
to appear in:Theoretical Advances in Neural Computation and Learning, V. P. Roychowdhury, K. Y. Siu, A.Orlitsky, editors, Kluwer Academic PublishersPerspectives of Current Research aboutthe Complexity of Learning on NeuralNetsWolfgang MaassInstitute for Theoretical Computer ScienceTechnische Universitaet GrazKlosterwiesgasse 32/2A-8010 Graz, Austriae-mail: maass@igi.tu-graz.ac.at

1 PreliminariesThis paper discusses within the framework of computational learning theory thecurrent state of knowledge and some open problems in three areas of research aboutlearning on feedforward neural nets:{ Neural nets that learn from mistakes{ Bounds for the Vapnik-Chervonenkis dimension of neural nets{ Agnostic PAC-learning of functions on neural nets.All relevant de�nitions are given in this paper, and no previous knowledge aboutcomputational learning theory or neural nets is required. We refer to [RSO] forfurther introductory material and survey papers about the complexity of learningon neural nets.Throughout this paper we consider the following rather general notion of a (feed-forward) neural net.De�nition 1.1 A network architecture (or \neural net") N is a labeled acyclicdirected graph. Its nodes of fan-in 0 (\ input nodes"), as well as its nodes of fan-out0 (\ output nodes") are labeled by natural numbers.A node g in N with fan-in r > 0 is called a computation node (or gate), and itis labeled by some activation function g : R! R, some polynomial Qg(y1; : : : ; yr),and a subset Pg of the coe�cients of this polynomial (if Pg is not separately speci�edwe assume that Pg consists of all coe�cients of Qg).One says that N is of order v if all polynomials Qg in N are of degree � v. Thecoe�cients in the sets Pg for the gates g in N are called the programmable parametersof N .Assume that N has w programmable parameters, that some numbering of thesehas been �xed, and that values for all non-programmable parameters have been as-signed. Furthermore assume that N has d input nodes and l output nodes. Theneach assignment � 2 Rw of reals to the programmable parameters in N de�nes ananalog circuit N �, which computes a function x 7! N �(x) from Rd into Rl in thefollowing way: Assume that some input x 2 Rd has been assigned to the input nodesof N . If a gate g in N has r immediate predecessors which output y1; : : : ; yr 2 R,then g outputs g(Qg(y1; : : : ; yr)).Remarka) The programmable parameters of a network architecture N contain the \pro-gram" ofN . \Learning onN" means that one computes concrete values for theprogrammable parameters of N from examples for \desirable" input/output-behaviour. One usually refers to the programmable parameters as \weights".2

b) Apart from the programmable parameters, a network architectureN also con-tains some �xed parameters (which one should view as \hardwired"). Theseare the parameters that occur in the de�nitions of the activation functions g(e.g. thresholds between linear pieces for a piecewise linear activation func-tion), and those coe�cients of the polynomials Qg which do not belong to theassociated sets Pg. These coe�cients could for example encode some \back-ground knowledge" of the neural net.c) The term \neural net" is used in the literature both for a network architectureN in the sense of De�nition 1.1, and also for the associated analog circuitN � with speci�c values � for its programmable parameters. We will use inthis paper the term \network architecture" if we want to stress the formermeaning. We will use the term \neural net" if it is not so important (or if itis clear from the context) which of the two interpretations is meant.d) The de�nition of a network architecture in De�nition 1.1 is quite general. Itcontains various special cases which are of particular importance.A gate g with the \heaviside activation function" x 7! sgn(x) (wheresgn(x) := 1 if x � 0, else sgn(x) = 0) and a polynomial Qg of degree � 1(i.e. Qg is simply a \weighted sum") is called a linear threshold gate. If allgates in N are linear threshold gates one refers to N as a threshold circuit(with variable weights).If N employs some activation functions with non-boolean output, one refersto N as an analog neural net. Most experiments with learning on neural netsare carried out on analog neural nets with smooth activation functions suchas the sigmoid function �(y) = 11+e�y or some piecewise polynomial approxi-mation to this function. The reason is that most heuristic learning algorithmsfor multi-layer neural nets require that the network output is di�erentiable asa function of the programmable parameters of the neural net. Another im-portant advantage of analog neural nets is that they can be used to \learn"real-valued functions.In addition it has recently been shown that certain boolean functions can becomputed more e�ciently on an analog neural net ([MSS]).Often one only considers neural nets of order 1, where all polynomials Qgare simply weighted sums. But neural nets of high order allow us to implementradial basis functions, and they also provide a somewhat better model of realneurons.e) For the investigation of learning of \concepts" (i.e. sets) one considers incomputational learning theory a framework that consists of a domain X; aclass C � 2X of possible target concepts (the \concept class"), and a classH � 2X (the \hypothesis class"). The task of the learner is to compute fromgiven positive and/or negative examples for some unknown target conceptCT 2 C the representation of some hypothesis H 2 H that approximates CT .A pair hx; 1i with x 2 CT is called a positive example for CT , and a pair hx; 0iwith x 2 X � CT is called a negative example for CT .3

