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1 Preliminaries

This paper discusses within the framework of computational learning theory the
current state of knowledge and some open problems in three areas of research about
learning on feedforward neural nets:

— Neural nets that learn from mistakes
— Bounds for the Vapnik-Chervonenkis dimension of neural nets

— Agnostic PAC-learning of functions on neural nets.

All relevant definitions are given in this paper, and no previous knowledge about
computational learning theory or neural nets is required. We refer to [RSO] for
further introductory material and survey papers about the complexity of learning
on neural nets.

Throughout this paper we consider the following rather general notion of a (feed-
forward) neural net.

Definition 1.1 A network architecture (or “neural net”) N is a labeled acyclic
directed graph. Its nodes of fan-in 0 (“ input nodes”), as well as its nodes of fan-out
0 (“ output nodes”) are labeled by natural numbers.

A node g in N with fan-in r > 0 is called a computation node (or gate), and it
is labeled by some activation function v, : R — R, some polynomial Q,(y1,...,y,),
and a subset P, of the coefficients of this polynomial (if P, is not separately specified
we assume that P, consists of all coefficients of Q).

One says that N is of order v if all polynomials Q, in N are of degree < v. The
coefficients in the sets P, for the gates g in N are called the programmable parameters
of X

Assume that N has w programmable parameters, that some numbering of these
has been fired, and that values for all non-programmable parameters have been as-
signed. Furthermore assume that N has d inpul nodes and | output nodes. Then

each assignment o € R" of reals to the programmable parameters in N defines an
analog circuit N'&, which computes a function x — N%(z) from R into R' in the
following way: Assume that some input z € R® has been assigned to the input nodes
of N. If a gate g in N has r immediate predecessors which outpul yy,...,y, € R,

then g outputs 14(Qy (1. . .)).

Remark

a) The programmable parameters of a network architecture N contain the “pro-
gram” of /. “Learning on /7 means that one computes concrete values for the
programmable parameters of A from examples for “desirable” input/output-
behaviour. One usually refers to the programmable parameters as “weights”.



b)

Apart from the programmable parameters, a network architecture A also con-
tains some fixed parameters (which one should view as “hardwired”). These
are the parameters that occur in the definitions of the activation functions ~,
(e.g. thresholds between linear pieces for a piecewise linear activation func-
tion), and those coefficients of the polynomials ), which do not belong to the
associated sets P,. These coeflicients could for example encode some “back-
ground knowledge” of the neural net.

The term “neural net” is used in the literature both for a network architecture
N in the sense of Definition 1.1, and also for the associated analog circuit
N2 with specific values o for its programmable parameters. We will use in
this paper the term “network architecture” if we want to stress the former
meaning. We will use the term “neural net” if it is not so important (or if it
is clear from the context) which of the two interpretations is meant.

The definition of a network architecture in Definition 1.1 is quite general. It
contains various special cases which are of particular importance.

A gate g with the “heaviside activation function” v +— sgn(x) (where
sgn(z) := 1 if # > 0, else sgn(x) = 0) and a polynomial @), of degree < 1
(i.e. Q, is simply a “weighted sum”) is called a linear threshold gate. If all
gates in A are linear threshold gates one refers to N as a threshold circuit
(with variable weights).

If A employs some activation functions with non-boolean output, one refers
to A as an analog neural net. Most experiments with learning on neural nets
are carried out on analog neural nets with smooth activation functions such

as the sigmoid function o(y) = 1+i—y or some piecewise polynomial approxi-
mation to this function. The reason is that most heuristic learning algorithms
for multi-layer neural nets require that the network output is differentiable as
a function of the programmable parameters of the neural net. Another im-
portant advantage of analog neural nets is that they can be used to “learn”
real-valued functions.

In addition it has recently been shown that certain boolean functions can be
computed more efficiently on an analog neural net ([MSS]).

Often one only considers neural nets of order 1, where all polynomials (),
are simply weighted sums. But neural nets of high order allow us to implement
radial basis functions, and they also provide a somewhat better model of real
neurons.

For the investigation of learning of “concepts” (i.e. sets) one considers in
computational learning theory a framework that consists of a domain X; a
class C C 2% of possible target concepts (the “concept class”), and a class
H C 2% (the “hypothesis class”). The task of the learner is to compute from
given positive and/or negative examples for some unknown target concept
C7 € C the representation of some hypothesis H € H that approximates C'r.
A pair (x, 1) with « € Cr is called a positive example for Cr, and a pair (x,0)
with * € X — Cr is called a negative example for Cr.



For the investigation of concept learning on neural nets one considers a
network architecture A" with one boolean output, and one usually defines H as
the class of all sets that are computable by N for any parameter assignment o
from a specified range. One considers a as a representation for the hypothesis

H € 'H that is computed by A<,

2 Neural Nets that Learn from Mistakes

In this section we consider results about learning on neural nets in the most common
model for on-line learning (essentially due to Angluin [A] and Littlestone [Li]). In
spite of its simplicity, this learning model is quite popular both in computational
learning theory and in neural network applications. In fact the famous perceptron
learning algorithm (which is closely related to “Hebb’s rule”) and the backpropa-
gation learning algorithm are typically formulated as learning algorithms for this
on-line model.

Consider some arbitrary domain X and some arbitrary concept class C C 2%. We
assume that the “environment” has fixed some arbitrary “target concept” Cp € C.
In addition it produces some arbitrary sequence (x;, b;);en of labeled examples for
Cr (i.e. the points x; € X are chosen arbitrarily and b, = Cp(x;) € {0,1}; note
that we identify the set C'r C X in the usual manner with its characteristic function

Xop : X — {0,1}).

We assume that at the beginning of a learning process the learner knows X and
C, but not Cp. At step s of the learning process the learner gets to see the point zy,
and he is asked to predict the value of b,. If this prediction is incorrect, one says
that the learner has made a mistake at step s. One can identify the learner in this
model with an algorithm A which takes as first argument a finite sequence (@, b;);<s
of labeled examples (the previously seen examples) and as second argument some
unlabeled point @ € X (the “test point” at step s). The set

H, = {:L' cX: A(((:z;i,b»)iq,x) = 1}

is called the hypothesis of A at step s. This set may be viewed as the learner’s
current “model” for the unknown target concept Cr.

The largest possible number of mistakes of algorithm A for arbitrary Cr € C and
arbitrary sequences ({x;, Cr(2;)))ien of labeled examples is denoted by MB(C, A)
(“mistake bound of algorithm A for concept class C”).

A learning algorithm for C with hypotheses from H is in the context of this
model an arbitrary function A that assigns to any finite sequence ({x;, Cr(2;)))i<s
of labeled examples for some Cr € C a set {z € X : A(({(x;, Cr(2,)))ics,x) = 1}
that belongs to H.



One defines for arbitrary “hypothesis classes” H with C C H C 2% the learning
complexity of C with hypotheses from H by

MB(C,H) := min{MB(C, A): A is a learning algorithm
for C with hypotheses from H}.
One sets MB(C) := MB(C,C).
Remark 2.1

a)

For simplicity the preceding definition of the learning complexity of a concept
class does not take into account the computational complexity of a learning
algorithm A. However it turns out that the concrete learning algorithms A
which we will discuss for this model are in fact computationally feasible.

Formally the environment is required to fix some target concept Cr € C at the
beginning of a learning process. However practically at any step of a learning
process the environment is still free to choose any C'r € C that is consistent
with all labeled examples that were so far given to the learner.

One can easily show [Li] that for arbitrary C and H the learning complexity
MB(C,H) does not change if we define MB(C, A) in a slightly different manner
as the largest possible + € N such that for some Cr € C and some sequence
({x;, Or(2;)))ien of labeled examples for Cp the learning algorithm A makes
a mistake at each of the steps 1,...,¢# — 1. This equivalence is not surprising
in view of the fact that we consider in this model a worst case environment,
which may just as well wait with the definition of x; until it has seen (or
precomputed) the hypothesis H; := {& € X : A(((@;,b:))ics,x) = 1} of the
learner at step s. If H, disagrees with Cr, the environment may then choose
some x5 so that (z,, Cr(xs)) provides a counterexample to hypothesis Hs (i.e.
zs lies in the symmetric difference H;ACT of Hy and Cr).

The preceding observation is useful since it implies that for proving bounds
about MB(C, H) it suffices if we consider only “normalized” learning proce-
dures in which the learner makes a mistake at every single step (until he has
“found” C7). Hence we assume in the following proofs that whenever the
current hypothesis H of the learner disagrees with Cr then he receives a
counterezample to H at step s of the learning process.

One can also show that it suffices to consider in the mistake bounded model
only those learning algorithms which only change their hypothesis at those
steps where they have made a mistake.

The variation of the mistake bounded model where the learner makes a mis-
take at every step is obviously equivalent to Angluin’s model [A] for learning
from equivalence queries. In this interpretation of the on-line learning model
one says that the learner poses the equivalence query “Hy; = Cp?” at step s of
the learning process, to which he then receives a counterexample 3, € H,ACT,
or the reply “yes” (in case that Hy, = C7).



Our first example for a learning algorithm in this “mistake-bounded” learning
model is the famous perceptron learning algorithm PLA (which is closely related to
Hebb’s rule). For that algorithm we consider the network architecture A which
consists of a single linear threshold gate 7, with d real-valued inputs and d + 1
programmable parameters « (called the “weights of T,”, one also refers to g as the
“bias” of this gate).

