networks, spiking neurons,continuous computational complexity, random access machines, analog neuralnets.



We have initiated in Maass, 1994a, 1994b, the investigation of the compu-tational complexity of a relatively simple formal model SNN for spiking neuronnetworks. The goal of this research is to understand the principles of informa-tion processing in systems whose \processors" exchange and process informationin the form of spike-trains, i.e. in the form of time-di�erences between certainstereotyped events (\spikes").Although the model SNN is more \realistic" than all models for biologicalneural nets whose computational complexity has previously been analyzed, itdeliberately sacri�ces a large number of more intricate biological details (see e.g.Churchland and Sejnowski, 1992, or Aertsen, 1993) for the sake of mathematicaltractability.Very recently one has also started to build VLSI-chips that communicateand manipulate information in the form of time di�erences between pulses(Watts, 1994, Murray and Tarassenko, 1994). This approach provides anothermotivation for the development of a new theory of algorithm design and compu-tational complexity for computations that result from a sequence of elementaryoperations on \spike-trains".For the sake of completeness we recall here the precise de�nition of theSNN-model (see Maass 1994a, 1994b, for a detailed discussion). We set R+ :=fx 2 R : x � 0g.De�nition of a Spiking Neuron Network (SNN): An SNN N consistsof a �nite directed graph hV;Ei (we refer to the elements of V as \neurons" andto the elements of E as \synapses"), a subset Vin � V of input neurons, a subsetVout � V of output neurons, a threshold-function �v : R+ ! R[ f1g for eachneuron v 2 V � Vin, a response-function "u;v : R+ ! R and a weight-functionwu;v : R+ ! R for each synapse hu; vi 2 E.We assume that the �ring of the input neurons v 2 Vin is determined fromoutside of N , i.e. the sets Fv � R+ of �ring times (\spike trains") for theneurons v 2 Vin are given as the input of N .For a neuron v 2 V � Vin one de�nes its set Fv of �ring times recursively.The �rst element of Fv is infft 2 R+ : Pv(t) � �v(0)g , and for any s 2 Fvthe next larger element of Fv is infft 2 R+ : t > s and Pv(t) � �v(t� s)g ,where the potential function Pv : R+ ! R is de�ned byPv(t) := 0 + Xu : hu; vi 2 E Xs 2 Fu : s < twu;v(s) � "u;v(t� s) : (1)The �ring times (\spike trains") Fv of the output neurons v 2 Vout that resultin this way are interpreted as the output of N .We will always assume that there exists some �N > 0 such that �v(x) =1for all x 2 (0; �N) and all v 2 V �Vin (\refractory period"). This entails that thesets Fv of �ring times are well-de�ned for all v 2 V �Vin. We assume that real-



valued inputs and outputs of an SNN are given in the form of time-di�erencesbetween pairs of spikes.In models for biological neural systems one assumes that if x time-unitshave passed since its last �ring, the current threshold �v(x) of a neuron v is\in�nite" for x < �ref (where �ref = refractory period of neuron v), and thenapproaches quite rapidly from above some constant value. A neuron v \�res"(i.e. it sends an \action potential" or \spike" along its axon) when its currentmembrane potential Pv(t) at the axon hillock exceeds its current threshold �v.Pv(t) is the sum of various postsynaptic potentials wu;v(s) � "u;v(t� s). Each ofthese terms describes an excitatory (EPSP) or inhibitory (IPSP) postsynapticpotential at the axon hillock of neuron v at time t, as a result of a spike thathad been generated by a \presynaptic" neuron u at time s, and which has beentransmitted through a synapse between both neurons. Recordings of an EPSPtypically show a function that has a constant value c (c = resting membranepotential; e.g. c = �70mV ) for some initial time-interval (reecting the axonaland synaptic transmission time), then rises to a peak-value, and �nally dropsback to the same constant value c. An IPSP tends to have the negative shapeof an EPSP. For the sake of mathematical simplicity we assume in the SNN-model that the constant initial and �nal value of all response-functions "u;v isequal to 0 (in other words: "u;v models the di�erence between a postsynapticpotential and the resting membrane potential c). Di�erent presynaptic neuronsu generate postsynaptic potentials of di�erent sizes at the axon hillock of aneuron v, depending on the size, location and current state of the synapse(or synapses) between u and v. This e�ect is modelled by the weight-factorswu;v(s).The model SNN that we consider in this article is very closely related tothe model that was previously considered by Buhmann and Schulten, 1986,and especially to the spike response model of Gerstner, 1991, Gerstner, Ritz,van Hemmen, 1992. Similarly as in Buhmann and Schulten, 1986, we considerin this article only the deterministic case (which corresponds to the limit case� ! 1 in the stochastic spike response model of Gerstner et al.). However incontrast to these preceding models we do not �x particular (necessarily some-what arbitrarily chosen) response- and threshold-functions in our model SNN.Instead, we want to have the possibility to use the SNN-model as a frameworkfor investigating the computational power of various di�erent response- andthreshold-functions. In addition, we would like to make sure that various dif-ferent response- and threshold-functions that are observed in speci�c biologicalneural systems are in fact special cases of the response- and threshold-functionsin the here considered formal model SNN.We have shown in Maass, 1994b, that one can build from arbitrary neurons,whose response- and threshold-functions satisfy certain basic assumptions, anSNN that can simulate any Turing machine. However SNN's are strictly morepowerful than Turing machines for two reasons:



i) An SNN can receive real numbers as input, and give real numbers asoutput (in the form of time-di�erences between pairs of spikes).ii) We show that one can construct from any neurons which satisfy somerather weak basic assumptions modules for an SNN that can ADD, SUB-TRACT, or COMPARE any two su�ciently small phase-di�erences, aswell as a module for MULTIPLY(�) (multiplication of a phase-di�erencewith an arbitrary constant � > 0). If such operations are applied to aphase-di�erence of the formP̀i=1 bi�2�i�c, this will in general a�ect more than O(1) of the bits hb1; : : : ; b`ithat are stored in this phase-di�erence. In contrast to that, any compu-tation step of a Turing machine a�ects only O(1) bits of any tape contenthb1; : : : ; b`i.It turns out that one can in fact characterize exactly the computational powerof SNN's with arbitrary piecewise linear response- and threshold-functions. Forthat purpose we consider arbitrary random access machines (RAM's) with O(1)registers that can store in their registers, use as constants, receive as input, andgive as their output arbitrary real numbers of bounded absolute value, andwhich employ arbitrary �nite programs that consist of the instructions ADD,SUBTRACT, COMPARE, MULTIPLY(�) for arbitrary real-valued constants�, HALT. These instructions may involve direct and indirect addressing, as wellas conditional jumps. We will use the unit-cost criterion (i.e. one unit is chargedfor each execution of an instruction), and refer to the here described RAM'sas N-RAM's (because of their intimate connection to neural nets, as shown bythe subsequent Theorem). Obviously this model is closely related to that ofBlum, Shub and Smale (Blum et al., 1989). It is easy to see that for booleanvalued input it can simulate any Turing machine in real-time (representing �nitestack-contents hb1; : : : ; b`i by rational numbers P̀i=1 bi � 2�i�c as phase-di�erencesbetween two oscillators).Besides providing a tight upper bound for the computational power of alarge class of SNN's in terms of a more \user-friendly" type of computationalmodel (N-RAM's), the following result also establishes a relationship betweenthe computational power of SNN's and that of recurrent analog neural nets.In the latter model no \spikes" or other non-trivial timing-phenomena oc-cur, but the output of a gate consists of the \analog" value of some squashing-or activation function that is applied to the weighted sum of its inputs. Thisoutput value may be interpreted as the current �ring-frequency of a neuron.See e.g. Siegelmann and Sontag, 1992, 1994, or Maass, 1993, for recent resultsabout the computational power of such models.Theorem: The following three classes of computational models have thesame computational power, in the sense that for any model M from one ofthese classes one can construct models from each of the other two classes that



can simulate M in real-time (i.e. each computation step of M can be simulatedby a constant number of computation steps on the other machines; where eachspike on an SNN is counted as one computation step):{ SNN's of �nite size with piecewise linear response- and threshold-functionsand time-invariant weights{ recurrent analog neural nets of �nite size with piecewise linear activationfunctions{ N-RAM's.This equivalence holds both for the case of arbitrary real-valued parameters re-spectively constants in all three types of models, and if all parameters and con-stants are required to be rationals.The proof of the preceding result is rather long and complicated. The mostdi�cult part of this proof is the construction of modules for an SNN that canexecute the instructions ADD, SUBTRACT, COMPARE, MULTIPLY(�) onreal numbers which are represented by phase-di�erences between two oscilla-tors.The construction shows in particular that any type of piecewise linearresponse- and threshold-function that satis�es our basic assumptions fromMaass,1994b, is universal for all piecewise linear response- and threshold-functions, inthe sense that any SNN with arbitrary piecewise linear response- and thresh-old functions can be simulated in real-time by an SNN with response- andthreshold-functions of that particular type. The abovementioned basic assump-tions mainly require that EPSP's have some (arbitrarily short) segment wherethey increase linearly, and some (arbitrarily short) segment where they decreaselinearly.The proof of the preceding Theorem also shows that the activation-functions� (saturated linear function) and H (heaviside) together are in an analogoussense universal for all piecewise linear activation functions for recurrent analogneural nets.An interesting consequence of the proof of the preceding result is that SNN'swith piecewise linear continuous response-functions are computationally equiv-alent to recurrent analog neural nets with arbitrary piecewise linear activationfunctions (that may be discontinuous). We also would like to point out thatN-RAM's with the additional instruction MULTIPLY (for two arbitrary real-valued operands of bounded absolute value) are with regard to real-time simu-lations equivalent to recurrent analog neural nets with arbitrary piecewise poly-nomial activation functions. It should be noted that Siegelmann and Sontag,1994, and Koiran, 1993, had already established before some other relationshipsbetween analog neural nets and variations of the model by Blum et al., 1989.Finally, we would like to mention that SNN's with arbitrary piecewise linearresponse- and threshold-functions and time-dependent weights (as speci�ed inMaass, 1994a) are computationally equivalent to N-RAM's with the additionalinstructions MULTIPLY and DIVIDE for any two real numbers of boundedabsolute value.
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