For the investigation of concept learning on neural nets one considers anetwork architectureN with one boolean output, and one usually de�nes H asthe class of all sets that are computable byN � for any parameter assignment �from a speci�ed range. One considers � as a representation for the hypothesisH 2 H that is computed by N �.2 Neural Nets that Learn from MistakesIn this section we consider results about learning on neural nets in the most commonmodel for on-line learning (essentially due to Angluin [A] and Littlestone [Li]). Inspite of its simplicity, this learning model is quite popular both in computationallearning theory and in neural network applications. In fact the famous perceptronlearning algorithm (which is closely related to \Hebb's rule") and the backpropa-gation learning algorithm are typically formulated as learning algorithms for thison-line model.Consider some arbitrary domainX and some arbitrary concept class C � 2X . Weassume that the \environment" has �xed some arbitrary \target concept" CT 2 C.In addition it produces some arbitrary sequence hxi; biii2N of labeled examples forCT (i.e. the points xi 2 X are chosen arbitrarily and bi = CT (xi) 2 f0; 1g; notethat we identify the set CT � X in the usual manner with its characteristic function�CT : X ! f0; 1g).We assume that at the beginning of a learning process the learner knows X andC, but not CT . At step s of the learning process the learner gets to see the point xs,and he is asked to predict the value of bs. If this prediction is incorrect, one saysthat the learner has made a mistake at step s. One can identify the learner in thismodel with an algorithm A which takes as �rst argument a �nite sequence hxi; biii<sof labeled examples (the previously seen examples) and as second argument someunlabeled point x 2 X (the \test point" at step s). The setHs := nx 2 X : A�(hxi; bii)i<s; x� = 1ois called the hypothesis of A at step s. This set may be viewed as the learner'scurrent \model" for the unknown target concept CT .The largest possible number of mistakes of algorithm A for arbitrary CT 2 C andarbitrary sequences (hxi; CT (xi)i)i2N of labeled examples is denoted by MB(C; A)(\mistake bound of algorithm A for concept class C").A learning algorithm for C with hypotheses from H is in the context of thismodel an arbitrary function A that assigns to any �nite sequence (hxi; CT (xi)i)i<sof labeled examples for some CT 2 C a set fx 2 X : A((hxi; CT (xi)i)i<s; x) = 1gthat belongs to H. 4