T,, computes the following function from R into {0, 1}:

d
. o
Tu(ar,...,aq) = 4 b 1T L atitao=0

0, otherwise.

Remark 2.2
A perceptron (see [Ro], [MP]) is a network architecture N that consists of a linear
threshold gate 7, with d inputs, together with some fized circuit K : R" — R
which preprocesses the input for this threshold gate. Through this preprocessing a
perceptron can compute a larger variety of interesting functions (e.g. parity on n
boolean inputs). However for the analysis of learning on a perceptron we may ignore
the fixed preprocessing, since only the weights o of T}, are programmable parameters

of V.

For the sake of notational convenience in the following discussion of the percep-
tron learning algorithm we extend each input vector & = (x1,...,24) to a vector

* = (1,2q,...,24). In this way we can view the “bias” o also as a weight of T,

(for a dummy input with constant value 1). We then have

Tuz)=1<a-2">0.

d
We use here the usual notation v-¢6 := 3 ;- 6; for the inner product of two vectors
- 1=0

7,6 € R™. We write ||y]| for the Ly— norm /77 of 7.
For any set X C R? one defines
HALFSPACEY = {F:X —{0,1}: Ja e R™ V2 X(F(z) = Tu(z))}.

Obviously for the network architecture Ay that consists of a single linear threshold
gate with d inputs this concept class HALFSPACEY% is the restriction of all concepts
computable on Ay to the domain X.

The perceptron learning algorithm PLA for this concept class HALFSPACEY% is
defined as follows. We write «(s) for the weight-assignment of the threshold gate
after it has processed s examples.

We set a(0) := 0 (actually one can start just as well from any other initial

weight-assignment).



If T,,(sy makes a correct prediction for the example (z,b) presented at step s + 1

(i.e. To(s)(z) = b), then one sets a(s + 1) := afs).

Otherwise, if b =1 (i.e. (z,b) is a positive counterexample to T,(,)) one sets

a(s+ 1) :=al(s) + 27,

and if b =10 (i.e. (z,0) is a negative counterexample to T, (,)) one sets

a(s+1) :=a(s) — ™

It appears quite plausible that with this extremely simple “local” learning rule a
clever adversary may cause the learner to make infinitely many mistakes. Therefore
the following result had surprised many researchers when it was discovered in the
early 60’s. It gave some theoretical support for the tremendous excitement about
adaptive machines in that period.

Theorem 2.3 (Perceptron Convergence Theorem; see Rosenblatt [Ro])
The perceptron learning algorithm PLA satisfies MB(HALFSPACE%,PLA)< oo for
any finite set X C R*. |

The proof of Theorem 2.3 yields for any concrete Cr €HALFSPACE% an explicit

mistake bound of ,
|leef[* - max
62 ’
where o € R is some arbitrary weight-assignment such that T.(z) = Cr(x) for
all z € X,

Omin = min{|a-z"|:z € X}, and

bmax = max{||[z*||*:z € X}.
Since X is finite we can always choose a such that éy,, > 1.

Therefore one can give for the case of boolean inputs (i.e. X = {0,1}9) an

explicit upper bound for MB(HALFSPACE%,PLA):
Theorem 2.4 MB(HALFSPACE{, ,,PLA) < (d +1)7 - 204+ los(t41),

The proof of Theorem 2.4 follows immediately from the explicit mistake bound
for Theorem 2.3 together with the following very useful estimate:

Theorem 2.5 (Muroga, Toda, and Takasu [MTT], see also [Mu])
For all C € HALFSPACE?O 1} there exists some a € Z* whose coordinates have

absolute value < 9 FHog(d+1) gych that Va e {0,1}(C(z) = Tu(z)). [ |

7



The preceding arguments imply that for the subclass of all Cr € HALF-
SPACE?

{0,1
mial size (with émin > 1) the perceptron learning algorithm makes at most O(do(l))
mistakes. Unfortunately a trivial counting argument shows that most of the 2%(%*)
halfspaces (' € HALFSPACE?O 1} have the property that every o € Z+' with

C' =T, contains some exponentially large components «;.

3 that can be defined by some T, with integer weights a of polyno-

A concrete example for such halfspace is provided by the halfspace of all zy €
{0,1}% such that the natural number that is encoded (in binary notation) by the
first half = of the d input bits is larger than the natural number that is encoded by
the second half y of the d input bits. An easy inductive argument shows that any
threshold function with integer weights that defines this halfspace requires weights
of absolute value > 2%/*, Hastad [H] has recently shown that there exist in fact some

C e HALFSPACE?OJ}CZ that require integer weights of size 2(4logd),

The preceding lower bounds for the size of integer weights for threshold gates
are “bad news” for the analysis of the perceptron learning algorithm, since they
imply the same lower bound for the number of mistakes of this algorithms (for some
Cr € HALFSPACE?OJ}CZ). One just has to observe that for boolean inputs we have

a € [—s,...,s]" for the hypothesis T, of the perceptron learning algorithm after
s mistakes.

On the other hand the following result shows that there also exists a learning al-
gorithm for threshold gates that it is guaranteed to converge for every target concept

Cr € HALFSPACE?OJ}CZ alter at most O(do(l)) mistakes.

Theorem 2.6 ([MT 89], [MT 94]).

(1) < MB(HALFSPACEY ) = O(d*logd) for every d > 2.

Furthermore (;l) n < MB(HALFSPACEBI(%) = O(d*(logd + n)) for the larger
domain X% :=1{0,...,2" — 1}
The upper bounds for these mistake bounds can be achieved by learning algorithms
whose number of computation steps are bounded by a polynomial in d and n.

Idea of the proof of Theorem 2.6:  We only consider the special case n =
1 (the general case is similar). For the proof of the upper bound we assume for

simplicity that 0 ¢ Cr for the target concept Cr € HALFSPACE?OJ}CZ. This implies

that ap < 0 for any vector a = (ag, a1,...,a4) € R™! with T, = Cr. Hence we
can assume w.l.o.g. that cg = —1, and we can restrict our attention to hypotheses
T, with ap = —1. We will view in the following o’ := (a4, ..., a,) as a code for the

hglfspace that is computed by T(_y 4.

We write V; for the “version space” of the learning algorithm after s steps. In
other words: V; is the set of all codes o’ € R? such that T'(~1,a 1s consistent with all
labeled examples that the learner has received before step s. Thus we have V11 C Vj
for all s.



We choose for Vj a ball around 0 in R? with radius 2°(@egd)  Thus V; has
volume 2°0(#1osd)  Theorem 2.5 implies that each possible target concept Cp €
HALFSPACE?OJ}CZ can be encoded by some vector o € V5. In fact, since Theorem
2.5 provides for each halfspace a representation « that consists of integers of bit-

length O(dlog d), there exists for each Cp € HALFSPACE?O 1ye in the continuous

space Vg a ball By C V4 of volume 9-0(d"logd) gy ch that Cr = Ti_1,a1 for all o' € Br.
By definition one has By C V for all steps s of any learning algorithm for halfspaces.

The strategy of our learning algorithm is to reduce the volume of V; as quickly as
possible. Hence we choose for each step s a hypothesis T(_; o) such that any coun-
terexample x, to T 100 eliminates from V; not only o, but a significant fraction of
all points o' € V;. This is possible since for any counterexample (x,, by) to T(_1 a1
the set of all o € R? such that Ti_1,o7y is inconsistent with (z, b,) forms a halfspace
in R? that contains a’. For example a negative counterexample x5 = (y1,...,yq) to

d
T(-1,a7) eliminates from V; all points in the set {{oq,...,aq) € RY: Y auyi—1> 0}.
: =1

This observation suggests to choose as o/, a point which lies in the “center” of Vj
in the sense that any halfspace that contains o/ contains a constant fraction of the
volume of V;. This can be achieved by choosing o, to be the “volumetric center” of
Vs in the sense of Vaidya [Va]. This approach provides a constant ¢ < 1 such that

volume (Vy41) < ¢+ volume (V;)

for all steps s of the learning algorithm with H; # Cp. Since By C V; for all steps
s, the number of steps (i.e. mistakes) of this learning algorithm can be bounded by

volume (Vp) Ol logd
1 - 7| =1 2 (d* logd) = d21 d).
981/c (Volume (BT)) 981/c O(d log d)

Alternatively one can enclose each version space by a small ellipsoid, and define
/

o, as the center of that ellipsoid. With this approach (which follows the approach

=S5

of Khachian’s ellipsoid algorithm, see [PS]) one can only achieve that

volume (V41) < e 54 . volume (V).

This approach gives rise to a learning algorithm with a somewhat larger mistake-

bound O(d” log d).

The almost optimal lower bound of Theorem 2.5 follows by constructing a suit-
able adversary strategy. According to Littlestone [Li] it suffices to consider only
relatively simple adversary strategies which can be represented as binary branching
decision trees (“mistake trees” [Li], or “adversary trees” [MT 92]). The construction
of such decision tree of depth > (;l) for HALFSPACE?OJ}CZ is rather easy (see [MT
94]). |



Open problems:

1. Can one close the gap of “logd” between the upper and lower bound for
MB(HALFSPACE?OJ}CZ)?
[It is quite curious that the same “log d-gap” remains open for the mistake

bound for learning axis parallel rectangles over the same domain, see [CM],

[Au].]

2. Does there exist a noise-robust learning algorithm for HALFSPACE?O 2n—1}d
whose mistake bound is polynomial in d and/or n?

[Such noise-robust algorithm has been constructed for learning rectangles

in [Au].]

3. Does there exist a learning algorithm for HALFSPACE?OJ}CZ whose mistake
bound is polynomial in d, and which is local in a similar way as the perceptron
learning algorithm?

[In the perceptron learning algorithm all weights are updated independently
from each other, requiring no “global control”. Learning algorithms of this
type are of particular interest from the point of view of neurobiology.

Some negative results in this direction are given in section 6 of [MT 94].]

The next goal in an investigation of on-line learning on neural nets is to find
efficient on-line learning algorithms for network architectures that consist of sev-
eral linear threshold gates. Perhaps the simplest network architecture of this type
consists of an AND of two linear threshold gates. We write IH2 for the class of all
concepts which can be computed by this network architecture over the 2-dimensional
discrete grid X, := {0,...,2" — 1}2. The concepts from this class have a very sim-
ple geometrical interpretation: they are intersections of two halfspaces (hence the
abbreviation TH).

Unfortunately the next result shows that there exists no learning algorithm for
this concept class with a polynomial mistake bound (not even if we allow algorithms
with unlimited computational power).

Theorem 2.7 ([MT 93])
MB(IH2) = Q(2").

Idea of the proof: We construct an adversary strategy which exploits the
following obvious fact: any C' € TH2 which contains the set CENTER that consists
of the 4 points in the center of the domain {0,...,2" — 1}? contains also at least
one point from the perimeter of {0,...,2" — 1}2.

Whenever a hypothesis H; € TH? does not contain all 4 points of the set CEN-
TER, the adversary can give one of these 4 points as a positive counterexample.
Otherwise he can give (by the preceding observation) some point from the perime-
ter of {0,...,2" —1}* as a negative counterexample.
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The key point of this strategy is that there exists a subclass of 9(2") concepts
C' € TH? that all contain CENTER, but which are pairwise disjoint on the perimeter
of {0,...,2"—1}* (consider concepts that are defined by 2 parallel hyperplanes with
distance O(1)). At most s of the concepts from this subclass have been eliminated
as candidates for Cr after s steps of the preceding adversary strategy, no matter
which hypotheses H, € TH? have been proposed by the learner. |

Open problems:

4. Consider the class IH? of intersections of 2 halfspaces over the d-dimensional
boolean domain {0,1}?. Is MB(IH?) = O(d°M)?
[Part b) of the remark at the beginning of section 3, in combination with
the result of [BR] implies that no learning algorithm with a polynomial bound
on its computation time can achieve this mistake bound, unless R=NP.]

5. Can one prove positive results for on-line learning on a multi-layer threshold
circuit N' by considering interesting classes C of target concepls which are
proper subclasses of the hypothesis class H that is defined by N7

In spite of the preceding negative results for on-line learning on multi-layer net-
work architectures with linear threshold gates, there exists an on-line learning algo-
rithm for analog multi-layer network architectures which has been quite successful
in various practical applications: the backpropagation algorithm. The success of this
learning algorithm has contributed significantly to the excitement about adaptive
neural nets during the last decade. However within the framework of computational
learning theory no results are known about the performance of this algorithm.

3 Bounds for the Vapnik-Chervonenkis Dimen-
sion of Neural Nets

We now turn to the analysis of learning on neural nets in Valiant’s model [V] for
probably approximately correct learning (“PAC-learning”), see also [AB].

Let V' be some arbitrary network architecture with w weights from some weight-
space W (e.g. W = N,Q, or R). If V has d input-nodes, and if the output gate
has range {0,1}, then N computes for any weight-assignment a € W* a function
N from some d-dimensional domain X (e.g. X = N% Q% R?) into {0,1}.

In the analysis of learning on neural nets in the PAC-learning model one typically
assumes that the network architecture N defines the hypothesis class H over the
domain X. In addition one fixes a class C C 2% of possible target concepts (the
“concept class”). The learner is given a parameter £ > 0 (“error parameter”) and a
parameter § > 0 (“confidence parameter”). The task of the learner is to determine

11



a sample-bound m(e, 6) so that he can solve the following problem:

For any distribution D over X, any target concept Cr from the class C C 2%, and
any sample S = ((z;, Cr(z:)))i<m of m > m(e,6) labeled examples for Cr with
points z; drawn independently according to D, he can compute from 5,e, and é
the representation of some hypothesis H € H (in our case a suitable parameter-
assignment a for A so that H = N'2) such that with probability > 1 — ¢

Erepl|[H(x) = Cr(x)]] < e
(ie. D[{z € X : N(z) # Cr(2)}] < ¢).

If m(e,é) is bounded by a polynomial in % and %, and if the representation of
H can be computed from S,¢, and ¢ by an algorithm whose computation time is
bounded by a polynomial in %, %, and the length of S, one says that C is efficiently
PAC-learnable with hypothesis class 'H.

Remark

a) In this section we will always assume that C C H (typically C = H). In
section 4 we will look at a somewhat more realistic scenario where C Z H is
also allowed.

b) Angluin [A] has shown that efficient learnability in the mistake bounded model
implies efficient PAC-learnability.

c) It is easy to construct examples of concept classes which show that the con-
verse of the preceding observation does not hold, i.e. efficient PAC-learnability
does not imply efficient learnability in the mistake bounded model (e.g. con-
sider the class of singletons over a finite set). There exists however also a
natural example for this difference between the two learning models in the
context of learning on neural nets. We had shown in Theorem 2.7 that
MB(IH2) = Q(2") for the class TH? of intersections of two halfplanes over
{0,...,2" — 1}*. The VC-dimension of [H? can be bounded with the help of
Theorem 3.3, and therefore one can show with the help of Theorem 3.1 that
[H? is efficiently PAC-learnable (consider all polynomially in |S| many possi-
bilities for partitioning a sample S by a concept from IH2).

In fact one can even show that IH? is efficiently learnable in the more de-
manding model for agnostic PAC-learning that we will discuss in section 4.

One says that a subset T of the domain X is shattered by a neural net A if every
function ¢ : 7' — {0,1} can be computed on N, i.e.

Vg:T—{0,1}FJac W*Vz eT (9(x) = N¥x)).

The Vapnik-Chervonenkis dimension of N (abbreviated: VC-dimension(N)) is
defined as the maximal size of a set 7' C X that is shattered by N, i.e.

VC-dimension(AN) := max{|T|: T C X is shattered by N}.

12



It should be pointed out that the VC-dimension of A depends in general on the
considered domain X and on the chosen weight-space W'.

Of course one can define without reference to neural nets more generally for any

class H of functions f: X — {0,1} (i.e. subsets of X) the VC-dimension of H by

VC-dimension(H) :=
max{|T]: T CXandVg:T —={0,1} IfeHVz T (g(x) = f(x))}.

Thus our preceding definition of the VC-dimension of a neural net A is just a special

case of this general definition for the class H := {f : X — {0,1} : Ja € W*Va e X
(f(z) = N=(2))}.

The importance of the VC-dimension of a neural net A" for PAC-learning on
N arises from the following theorem. This result provides significant information
about the generalization abilities of a neural net.

Theorem 3.1 ([BEHW])
Assume that H C 2% satisfies VC-dimension (H) < oo and H is well-behaved (the
latter is a rather benign measure-theoretic assumption that is always satisfied if H
is countable; see [BEHW] for details).

Then for

m(e, 8) = max (8 - VC-dimension(H) 13 4 2)

. -logg,g-log(s

any function A that assigns to a randomly drawn sample S of m > m(e, é) examples
(x,b) for some target concept Cr € H (with x drawn according to some arbitrary
distribution D over X ) some hypothesis A(S) € H that is consistent with S is
a PAC-learning algorithm, since we have then E.ep[|Cr(z) — A(S)(2)|] < ¢ with
probability > 1 — 6. |

There exists an almost matching lower bound for m(e,é), which shows that no
PAC-learner can do his job with substantially fewer examples (not even if he has
unlimited computational power). It is shown in [EHKV] that

(e, §) = Q( VC-dimension(H) 7 l I %)
€ €

examples are needed for any nontrivial class H C 2%, for any PAC-learning algorithm

for H.

Theorem 3.1 allows us to divide the task of efficient PAC-learning on a given
network architecture A/ into two separate tasks:

(i) the proof of a polynomial upper bound (in terms of the “size of N7) for the
VC-dimension of NV, and
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(ii) the design of a (probabilistic) polynomial time algorithm which computes for
any given sample S some weight-assignment o for V' such that N is consistent
with all examples from S (provided there exists such a).

In fact, it turns out (see [HKLW]) that a polynomial upper bound for the VC-
dimension of A and the existence of an algorithm as in (ii) are sufficient and neces-
sary conditions for efficient PAC-learning on .