One de�nes for arbitrary \hypothesis classes" H with C � H � 2X the learningcomplexity of C with hypotheses from H byMB(C;H) := minfMB(C; A) : A is a learning algorithmfor C with hypotheses from Hg:One sets MB(C) := MB(C; C).Remark 2.1a) For simplicity the preceding de�nition of the learning complexity of a conceptclass does not take into account the computational complexity of a learningalgorithm A. However it turns out that the concrete learning algorithms Awhich we will discuss for this model are in fact computationally feasible.b) Formally the environment is required to �x some target concept CT 2 C at thebeginning of a learning process. However practically at any step of a learningprocess the environment is still free to choose any CT 2 C that is consistentwith all labeled examples that were so far given to the learner.c) One can easily show [Li] that for arbitrary C and H the learning complexityMB(C;H) does not change if we de�ne MB(C; A) in a slightly di�erent manneras the largest possible t 2 N such that for some CT 2 C and some sequence(hxi; CT (xi)i)i2N of labeled examples for CT the learning algorithm A makesa mistake at each of the steps 1; : : : ; t� 1. This equivalence is not surprisingin view of the fact that we consider in this model a worst case environment,which may just as well wait with the de�nition of xs until it has seen (orprecomputed) the hypothesis Hs := fx 2 X : A((hxi; bii)i<s; x) = 1g of thelearner at step s. If Hs disagrees with CT , the environment may then choosesome xs so that hxs; CT (xs)i provides a counterexample to hypothesis Hs (i.e.xs lies in the symmetric di�erence Hs�CT of Hs and CT).The preceding observation is useful since it implies that for proving boundsabout MB(C;H) it su�ces if we consider only \normalized" learning proce-dures in which the learner makes a mistake at every single step (until he has\found" CT). Hence we assume in the following proofs that whenever thecurrent hypothesis Hs of the learner disagrees with CT then he receives acounterexample to Hs at step s of the learning process.One can also show that it su�ces to consider in the mistake bounded modelonly those learning algorithms which only change their hypothesis at thosesteps where they have made a mistake.The variation of the mistake bounded model where the learner makes a mis-take at every step is obviously equivalent to Angluin's model [A] for learningfrom equivalence queries. In this interpretation of the on-line learning modelone says that the learner poses the equivalence query \Hs = CT?" at step s ofthe learning process, to which he then receives a counterexample xs 2 Hs�CT ,or the reply \yes" (in case that Hs = CT).5

Our �rst example for a learning algorithm in this \mistake-bounded" learningmodel is the famous perceptron learning algorithm PLA (which is closely related toHebb's rule). For that algorithm we consider the network architecture Nd whichconsists of a single linear threshold gate T� with d real-valued inputs and d + 1programmable parameters � (called the \weights of T�", one also refers to �0 as the\bias" of this gate).T� computes the following function from Rd into f0; 1g:T�(x1; : : : ; xd) = 8><>: 1; if dPi=1�ixi + �0 � 00; otherwise:Remark 2.2A perceptron (see [Ro], [MP]) is a network architecture N that consists of a linearthreshold gate T� with d inputs, together with some �xed circuit K : Rn ! Rdwhich preprocesses the input for this threshold gate. Through this preprocessing aperceptron can compute a larger variety of interesting functions (e.g. parity on nboolean inputs). However for the analysis of learning on a perceptron we may ignorethe �xed preprocessing, since only the weights � of T� are programmable parametersof N .For the sake of notational convenience in the following discussion of the percep-tron learning algorithm we extend each input vector x = hx1; : : : ; xdi to a vectorx� := h1; x1; : : : ; xdi. In this way we can view the \bias" �0 also as a weight of T�(for a dummy input with constant value 1). We then haveT�(x) = 1, � � x� � 0:We use here the usual notation � � := dPi=0 i � �i for the inner product of two vectors; � 2 Rd+1. We write jjjj for the L2� norm p � of .For any set X � Rd one de�nesHALFSPACEdX := nF : X ! f0; 1g : 9 � 2 Rd+1 8 x 2 X�F (x) = T�(x)�o :Obviously for the network architecture Nd that consists of a single linear thresholdgate with d inputs this concept class HALFSPACEdX is the restriction of all conceptscomputable on Nd to the domain X.The perceptron learning algorithm PLA for this concept class HALFSPACEdX isde�ned as follows. We write �(s) for the weight-assignment of the threshold gateafter it has processed s examples.We set �(0) := 0 (actually one can start just as well from any other initialweight-assignment). 6