It has been shown by Blum and Rivest [BR] that task (ii) is not even feasible for
the simplest multi-layer neural net A" with 3 computation nodes. On the other hand
it turns out that task (i) can be solved for neural nets with arbitrary architectures for
various important types of activation functions. Although these polynomial upper
bounds for the VC-dimension cannot be used to prove positive PAC-learning results
for neural nets, they are still considered to be quite relevant for practical applications
of neural nets. Bounds for the VC-dimension of a neural net A/ provide a quantitative
relationship between the “apparent error” of a trained neural net N'¢ on a randomly
drawn training set S (where the weight-assignment a may for example arise from
some heuristic learning algorithm such as backpropagation), and the “true error”
of N for new examples drawn from the same distribution. Theorem 3.1 covers a
special case of this relationship (for the case where AN'® has apparent error 0), and
the general case is covered by Theorem 4.1 in the next section. This Theorem 4.1 is
formulated for the more general setting of neural nets with real valued outputs. The
pseudo-dimension of a neural net N (respectively of its associated function class F)
which occurs in Theorem 4.1 coincides with the VC-dimension of A" for the special
case of neural nets A" with boolean output, ¥ = {0, 1}, and the discrete loss function

(p.

We will present in the next theorems the most important known results regarding
upper and lower bounds for the VC-dimension of neural nets.

Theorem 3.2 (Wenocur and Dudley [WD])
Assume that the network architecture Ny consists of a single linear threshold gate
with d inputs. Then VC-dimension (Ny) = d + 1 for any domain X with {0,1}¢ C
X C R?, and for any weightspace W with Z C W C R.

Proof: In order to show that VC-dimension (V;) < d 4 1 one applies Radon’s
Theorem (see [E], p. 64). Radon’s Theorem states that any set T' of > d 4 2 points
in R? can be partitioned into sets Sg and 57 such that the convex hull of Sy and
the convex hull of 57 intersect. Obviously such sets Sy, 57 cannot be separated by a
hyperplane, and therefore there exists no a € R™! such that Vz € So(N7(x) =0)
and Vo € S;(Nj(z) = 1). Hence no set T' C R of size > d+ 1 can be shattered by
Ny

On the other hand it is straightforward to verify that the set T' := {0} U {e; :
i € {1,...,d}} can be shattered by N;: For any given function ¢ : T — {0,1} the

14



function Nj- with o = (g, a1, ..., a4) defined by

Oéo:{_o , ifg(0)=1

1 , otherwise

and

1 otherwise

ai:{ _1 ) 1fg(§2):1

has the property

Ve T(g(x) = Ni(x)). n

One important general property of classes C of bounded VC-dimension is exhib-
ited by Sauer’s Lemma (see[BEHW]): It states that for any finite domain X and
any k € N the class C that consists of all subsets of X of size up to k is the maximal
size class C C 2% with VC-dimension(C) < k. Hence we have for any class C C 2X

k
with VC-dimension(C) < k that |C] < 3 (pf') < |X|* + 1. Applied to the neural
=0

net Ny from Theorem 3.2 we get that for any finite set X C R? there exist at most
| X |4*+! 1 different ways of partitioning X by halfspaces. This observation is crucial
for the estimate of the VC-dimension of multi-layer neural nets in the next theorem.

Theorem 3.3 (Cover [C 6], [C 68]; see also Baum and Haussler [BH])
Let N be an arbitrary network architecture with linear threshold gates that has d
input nodes, 1 output node, and w programmable parameters.

Then VC-dimension(N') = O(w - logw) for any weightspace W C R and any
domain X C R”.

Proof: Let T C R? be some arbitrary set of size m > 2 that is shattered by N
By the preceding remark any gate ¢ in A can compute at most |X| fan-info)+1 4 |
different functions from any finite set X € Rf™™19) into {0, 1} (fan-in(g) denotes the

number of inputs of gate g). Hence N can compute at most [T (mfein)+ 4
g gatein A

1) < m*" different functions from 7 into {0,1}. If T" is shattered by N then A" can
compute all 2" functions from 7" into {0,1}. In this case the preceding implies that
27 < m* thus m = O(w - log w). |

It is hard to imagine that the VC-dimension of a network of linear threshold
gates can be larger than the sum of the VC-dimensions of the individual linear
threshold gates in the network. Hence on the basis of Theorem 3.2 it has frequently
been conjectured that the “true” upper bound in Theorem 3.3 should be O(w). The
following result disproves this popular conjecture by showing that the superlinear
upper bound of Theorem 3.3 and the related upper bound of Baum and Haussler
[BH] are asymptotically optimal. This implies that in a larger neural net an average
programmable parameter contributes more than a constant to the VC-dimension of
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the neural net. In fact, its average contribution can be as large as (logw), and
hence increase with the total size of the neural net. Therefore one may interpret
the following result as mathematical evidence for a certain type of “connectionism
thesis”: that a network of neuron-like elements is more than just the sum of its
components.

Theorem 3.4 ([M 93a] and [M 93¢])

Assume that (Ny)aen is a sequence of neural nets of depth > 3, where Ny has d
boolean input nodes and O(d) gates.

Furthermore assume that Ny has Q(d) gates on the first hidden layer, and at
least 4log d gates on the second hidden layer. We also assume thal Ny is fully
connected between any two successive layers (hence Ny has O(d*) programmable
parameters), and that the gates of Ny are linear threshold gates (or gates with the
sigmoid activation function o(y) = 7=, with round-off at the network output).

Then VC-dimension(Ny) = O(d*-logd), hence VC-dimension(Ny) = O(wlog w)

in terms of the number w of programmable parameters of Nj.

The proof of Theorem 3.4 proceeds by constructing a particular sequence
(My)ien of neural nets with superlinear VC-dimension. It is easy to show that
these nets (M,)sen can be embedded into arbitrary given nets (Ny)zen with the
properties from Theorem 3.4.. This implies that the A; also have superlinear VC-
dimension.

Assume that d is some arbitrary power of 2. We construct a neural net My
of depth 3 with 2d + log d input nodes and < 17d* edges such that VC-dimension
(M) > d*logd. This construction uses methods due to Neciporuk [N] and Lupanov
[L].

We construct My so that it shatters the set
T:={e,e,bm g €{1,....d},m € {1,...,logd}} C {0,1}*%Flos?,

where ¢,, ¢, denote unit vectors of length d and ¢,, denotes a unit vector of length

log d (thus every & € T contains exactly three “1”7, one in each of the three blocks
of length d,d, and log d).

Fix some arbitrary map F : T — {0,1}. We construct a neural net My that
computes I in such a way that only the values of the weights w; , in My (and not
the architecture of M) depend on this particular function F. One encodes F' by a
function ¢ : {1,...,d}? — {0,1}°¢? by setting

9(p.q) = (Fepey€y)s - s F(€p€4Cl0g4))-

For simplicity we first assume that g¢(-,¢) is 1-1 for every ¢ € {1,...,d}. Then
g(-,q) is invertible and we can define for ¢ € {1,...,d} and ¢ € {0,...,d — 1} the
weights w; , by

wig =p & g(p,q) = bin(),
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where bin(z) € {0,1}!°¢% denotes the binary representation of 7 € {0, . —1}.

In order to illustrate the construction principle of M, we first assume that some

be{l,...,logd} has been fized. By definition of ¢ one has

Fleees) =14 (g(p. @)y =1
i€ {0,...,d—1}((bin(i))y = 1 A g(p,q) = bin(7)),

where (), denotes the b-th bit of any bit-string x. The network My employs linear
threshold gates G, G on level 1, which are defined by the condition

d

G+(€p7eq) =l Z::IT ( ) Z::1 Wi - (Qq)f
d d

Gz_(epveq) =l Z::IT (ep)r < Z::1 Wi - (Qq)f

d
The term (e,), has value 1 if and only if p = r, hence Z re(eg,)r =pand 3 wi, -
r=1

e.)r = w;,. It is obvious that for any values of 7 at least one of the two gates
q g y p7 q7 g
GT,G7 gives output 1 for input € &q- Furthermore both gates give output 1 for

input €y, €, if and only if w; ; = p, i.e. g(p,q) = bin(z). Hence a threshold gate on
level 2 of M that outputs 1 whenever

d—1 d
> Gllene) +Gi(ege) > 5+1

i=0
with (bin(:)),=1

can be used to check whether 37 € {0,...,d—1}((bin(¢)), =1 A g(p,q) = bin(7)),
which is equivalent to F'(e,e,é,) = 1.

In the general case when b is a variable, one uses for each possible value b €
{1,...,logd} a separate circuit of depth 2 as described before, which simultaneously
checks whether b = m for the last block ¢, of the input ¢,¢,¢,,. This yields a circuit
of depth 3 that gives output 1 if and only if Fi(e,e,é,,) = 1.

Finally we have to remove the simplifying assumption that ¢(-, ¢) is 1-1 for every
q € {1,...,d}. According to [N], [L] there exist for any function ¢ : {1,...,d}* —
{0,1}°8? four auxiliary functions ¢i,¢2,93,94 : {1,...,d}* — {0,1}°8¢ such that
gi(+,q) is 1-1 for every ¢ € {1,...,d} and every j € {1,...,4}, and such that

1(p,q) © g2(p,q) , if p<df2
9@’”—{5( Db olpa) . it > df

(where @& denotes a bitwise EXCLUSIVE OR). One can construct in the previously
described way for j = 1,...,4 separate threshold circuits of depth 3 that check
whether (¢;(p,q))s = 1 (respectively whether (g;(p,q))» = 0), using the fact that
gi(-,q) is 1-1 for every ¢ € {1,...,d}. It is not very difficult to combine these
circuits into a single network of depth 3 that checks whether (¢(p,¢))m = 1, i.e.

whether F(e,e,é,,) = 1.