If T�(s) makes a correct prediction for the example hx; bi presented at step s+1(i.e. T�(s)(x) = b), then one sets �(s+ 1) := �(s).Otherwise, if b = 1 (i.e. hx; bi is a positive counterexample to T�(s)) one sets�(s + 1) := �(s) + x�;and if b = 0 (i.e. hx; bi is a negative counterexample to T�(s)) one sets�(s+ 1) := �(s)� x�:It appears quite plausible that with this extremely simple \local" learning rule aclever adversary may cause the learner to make in�nitely many mistakes. Thereforethe following result had surprised many researchers when it was discovered in theearly 60's. It gave some theoretical support for the tremendous excitement aboutadaptive machines in that period.Theorem 2.3 (Perceptron Convergence Theorem; see Rosenblatt [Ro])The perceptron learning algorithm PLA satis�es MB(HALFSPACEdX,PLA)<1 forany �nite set X � Rd.The proof of Theorem 2.3 yields for any concrete CT 2HALFSPACEdX an explicitmistake bound of jj�jj2 � �max�2min ;where � 2 Rd+1 is some arbitrary weight-assignment such that T�(x) = CT (x) forall x 2 X, �min := minfj� � x�j : x 2 Xg; and�max := maxfjjx�jj2 : x 2 Xg:Since X is �nite we can always choose � such that �min � 1.Therefore one can give for the case of boolean inputs (i.e. X = f0; 1gd) anexplicit upper bound for MB(HALFSPACEdX;PLA):Theorem 2.4 MB(HALFSPACEdf0;1gd;PLA) � (d + 1)2 � 2(d+1)�log(d+1).The proof of Theorem 2.4 follows immediately from the explicit mistake boundfor Theorem 2.3 together with the following very useful estimate:Theorem 2.5 (Muroga, Toda, and Takasu [MTT], see also [Mu])For all C 2 HALFSPACEdf0;1gd there exists some � 2 Zd+1 whose coordinates haveabsolute value � 2 d+12 log(d+1) such that 8 x 2 f0; 1gd(C(x) = T�(x)):7

The preceding arguments imply that for the subclass of all CT 2 HALF-SPACEdf0;1gd that can be de�ned by some T� with integer weights � of polyno-mial size (with �min � 1) the perceptron learning algorithm makes at most O(dO(1))mistakes. Unfortunately a trivial counting argument shows that most of the 2
(d2)halfspaces C 2 HALFSPACEdf0;1gd have the property that every � 2 Zd+1 withC = T� contains some exponentially large components �i.A concrete example for such halfspace is provided by the halfspace of all xy 2f0; 1gd such that the natural number that is encoded (in binary notation) by the�rst half x of the d input bits is larger than the natural number that is encoded bythe second half y of the d input bits. An easy inductive argument shows that anythreshold function with integer weights that de�nes this halfspace requires weightsof absolute value � 2d=4. Hastad [H] has recently shown that there exist in fact someC 2 HALFSPACEdf0;1gd that require integer weights of size 2
(d logd).The preceding lower bounds for the size of integer weights for threshold gatesare \bad news" for the analysis of the perceptron learning algorithm, since theyimply the same lower bound for the number of mistakes of this algorithms (for someCT 2 HALFSPACEdf0;1gd). One just has to observe that for boolean inputs we have� 2 [�s; : : : ; s]d+1 for the hypothesis T� of the perceptron learning algorithm afters mistakes.On the other hand the following result shows that there also exists a learning al-gorithm for threshold gates that it is guaranteed to converge for every target conceptCT 2 HALFSPACEdf0;1gd after at most O(dO(1)) mistakes.Theorem 2.6 ([MT 89], [MT 94]).�d2� � MB(HALFSPACEdf0;1gd) = O(d2 log d) for every d � 2.Furthermore �d2� � n � MB(HALFSPACEdXdn) = O(d2(log d + n)) for the largerdomain Xdn := f0; : : : ; 2n � 1gd.The upper bounds for these mistake bounds can be achieved by learning algorithmswhose number of computation steps are bounded by a polynomial in d and n.Idea of the proof of Theorem 2.6: We only consider the special case n =1 (the general case is similar). For the proof of the upper bound we assume forsimplicity that 0 =2 CT for the target concept CT 2 HALFSPACEdf0;1gd. This impliesthat �0 < 0 for any vector � = h�0; �1; : : : ; �di 2 Rd+1 with T� = CT . Hence wecan assume w.l.o.g. that �0 = �1, and we can restrict our attention to hypothesesT� with �0 = �1. We will view in the following �0 := h�1; : : : ; �ni as a code for thehalfspace that is computed by Th�1;�0i.We write Vs for the \version space" of the learning algorithm after s steps. Inother words: Vs is the set of all codes �0 2 Rd such that Th�1;�0i is consistent with alllabeled examples that the learner has received before step s. Thus we have Vs+1 � Vsfor all s. 8