17



It is obvious from the construction that the architecture of the resulting network

M, is independent of the specific function F' : T — {0,1}. Hence M, has VC-
dimension > 2d + log d.

We refer to [M 93c] for further details. |

Subsequently Sakurai [Sa] has shown that if one allows real valued network inputs
then the lower bound of Theorem 3.4 can be extended to certain neural nets of depth
2. In addition he has shown that for the case of real valued inputs one can determine
exactly the constant factor in these bounds.

In applications of neural nets one usually employs nets with continuous activation
functions, because only for multi-layer neural nets with smooth activation functions
one has found learning algorithms (such as backpropagation) that perform well. In
order to estimate the number of training examples that are needed in such applica-
tions, it has become of interest to determine bounds for the VC-dimension of neural
nets with continuous activation functions. In order to get a boolean network output
from such net we assume that its output gate is still a linear threshold gate.

It turns out that the superlinear lower bound from Theorem 3.4 also holds for

nets with the common activation function o(y) = However it is not clear

1
1+e~¥"
how sharp this lower bound is for nets with smooth activation functions, since
it 1s much harder to prove upper bounds for the VC-dimension of such neural
nets. In particular, it turns out that one cannot expect any finite upper bound

if one just assumes that the analog activation functions in A are “very smooth

squashing functions”. Sontag [S] has shown that for the real-analytic function
U(y) := Larctan(y) + 7@?;’2) + 1 a neural net with 2 real valued inputs, 2 hid-

den units with activation function ¥ and a linear threshold gate as output gate
has infinite VC-dimension. Note that this function ¥ is strictly increasing and has
limits 1,0 at +o00 (hence it is a “squashing function”). For the case of neural nets
with d boolean inputs Sontag constructed activation functions with the same analytic
properties as the function ¥, such that the neural net with the same architecture as
above has the maximal possible VC-dimension 2°.

In view of the preceding results it is clear that in order to prove significant
upper bounds for the VC-dimension of an analog neural net one has to exploit
rather specific properties of its activation functions, such as the structure of their
explicit definitions.

The first upper bound for the VC-dimension of a neural net whose gates employ
the activation function o(y) = 1+l—y is due to Macintyre and Sontag. By using a
sophisticated result from mathematical logic (order-minimality of the elementary

theory L of real numbers with the basic algebraic operations and exponentiation)

they have shown:
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Theorem 3.5 (Macintyre and Sontag [MS])
Let N be any feedforward neural net with arbitrary activation functions that are
definable in the theory L (such as o(y) = H—%)’ and a linear threshold gate as
output gate. Then the VC-dimension of N (for arbitrary real inputs and arbitrary

real weights) is finite. |

In addition, for neural nets A" with discrete inputs from {—K, ..., K}¢, one
layer of hidden units with activation function o, and a linear threshold gate at the
output it has been shown by Bartlett and Williamson that the VC-dimension of N
is bounded by O(wlog(wk)), where w is the number of weights in N (see their
related Theorem 4.3 in the next section).

It was shown in [M 93a] that analog neural nets of arbitrary constant depth with
d boolean inputs, boolean output, and polynomially in d many gates with piecewise
polynomial activation functions and arbitrary real weights, can be simulated by
polynomial size neural nets that consist entirely of linear threshold gates. Hence
a polynomial upper bound for the VC-dimension of such neural nets follows im-
mediately from Theorem 3.3. Subsequently Goldberg and Jerrum have shown that
with the help of Milnor’s theorem from algebraic geometry one can prove directly
a polynomial upper bound for arbitrary polynomial size neural nets with piecewise
polynomial activation functions (in fact their argument also applies to the case of
piecewise rational activation functions).

Theorem 3.6 (Goldberg and Jerrum [GoJ])
Let N be any neural net with piecewise polynomial activation functions (with O(1)
pieces each), arbitrary real inputs and weights, and boolean output. Then the VC-
dimension of N is at most O(w?), where w is the total number of weights in N .

We will sketch a proof of the corresponding bound for the pseudo-dimension of
such neural nets in the next section (Theorem 4.4).

Open problems:

6. Is the VC-dimension of every network architecture of depth 2 with boolean in-
puts, linear threshold gates and w programmable parameters bounded by O(w)?
[Theorem 3.2 shows that the answer to the corresponding question for depth

1 is positive, and Theorem 3.4 shows that the answer is negative for any depth

d> 3]
7. Consider any network architecture N with linear threshold gates
(Y1y- ey Ym) > sgN (Z oy + ozo) )
=1

Can the VC-dimension of N become larger if we replace at the hidden nodes of
N the “heaviside activation function” sgn by some common smooth activation
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function such as o(y) = H—%’ or
0, if y<0
my)=q vy, f0<y<1
1, ify>1 ¢

[This problem is open both for the case of boolean and for the case of real
valued network inputs. It is demonstrated in [MSS] that certain neural nets
can compute more boolean functions if one replaces their heaviside activation
functions by o or 7.]

8. Can one close the gaps between the best known upper bounds and the best known
lower bounds for the VC-dimension of neural nets with w weights, activation
functions o or w, and boolean network output?

[For o the best known upper bound is “< c0” (see Theorem 3.5) and the best
known lower bound is Q(wlogw) (see Theorem 3.4). For w the best known
upper bound is O(w?) (see Theorem 3.6) and the best known lower bound is
Q(wlogw) (see Theorem 3.4)].

9. Is efficient PAC-learning possible for the hypothesis class H defined by network
architectures of linear threshold gates of depth 2 and some “interesting” class
C S H of target concepts?

[[KV] have shown that if C contains all concepts computable by polynomial
size threshold circuits of a certain fixed depth larger than 2, then C is not
PAC-learnable with any “reasonable” hypothesis class H. Hence for a positive
learning result it is crucial to limit the “computational power” of C.]

4 Agnostic PAC-Learning of Functions on Neural
Nets

The previously discussed learning models are not suitable for the analysis of learning
on neural nets in the context of real world learning problems, because they are
based on an unrealistic assumption. Consider for example the numerous datasets
for real world classification problems that are used in machine learning as benchmark
problems for empirical comparisons of heuristic learning algorithms (see e.g. [Ho],
[WK]). These datasets have in common that one cannot assume that the “examples”
are generated by a target concept Cr of a specific structure (e.g. a specific neural
net N'%), as required by the previously discussed learning models. Hence one is
forced to drop the assumption that C C H.

Apparently the only learning model that is applicable to real world learning
problems is Haussler’s extension [Ha] of the PAC-learning model, the model for
agnostic PAC-learning ( this notion is due to Kearns, Schapire, and Sellie [KSS]).
In this model one makes no a-priori assumption about any “target concept” which
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generates the examples (z,y) € X x Y. Instead, one allows arbitrary distributions
A of examples (x,y) from X x Y, for which one does not even require that there
exists any function F' : X — Y such that F(x) = y for all examples (x,y). Thus
one allows in particular that the same € X may occur in different examples (z, y)
and (z,y") with y # y' (i.e. the examples may be noisy; the probabilistic concepts of
[KS] occur as a special case). Another important improvement of Haussler’s model
is that it does not require that ¥ = {0,1}. Hence we can also analyze in this
model the complexity of learning real valued functions on neural nets where not
only the outputs of intermediate gates, but also the outputs of the output gates are
non-boolean. This is an important step, since there exists some evidence that the
specific strength of adaptive neural nets (in contrast to other quite successful learning
methods from applied machine learning such as decision tree induction (see [WK])
lies in areas such as process control, where some unknown smooth function has to be
approximated by the neural net. It should also be noted that the backpropagation
learning algorithm is often applied in this more general framework.

In the following definition of Haussler’s model for agnostic PAC-learning we
consider for a fixed domain X and a fixed range Y a class A of distributions on X xY
(not on X !). Compared with the regular PAC-model this class A simultaneously
plays the role of the class of distributions D on the domain, and of the class C of
target concepts. The only class that plays the same role as in the standard definition
of PAC-learning is the class H C Y of hypotheses. This class is determined by the
learning approach of the learner, e.g. by a specific neural network architecture.

Obviously in this generalized framework the way in which the quality of a hy-
pothesis H € H is evaluated has to change, since we no longer assume that there
exists a target concept (or target function) which is consistent with all or at least
most examples in a given random sample. Therefore one now compares the per-
formance of each H € H with that of the best H' € H, or (with an eye towards
feasibility) with that of the best G € T from some specified “touchstone class”
T C'H (see [KSS]).

This framework is adequate for real world learning situations, where some dataset
S = ({#i,9i))i<m with finitely many points from X x Y is given to the learner,
without any guarantee that any hypothesis H € H performs well on S. For example
for an application in medicine (where one would like to support the physician by
an automated diagnosis system) the sample S may consist of records from a large
number of previous patients. In the agnostic PAC-learning model one assumes that
S results from independent drawings of elements from X x Y with regard to some
unknown distribution A € A.

Each possible hypothesis H € H is a function from X to Y. Its performance on
a sample S (“the apparent error on S”) is measured by the term = 3 K(H(:Jci), yi),
=1

for some suitable loss function £ : Y x Y — R*. For example in the case Y = R one

might choose {(z,y) := |z —y/|, in which case - f: K(H(l'i), yi) measures the average
=1
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vertical distance of the datapoints (z;,y;) € S from the graph of the function H.

The real goal of the learner is to minimize for the underlying distribution A € A
the socalled “true error” of his hypothesis, i.e. the term Fy, yes[((H(x),y)]. This
term measures the average prediction loss of hypothesis H on new datapoints (z,y)
that are generated by the same (unknown) distribution A on X x Y.

For many learning problems it is impossible to bring the true error of the best
hypothesis H € H close to 0 (for example it may be the case for some distribution
A that every function F': X — Y has a true error Ei pyeall(F(z),y)] > 1 because
A is very “noisy”). Hence the best one can hope for is to find a hypothesis H € H,
whose true error is close to that of the best hypothesis H' € H, i.e. close to

inf By pyeall(H'(x), )]
H'eH

However even this goal is often unattainable because of computational difficulties.
Therefore it makes sense to consider in addition a “touchstone class” 7 C H, which
provides a more modest benchmark for evaluating the quality of hypotheses H € H.
The goal of the learner is then to find a hypothesis H € H whose true error is close
to

inf Epyeall(G(x),y))]

GeT

An example for a positive result of this type is provided by Theorem 4.7, where 7
is the class of functions that are computable on a smaller neural net A (whereas
H is the class of functions computable on a larger neural net N whose architecture
“supports” the learning algorithm that is used).

Definition: Let X (“domain”) and Y (“range”) be arbitrary sets, and let { :
Y xY — R* be some arbitrary function (“loss function”). Let A be some arbitrary
class of distributions on X x Y, and let T and 'H be classes of functions from X
intoY (e.g. classes of functions computable on some fixed network architectures).

The task of the learner is to determine a sample-bound m(e,é) so that he can
solve the following problem for any given €,0 > 0:
For any distribution A € A and any given sample S = ((x;,Yi) )i<m of m > m(e,9)
points from X x Y that are drawn independently according to A, he is supposed
to compute from S,e, and 6, the representation of some hypothesis H € H (e.g.
a parameter assignment « for some network architecture) so that with probability
>1-=46:

Fpeayeall(H () )] € it Fpeypealt(Gle), )] + 2.
GeT

If the sample-bound m(e,6) can be bounded by a polynomial in % and %, and if the
representation of such hypothesis H can be computed from S, e and 6 by an algorithm
whose computation time ts bounded by a polynomial in %, %, and the length of S, we
say that T is efficiently PAC-learnable by H assuming A. In the special case where
T ="H one says that 'H is efficiently PAC-learnable assuming A.
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In lack of a better terminology we will refer to this learning model as agnostic PAC-
learning. Previously [KSS] had used this term only for a special case of this learning
model (where Y = {0,1}, 7 = H, ( is the discrete loss function, and A is such that
for each sample there exists some concept consistent with the sample). One should
note that we are considering here a much more general framework.

Since we assume that the learner has no a-priori knowledge about the actual
distribution A € A, and since he gets to see only a finite sample S from A, he
cannot measure the true error of any hypothesis H € H. Instead, he can only
measure the apparent error of a hypothesis on the random sample S that is drawn
according to A. Therefore the learner needs to know how large he should make
the sample size m(e,é) so that with high probability for every possible hypothesis
H € 'H the apparent error of H on S is close to the true error of H. It turns out
that one can give such bounds for the required sample size in turns of the pseudo-
dimension of H. This notion provides a useful generalization of the notion of a
VC-dimension for classes of hypotheses with non-boolean output.

In order to define the pseudo-dimension of a neural net N one has to specify
a loss function ¢ that is used to measure for any example (z,y) € X x Y the
deviation ((N(z),y) of the prediction N'%(x) of the neural net from the target
value y. Popular choices for { are ((z,y) = |z —y|, {(z,y) = (# — y)?, or the discrete
loss function {p : X x Y — {0,1} with {p(z,y) =0 z=y.

Definition: The pseudo-dimension dimp(N') of N with respect to the loss func-
tion { is defined as the mazimal size of a set T'C X x Y which is shattered by N in
the sense that

Jt:T—-RVg:T—{0,1} Jae WV (x,y) €T
((N(x),y) > t({z,y) < g({z,y)) =1).

Note that in the special case if Y = {0, 1}, if the network A" outputs only boolean
values, and if £ is the discrete loss function £, then the pseudo-dimension dimf; (V)
coincides with the VC-dimension of A

If the size m of a training set S = ((z;, ¥:)i<m ) (which is randomly drawn accord-
ing to some arbitrary distribution A over X x Y') is relatively large in comparison

with the pseudo-dimension of A then the “apparent error” % S UN(z;),y;) of
=1

N2 is (with high probability) close to the “true error” E, yea[((N%(2),y)] of N2,
provided that the range of the values {(N%(x),y) is bounded. This relationship is
made more precise by the following result.

23



Theorem 4.1 (Pollard [P]; Haussler [Ha])

Assume that the class Fyy of all functions (x,y) — ((N%(z),y) with o € WY is
a permissible class of functions from X XY into some arbitrary bounded interval
[0,7] (the “permissibility” of Fury is a somewhat technical measurability assumption,
which is always satisfied if the weightspace W is countable, e.g. for W C Q).

Then for any distribution A over X XY and any sample S = ((x,y:))i<m of m
“training-examples” (which are drawn independently according to distribution A) one
has for any given €,6 > 0 and any sample-size m > 6‘:—;’2(2- dimp(N)In 182 4 1n §)
that with probability > 1 — 6:

Vo & W (|- 3 AN, ) — Bpeneal (N32), )] < <)

Open problem:

10. Can one relax the lower bound for m in Theorem /.17

Remark 4.2
a) The preceding result provides a tool for analyzing a rather serious problem

in experiments with learning on neural nets A: the effect of “overfitting”.
Overfitting occurs when the training of the neural net on some finite sample S
(e.g. via backprop) yields some hypothesis H = N'® whose apparent error on
the training set S is quite small, but which performs badly on new data (i.e.
H has a rather large true error). This effect tends to occur if S is relatively
small compared with the complexity (i.e. the number w of programmable
parameters) of the neural net A". The preceding Theorem 4.1 gives an explicit
bound for a sufficient size of the sample (in terms of the pseudo-dimension of
N) so that overfitting is unlikely to occur.

b) Theorem 4.1 allows us to reduce agnostic PAC-learning on a neural net A to
the finite optimization problem of computing for a sample S = ((z;, ¥;) Ji<m of
sufficiently large size m a weight-setting o for NV that minimizes the apparent
error of N'¢ on §.

For example, for m > (6‘/”) (2- dim%(AN) In 166/6; + In 8), where ¢ is the base
of the natural logarithm, it suffices to compute for a random sample S =
({(#i,yi))i<m which is drawn according to some arbitrary distribution A over

R? x Y some a € QY such that
‘—Zﬁ(/\/g(:ﬁi),yi) inf Zﬁ ./\/CY
m = oeQ® M=t

By Theorem 4.1 we then have with probability > 1 — 6 (with regard to the

random drawing of S) that

[ apeal6N(2).9)] - nt | Breneal (W () )] < <.

O-'JIOW
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c) Haussler [Ha] has developed in addition a somewhat different method for
bounding the sample size for agnostic PAC-learning of functions on neural
nets. He has shown that it suffices to bound the “capacity” of such neural
nets, and he has proven good bounds for the capacity of neural nets with
Lipschitz-bounded activation functions (such as o) if the weights are bounded.

1
14e~¥
known upper bounds for the pseudo-dimension are given by a corresponding gener-

alization of Theorem 3.5 (Macintyre and Sontag [MS]), and by the following result:

For neural nets A with the sigmoid activation function o(y) = the only

Theorem 4.3 (Bartlett and Williamson/[BW])
Let N be a neural net of depth 2. Assume that the gales on level 1 use the ac-
tivation function o (alternatively these gates may compute a radial basis function
y = (Y1, ym) — e 07 with “weights” ¢ € R™), and that the output gate on
level 2 outputs a weighted sum of its inputs.

Then for discrete inputs from {—K,..., K}? the pseudo-dimension of N is at
most 8wlog,(11 - wkK), where w denotes the total number of weights in N.

The proof uses an exponential parameter transformation in order to transform
the function that is computed by A into one that is polynomial in its parameters.
One can then apply Milnor’s Theorem in a similar fashion as in Theorems 3.6 and
4.4. |

For neural nets N* with piccewise polynomial activation functions one can give
the following upper bound.

Theorem 4.4 Let N be an arbitrary network architecture of order O(1) with w
real valued weights, arbitrary piecewise polynomial (or piecewise rational) activation
functions that consist of O(1) pieces of degree O(1), and real-valued network inputs
and outputs.

Assume that the loss function ( is defined by ((z,y) = ||z — y||, for some p €
{1,2,...,}.

Then dimp(N) = O(w?).

Proof: The proof proceeds analogously as that of Theorem 3.6. Set D :=
dim’(N), let d be the number of input nodes, and let ! be the number of output
nodes of A'. Then there are values ({z;,yi, 2;))i=1,..p € (Rd+l+1)D such that for every
b:{1,...,D} — {0,1} there exists some o, € R” so that for all 7 € {1,..., D}

V= (zi) =y llp = 20 & b(i) = 1.