We choose for V0 a ball around 0 in Rd with radius 2O(d logd). Thus V0 hasvolume 2O(d2 log d). Theorem 2.5 implies that each possible target concept CT 2HALFSPACEdf0;1gd can be encoded by some vector �0 2 V0. In fact, since Theorem2.5 provides for each halfspace a representation � that consists of integers of bit-length O(d log d), there exists for each CT 2 HALFSPACEdf0;1gd in the continuousspace V0 a ball BT � V0 of volume 2�O(d2 log d) such that CT = Th�1;�0i for all �0 2 BT .By de�nition one has BT � Vs for all steps s of any learning algorithm for halfspaces.The strategy of our learning algorithm is to reduce the volume of Vs as quickly aspossible. Hence we choose for each step s a hypothesis Th�1;�0si such that any coun-terexample xs to Th�1;�0si eliminates from Vs not only �0s, but a signi�cant fraction ofall points �0 2 Vs. This is possible since for any counterexample hxs; bsi to Th�1;�0sithe set of all �0 2 Rd such that Th�1;�0i is inconsistent with hxs; bsi forms a halfspacein Rd that contains �0s. For example a negative counterexample xs = hy1; : : : ; ydi toTh�1;�0si eliminates from Vs all points in the set fh�1; : : : ; �di 2 Rd : dPi=1�iyi�1 � 0g.This observation suggests to choose as �0s a point which lies in the \center" of Vsin the sense that any halfspace that contains �0s contains a constant fraction of thevolume of Vs. This can be achieved by choosing �0s to be the \volumetric center" ofVs in the sense of Vaidya [Va]. This approach provides a constant c < 1 such thatvolume (Vs+1) � c � volume (Vs)for all steps s of the learning algorithm with Hs 6= CT . Since BT � Vs for all stepss, the number of steps (i.e. mistakes) of this learning algorithm can be bounded bylog1=c volume (V0)volume (BT)! = log1=c 2O(d2 logd) = O(d2 log d):Alternatively one can enclose each version space by a small ellipsoid, and de�ne�0s, as the center of that ellipsoid. With this approach (which follows the approachof Khachian's ellipsoid algorithm, see [PS]) one can only achieve thatvolume (Vs+1) � e� 15d � volume (Vs):This approach gives rise to a learning algorithm with a somewhat larger mistake-bound O(d3 log d).The almost optimal lower bound of Theorem 2.5 follows by constructing a suit-able adversary strategy. According to Littlestone [Li] it su�ces to consider onlyrelatively simple adversary strategies which can be represented as binary branchingdecision trees (\mistake trees" [Li], or \adversary trees" [MT 92]). The constructionof such decision tree of depth � �d2� for HALFSPACEdf0;1gd is rather easy (see [MT94]). 9

Open problems:1. Can one close the gap of \ log d" between the upper and lower bound forMB(HALFSPACEdf0;1gd)?[It is quite curious that the same \log d-gap" remains open for the mistakebound for learning axis parallel rectangles over the same domain, see [CM],[Au].]2. Does there exist a noise-robust learning algorithm for HALFSPACEdf0;:::;2n�1gdwhose mistake bound is polynomial in d and/or n?[Such noise-robust algorithm has been constructed for learning rectanglesin [Au].]3. Does there exist a learning algorithm for HALFSPACEdf0;1gd whose mistakebound is polynomial in d, and which is local in a similar way as the perceptronlearning algorithm?[In the perceptron learning algorithm all weights are updated independentlyfrom each other, requiring no \global control". Learning algorithms of thistype are of particular interest from the point of view of neurobiology.Some negative results in this direction are given in section 6 of [MT 94].]The next goal in an investigation of on-line learning on neural nets is to �nde�cient on-line learning algorithms for network architectures that consist of sev-eral linear threshold gates. Perhaps the simplest network architecture of this typeconsists of an AND of two linear threshold gates. We write IH2n for the class of allconcepts which can be computed by this network architecture over the 2-dimensionaldiscrete grid Xn := f0; : : : ; 2n � 1g2. The concepts from this class have a very sim-ple geometrical interpretation: they are intersections of two halfspaces (hence theabbreviation IH).Unfortunately the next result shows that there exists no learning algorithm forthis concept class with a polynomial mistake bound (not even if we allow algorithmswith unlimited computational power).Theorem 2.7 ([MT 93])MB(IH2n) =
(2n).Idea of the proof: We construct an adversary strategy which exploits thefollowing obvious fact: any C 2 IH2n which contains the set CENTER that consistsof the 4 points in the center of the domain f0; : : : ; 2n � 1g2 contains also at leastone point from the perimeter of f0; : : : ; 2n � 1g2.Whenever a hypothesis Hs 2 IH2n does not contain all 4 points of the set CEN-TER, the adversary can give one of these 4 points as a positive counterexample.Otherwise he can give (by the preceding observation) some point from the perime-ter of f0; : : : ; 2n � 1g2 as a negative counterexample.10