For each ¢ € {1,...,D} one can define in the theory of real numbers the set
{a € RY : ||[N%(z,) — yl|, > 2} by some first order formula ®; with real valued
constants of the followin_g structure: ®; is a disjunction of < ¢ - 2! conjunctions of
< 2w+ [+ 1 atomic formulas, where each atomic formula is a polynomial inequality
of degree < (2vr)“ (v is a bound for the order of N see Definition 1.1, and r is
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the maximal degree of a polynomial or rational piece of an activation function in
N). The disjunctions arise here from using different combinations of pieces from the
activation functions. The conjunctions consist of all associated comparisons with
thresholds of the activation functions. The factor 2 in the degree bound arises only
in the case of piecewise rational activation functions.

By definition one has that ®;(q;) is true if and only if b(¢) = 1, for e =1,..., D.
Hence for any b,b: {1,..., D} — {0,1} with b # b there exists some ¢ € {1,..., D}
so that ®;(a;) and ®;(¢;) have different truth values. This implies that at least one

of the < K :=D-¢g"- oL (2w + 1+ 1) atomic formulas that occur in the D formulas
®q,...,®p has different truth values for «;, o; (where ¢ is a bound for the maximal
number of polynomial or rational pieces in an activation function of A).

On the other hand, each of the < K atomic formulas is a polynomial inequality of
degree < (2vr)" (where r is the maximal degree of a polynomial or rational piece of
an activation function in N'). Hence a theorem of Milnor [Mi] (see also [R]) implies
that the number of different combinations of truth assignments to these atomic
formulas that can be realized by different o € R" is bounded by (K - (2vr)*)°(),
Thus we have 2P < (K - (2vr)*)°() which implies by the definition of K that
D = O(w) - (log D + wlogq). This yields the desired estimate D = O(w?) for
q=0(1). |

Open problem:

11. Can the bound of Theorem 4.4 be improved to O(wlogw)?
[Theorem 3.4 provides a lower bound of Q(wlogw) for certain network
architectures of this type.]

Agnostic PAC-learning can be reduced to a finite optimization problem according
to Remark 4.2 b). However it turns out that the resulting finite optimization problem
is computationally quite difficult for most concrete learning problems. The following
result shows that any efficient algorithm for agnostic PAC-learning with hypothesis
class H can (for some choices of A, (, and 7 ') be used to solve efficiently the associated
“minimizing disagreement problem” for H.

Theorem 4.5 (Kearns, Schapire and Sellie [KSS])
Let X be some arbitrary set and Y := {0,1}. Let A be the class of all distributions
on X x Y, and let {p be the discrete loss function (i.e. {p(z,y) =0 if z =y and
Uz,y)=1if z #y). Assume that H is efficiently PAC-learnable assuming A (with
respect to loss function {p). Then there exvists a randomized polynomial time algo-
rithm M D which solves the following minimizing disagreement problem associated
with H:

Given any finite sequence ((xi,y:))i<m of elements of X x Y (possibly with rep-
etitions and contradictory labels for the same x € X ) the algorithm M D with input
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((xi,4:) )i<m computes some H € H which satisfies with probability > 2:

i <m: H(z) # v}

= inf ‘{z <m: H'(z;) # yi}
H'eH

Proof: Let S C X x Y be the multi-set which is generated by the sequence

((#i,yi))i<m. Let A be the uniform distribution over S, and define ¢ := mL_H and

§ := L Let LEARN be any efficient PAC-learning algorithm for H assuming A

1
(with loss function (p).

We construct the randomized algorithm M D as follows. M D draws (internally)
T
over S, where m(e, ) is the polynomially bounded sample-complexity of LEARN.
By assumption the algorithm LEARN computes from this sample S’ some H € H
such that with probability > 2 (with regard to the drawing of S’) the following

4
holds:

a sample 5" of m( ) examples from S according to the uniform distribution Ug

: 1
E(l’,y>€Us |:|H($) — y|:| S lnf E<737Z/>EU5~ |:|H/($) . y|:| —I— T—H
H'eH

Since every point in .S has a weight of at least % under the uniform distribution Ug
over S, the hypothesis H cannot afford to misclassify any example more than nec-
cessary in order to achieve this performance. Hence H is a solution of the associated
minimizing disagreement problem. |

Obviously in the special case Y = {0, 1} efficient agnostic PAC-learning is at least
as difficult as efficient learning in the regular PAC-model. In fact, it is strictly more
difficult as the following arguments show. The “minimizing disagreement problem”
for a hypothesis space H contains as a subproblem the task to find some H € H that
is consistent with the sample S, provided there exists such H € H. This subproblem
captures the computational demands for PAC-learning with hypothesis class H in
the standard PAC-model. It turns out that for various important classes H this
subproblem is computationally feasible (and hence efficient PAC-learning with H is
possible in the standard PAC-model), whereas the minimizing disagreement problem
for H is computationally “hard” (and hence efficient agnostic PAC-learning with
hypothesis class H is impossible according to Theorem 4.5).

The following result shows that the class H of halfspaces over {0,1}? is an
example for a class that is efficiently learnable in the standard PAC-model, but not
in the model for agnostic PAC-learning.

Theorem 4.6 (Hoeffgen, Simon and Van Horn [HSV])
For all d € N let Ay be the class of all distributions on {0,1}¢ x {0,1}. Then
R # NP implies that H = (HALFSPACE?OJ}d)deN is not efficiently PAC-learnable
assuming A = (Aq)aen-
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Proof: It is shown in [HSV] that it is NP-hard to decide for an arbitrary
multi-set S of positive and negative examples from some domain {0,1}? (i.e. S C
{0,1}% x {0,1}) and an arbitrary given k& € N, whether there exists some H €
HALFSPACE?OJ}CZ that misclassifies at most k& of the examples in S.

On the other hand it follows from Theorem 4.5 that an efficient PAC-learning
algorithm for H assuming A would give rise to a randomized polynomial time algo-
rithm for this NP-complete decision problem. |

Since the preceding result shows that agnostic PAC-learning is not even possible
for a perceptron, the question arises whether one can prove anything positive for
agnostic PAC-learning on neural nets. One characteristic feature of all the well-
known negative results about PAC-learning on neural nets (see [BR], [J], [KV], and
Theorem 4.6) is that one transfers to neural nets a type of asymptotic analysis that
has become customary in the analysis of algorithms for digital computation. One
assumes in these negative results that the number w of programmable parameters in
N goes to infinity. However this analysis is not quite adequate for many applications
of neural nets, where one considers a relatively small fired neural net, and the input
is given in the form of relatively few analog inputs (e.g. sensory data). In addition,
for many practical applications of neural nets the number of input variables is first
reduced by suitable preprocessing methods (e.g. principal component analysis).
Hence it is also of interest to find out whether efficient PAC-learning is possible for
a neural net with e.g. w := 20 programmable parameters.

For a network architecture N with boolean inputs and outputs and w = O(1)
programmable parameters the question whether A can PAC-learn has a trivial pos-
itive answer since N can only compute O(1) different functions. However for the
case of rational or real inputs (and/or outputs) such N can compute infinitely many
different function, and the nontrivial asymptotic question arises (in the regular and
in the agnostic PAC-learning model) whether there exists an efficient learning algo-
rithm for A/ that allows it to learn any target function with arbitrarily small true
error if sufficiently many training examples are provided. Obviously the preceding
negative results leave open the question whether there exists for a fized neural net A’
a PAC-learning algorithm whose computation time can be bounded by a polynomial

in 1,1 in the maximal bit-length n of its d input numbers from Q, and in the bound

£ 8 N ~
s for the allowed bit-length of weights in A (but where the size of N may occur in
the exponent of the time bound). A positive result in this direction is given by the
following Theorem 4.7. We use there as “touchstone class” the class of all functions

computable on a given neural net N with rational weights of bit-length s.

Let Q,, be the set of rational numbers that can be written as quotients of integers
with bit-length < n. We write ||2||; for the Ly-norm of a vector z € R/,
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Theorem 4.7 ([M 93b])

Let B C R be an arbitrary bounded set. Let N be some arbitrary high order network
architecture with d inputs and [ outputs. We assume that all activation functions of
gates in N are piecewise polynomial with architectural parameters from Q.

Then one can construct an associated first order network architecture N with
linear threshold gates and gates with activation functions from the class {x — x,x —
x?}, as well as a polynomial m(L,+) and a learning algorithm LEARN such that
for any given s,n € N and any distribution A over Qi x (Q, N B)' the following
holds:

For any sample S = ((xi, yi) )i=1,...m of m > m(L, 1) examples that are independently
drawn according to A the algorithm LEARNy computes from S, s,n in polynomially
in m,s and n many computation steps an assignment & of rational numbers to the

programmable parameters of the associated network architecture N such that

B yyeall V@) —ylh] < inf  EggeallV(2) — yll] +¢
QGQ:}

with probability > 1 — & (with regard to the random drawing of S).

The proof of Theorem 4.7 is mathematically quite involved, and we can give
here only an outline. It consists of three steps:

(1) Construction of the auxiliary neural net A,

(2) Reducing the optimization of weights in N for a given distribution A to a
finite nonlinear optimization problem.

(3) Reducing the resulting finite nonlinear optimization problem to a family of
finite linear optimization problems.

Details to step (1): We use the same construction as in [M 93a].

If the activation functions 7, in N are piecewise linear and all computation
nodes in A have fan-out < 1 (this occurs for example if V' has just one hidden layer
and only one output) then one can set N = N. If the vy are piecewise linear but
not all computation nodes in N have fan-out < 1 one defines N as the tree of the
same depth as N, where subcircuits of computation nodes with fan-out m > 1 are
duplicated m times. The activation functions remain unchanged.