The key point of this strategy is that there exists a subclass of
(2n) conceptsC 2 IH2n that all contain CENTER, but which are pairwise disjoint on the perimeterof f0; : : : ; 2n�1g2 (consider concepts that are de�ned by 2 parallel hyperplanes withdistance O(1)). At most s of the concepts from this subclass have been eliminatedas candidates for CT after s steps of the preceding adversary strategy, no matterwhich hypotheses Hs 2 IH2n have been proposed by the learner.Open problems:4. Consider the class IHd of intersections of 2 halfspaces over the d-dimensionalboolean domain f0; 1gd. Is MB(IHd) = O(dO(1))?[Part b) of the remark at the beginning of section 3, in combination withthe result of [BR] implies that no learning algorithm with a polynomial boundon its computation time can achieve this mistake bound, unless R=NP.]5. Can one prove positive results for on-line learning on a multi-layer thresholdcircuit N by considering interesting classes C of target concepts which areproper subclasses of the hypothesis class H that is de�ned by N ?In spite of the preceding negative results for on-line learning on multi-layer net-work architectures with linear threshold gates, there exists an on-line learning algo-rithm for analog multi-layer network architectures which has been quite successfulin various practical applications: the backpropagation algorithm. The success of thislearning algorithm has contributed signi�cantly to the excitement about adaptiveneural nets during the last decade. However within the framework of computationallearning theory no results are known about the performance of this algorithm.3 Bounds for the Vapnik-Chervonenkis Dimen-sion of Neural NetsWe now turn to the analysis of learning on neural nets in Valiant's model [V] forprobably approximately correct learning (\PAC-learning"), see also [AB].Let N be some arbitrary network architecture with w weights from some weight-space W (e.g. W = N;Q; or R). If N has d input-nodes, and if the output gatehas range f0; 1g, then N computes for any weight-assignment � 2 Ww a functionN � from some d-dimensional domain X (e.g. X = Nd;Qd;Rd) into f0; 1g.In the analysis of learning on neural nets in the PAC-learning model one typicallyassumes that the network architecture N de�nes the hypothesis class H over thedomain X. In addition one �xes a class C � 2X of possible target concepts (the\concept class"). The learner is given a parameter " > 0 (\error parameter") and aparameter � > 0 (\con�dence parameter"). The task of the learner is to determine11