If the activation functions 4, are piecewise polynomial but not piecewise linear,
one has to apply a rather complex construction which is described in detail in the
journal version of [M 93b]. In any case N has the property that all functions that
are computable on N can also be computed on A, the depth of N is bounded by a
constant, and the size of A7 is bounded by a polynomial in the size of A/ (provided
that the depth and order of NV, as well as the number and degrees of the polynomial
pieces of the v, are bounded by a constant).
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Details to step (2): With the help of the pseudo-dimension and Theorem 4.1
one can reduce the desired optimization of weights in N (with regard to an arbitrary
given distribution A of examples (z,y)) to a finite optimization problem.

Fix some interval [by, b3] C R such that B C [by, b3, b1 < by, and such that the
ranges of the activation functions of the output gates of A" are contained in [by, bs].
We define r :=1- (by — by) , and F = {f - RF x [by, 0] — [0,7]: Ta € R¥ Vz €
R* Wy € [by. bo]' (f(z.) = [IN=(2) — yll)}-

Assume now that parameters €,6 € (0,1) with ¢ < r and s,n € N have been
given. For convenience we assume that s is sufficiently large so that all architectural
parameters in A are from Q, (we assume that all architectural parameters in N are
rational). We define

11 257 - 12 I 33er 8
m(E’E) =0 (2-d1mP(N)-ln 5 —I—an).

%), K = Y57 and any distribution A over

By Theorem 4.1 one has for m > m(% <

Ql % (Q, N [by, by))’ :

() Prscal(V€F: 1 Y o)~ Begelfep)ll € 21 2 1-6

(zy)€s

where E, yealf(z,y)] is the expectation of f(z,y) with regard to distribution A.

We design an algorithm LEARN 4 that computes for any m € N, any sample

S = ({26 Y1) )ie(tmy € (QF x (Q, N [br, b)),

and any given s € N in polynomially in m, s,n computation steps an assignment
a of rational numbers to the parameters in N such that the function A that is
computed by A< satisfies

1 2 - 2 . 1 & N
(2) =D () —yilh < (I-7)e+  inf — > INV=(a) = yil -
m= 1 w M5
a € Qg

This suffices for the proof of Theorem 4.7, since (1) and (2) together imply that, for
any distribution A over QF x (Q, N [by, by])" and any m > m(%, }), with probability
> 1 — 6 (with respect to the random drawing of S € A™) the algorithm LEARN y
outputs for inputs S and s an assignment & of rational numbers to the parameters

in A such that

EggealIN¥z) —ylh] < inf  EggeallV4z) — ylh] +e.
a€eQy

Details to step (3): The computation of weights & that satisfy (2) is nontrivial,
since this amounts to solving a nonlinear optimization problem. This holds even
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if each activation function in N is piecewise linear, because even then the weights
from successive layers are multiplied with each other.

We employ a method from [M 93a] that allows us to replace the nonlinear con-
ditions on the programmable parameters o OfNN by linear conditions for a trans-
formed set ¢, 8 of parameters. We simulate N'® by another network architecture

N[Q]ﬁ (which one may view as a “normal form” for ./\N/g) that uses the same graph
(V. E) as N, but different activation functions and different values j for its program-

mable parameters. The activation functions of A'[¢] depend on |V| new architectural
parameters ¢ € R!Y!, which we call scaling parameters in the following. Although
this new network architecture has the disadvantage that it requires |V| additional
parameters ¢, it has the advantage that we can choose in N[Q] all weights on edges
between computation nodes to be from {—1,0,1}. Hence we can treat them as con-
stants with at most 3 possible values in the system of inequalities that describes
computations of N[Q] Thereby we can achieve that all variables that appear in the
inqualities that describe computations of N[g] for fixed network inputs (the vari-
ables for weights of gates on level 1, the variables for the biases of gates on all levels,
and the new variables for the scaling parameters ¢) appear only linearly in those
inqualities. Furthermore one can easily compute from « values for # and ¢ so that

Ve € RY (We(a) = M) )

At the end of this proof we will also need the fact that the previously described
parameter transformation can be inverted, i.e. one can compute from ¢, 3 an equiv-

alent weight assignment o for A/ (with the original activation functions 7).

We now describe how the algorithm LEARN g computes for any given sample
S = ({20, ¥i) )i=1,..m € (Qi x (Q, N [bl,bg])l)m and any given s € N with the help
of linear programming a new assignment é,é to the parameters in A such that the

function % that is computed by N[é]ﬁ satisfies (2). For that purpose we describe
the computations of N for the fized inputs z; from the sample S = ((xi, ¥:))i=1,...m
by polynomially in m many systems Ly, ..., Ly, that each consist of O(m) linear
inequalities with the transformed parameters ¢, 3 as variables. Each system L;
reflects one possibility for employing specific linear pieces of the activation functions
in \V for specific network inputs x4, . . ., 2,», and for employing different combinations
of weights from {—1,0,1} for edges between computation nodes.

One can show that it suffices to consider only polynomially in m many systems
of inequalities L; by exploiting that all inequalities are linear, and that L; contains
only O(1) variables.

We now expand each of the systems L; (which has only O(1) variables) into a
linear programming problem LFP; with O(m) variables. We add to L; for each of

VooV

Yool for e = 1,...,m, and the 4m

the [ output nodes v of N 2m new variables u
inequalities

) < (ya)y +uf =l () 2 (yo)y +ul —vf, uf >0, vl >0,
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where ((xi,9i))i=1,...m is the fixed sample S and (y;), is that coordinate of y; which
corresponds to the output node v of N. In these inequalities the symbol #%(z;)
denotes the term (which is by construction linear in the variables ¢, ) that represents
the output of gate v for network input z; in this system L;. We expand the system
L; of linear inequalities to a linear programming problem LP; in canonical form by
adding the optimization requirement

m

minimize > > (uf +v!).

=1y output node

The algorithm LEARN 4 employs an efficient algorithm for linear programming
(e.g. the ellipsoid algorithm, see [PS]) in order to compute in altogether polynomially
in m,s and n many steps an optimal solution for each of the linear programming
problems LPy,..., LP,,). We write h; for the function from R” into R' that is

computed by N[g]ﬁ for the optimal solution ¢, 8 of LP;. The algorithm LEARN g
1 & .

computes — Y _||hj(z;) — yil|1 for j = 1,...,p(m). Let j be that index for which this
m Li) = Yi

=1
expression has a minimal value. Let ¢, 3 be the associated optimal solution of L P

(i.e. N[ ] computes hz). LEARN g employs the previously mentioned backwards
transformation from ¢, é into values & for the programmable parameters of N such

that Va € Rk(/\N/Q(g) = N[é]é(g)) These values & are given as output of the
algorithm LEARN g.

We refer to the journal version of [M 93b] for the verification that this weight
assignment & has the desired properties, and for the construction in the more general
case where the activation functions of N are piecewise polynomial. |

Remark 4.8

a) The algorithm LEARN can be speeded up substantially on a parallel ma-
chine. Furthermore if the individual processors of the parallel machine are
allowed to use random bits, hardly any global control is required for this paral-
lel computation. We use polynomially in m many processors. Each processor
picks at random one of the systems L; of linear inequalities and solves the
corresponding linear programming problem LP;. Then the parallel machine

compares in a “competitive phase” the costs Z ||hj(xs) — yil|lr of the solu-

tions h; that have been computed by the 1nd1v1dual processors. It outputs the
Welghts & for N that correspond to the best ones of these solutions h;. If one
views the number @ of weights in A" no longer as a constant, one sees that the
number of processores that are needed is simply exponential in w?, but that
the parallel computation time is polynomial in m and w.

b) The proof of Theorem 4.7 uses an idea that promises to bear further fruits:
Rather than insisting on designing an efficient learning algorithm for every
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neural net, one designs learning algorithms for a subclass of neural nets A
whose architecture is particularly suitable for learning. This may not be quite
what we want, but it suffices as long as there are arbitrarily “powerful” network
architectures A that support our learning algorithm. It is likely that this idea
can be pursued further with the goal of identifying more sophisticated types
of special network architectures that admit fast learning algorithms.

Open problems:
12. Does Theorem 4.7 also hold for N := N'?

13. Can one improve the time bound of the learning algorithm in Theorem 4.7 to
0(269) - poly (1, 1))7 )
[The time bound of LEARN z contains a factor of the form 2°(%°) see the
journal version of [M 93b].]

14. Can one extend Theorem 4.7 to network architectures N with the sigmoid
activation function?

15. Can one prove further positive results for agnostic PAC-learning by exploit-
ing the observation that various real world classification problems give rise to
distributions A over X x Y that have special structural properties (e.g. for
Y = {0,1} one often has that very simple hypotheses can “predict” the labels
of examples quite well, see [Ho])?

5 Conclusion

Several of the existing results about learning on neural nets are negative results.
However one should not interpret these results as saying that efficient learning on
neural nets is impossible. In fact, efficient learning on neural networks is a reality,
both on existing artificial neural nets and even more on neural systems of living
organisms. Hence one should view these negative results as useful hints, which
guide us towards a better understanding of the essential mechanisms of learning on
neural nets, and towards the development of more adequate theoretical models.
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