a sample-bound m("; �) so that he can solve the following problem:For any distribution D over X, any target concept CT from the class C � 2X , andany sample S = (hxi; CT (xi)i)i�m of m � m("; �) labeled examples for CT withpoints xi drawn independently according to D, he can compute from S; ", and �the representation of some hypothesis H 2 H (in our case a suitable parameter-assignment � for N so that H = N �) such that with probability � 1 � �Ex2D[jH(x)�CT (x)j] � "(i.e. D[fx 2 X : N �(x) 6= CT (x)g] � ").If m("; �) is bounded by a polynomial in 1" and 1� , and if the representation ofH can be computed from S; ", and � by an algorithm whose computation time isbounded by a polynomial in 1" ; 1� , and the length of S, one says that C is e�cientlyPAC-learnable with hypothesis class H.Remarka) In this section we will always assume that C � H (typically C = H). Insection 4 we will look at a somewhat more realistic scenario where C 6� H isalso allowed.b) Angluin [A] has shown that e�cient learnability in the mistake bounded modelimplies e�cient PAC-learnability.c) It is easy to construct examples of concept classes which show that the con-verse of the preceding observation does not hold, i.e. e�cient PAC-learnabilitydoes not imply e�cient learnability in the mistake bounded model (e.g. con-sider the class of singletons over a �nite set). There exists however also anatural example for this di�erence between the two learning models in thecontext of learning on neural nets. We had shown in Theorem 2.7 thatMB(IH2n) =
(2n) for the class IH2n of intersections of two halfplanes overf0; : : : ; 2n � 1g2. The VC-dimension of IH2n can be bounded with the help ofTheorem 3.3, and therefore one can show with the help of Theorem 3.1 thatIH2n is e�ciently PAC-learnable (consider all polynomially in jSj many possi-bilities for partitioning a sample S by a concept from IH2n).In fact one can even show that IH2n is e�ciently learnable in the more de-manding model for agnostic PAC-learning that we will discuss in section 4.One says that a subset T of the domain X is shattered by a neural net N if everyfunction g : T ! f0; 1g can be computed on N , i.e.8 g : T ! f0; 1g 9 � 2 Ww 8 x 2 T (g(x) = N �(x)):The Vapnik-Chervonenkis dimension of N (abbreviated: VC-dimension(N)) isde�ned as the maximal size of a set T � X that is shattered by N , i.e.VC-dimension(N) := maxfjT j : T � X is shattered by Ng.12

It should be pointed out that the VC-dimension of N depends in general on theconsidered domain X and on the chosen weight-space W .Of course one can de�ne without reference to neural nets more generally for anyclass H of functions f : X ! f0; 1g (i.e. subsets of X) the VC-dimension of H byVC-dimension(H) :=maxfjT j : T � X and 8 g : T ! f0; 1g 9 f 2 H 8 x 2 T (g(x) = f(x))g.Thus our preceding de�nition of the VC-dimension of a neural netN is just a specialcase of this general de�nition for the classH := ff : X ! f0; 1g : 9� 2 Ww8x 2 X(f(x) = N �(x))g.The importance of the VC-dimension of a neural net N for PAC-learning onN arises from the following theorem. This result provides signi�cant informationabout the generalization abilities of a neural net.Theorem 3.1 ([BEHW])Assume that H � 2X satis�es VC-dimension (H) < 1 and H is well-behaved (thelatter is a rather benign measure-theoretic assumption that is always satis�ed if His countable; see [BEHW] for details).Then for m("; �) := max 8 � VC-dimension(H)" � log 13" ; 4" � log 2�!any function A that assigns to a randomly drawn sample S of m � m("; �) exampleshx; bi for some target concept CT 2 H (with x drawn according to some arbitrarydistribution D over X) some hypothesis A(S) 2 H that is consistent with S isa PAC-learning algorithm, since we have then Ex2D[jCT (x) � A(S)(x)j] � " withprobability � 1 � �:There exists an almost matching lower bound for m("; �), which shows that noPAC-learner can do his job with substantially fewer examples (not even if he hasunlimited computational power). It is shown in [EHKV] thatm("; �) =
 VC-dimension(H)" ; 1" � ln 1�!examples are needed for any nontrivial classH � 2X , for any PAC-learning algorithmfor H.Theorem 3.1 allows us to divide the task of e�cient PAC-learning on a givennetwork architecture N into two separate tasks:(i) the proof of a polynomial upper bound (in terms of the \size of N") for theVC-dimension of N , and 13

(ii) the design of a (probabilistic) polynomial time algorithm which computes forany given sample S some weight-assignment � forN such thatN � is consistentwith all examples from S (provided there exists such �).In fact, it turns out (see [HKLW]) that a polynomial upper bound for the VC-dimension of N and the existence of an algorithm as in (ii) are su�cient and neces-sary conditions for e�cient PAC-learning on N .It has been shown by Blum and Rivest [BR] that task (ii) is not even feasible forthe simplest multi-layer neural net N with 3 computation nodes. On the other handit turns out that task (i) can be solved for neural nets with arbitrary architectures forvarious important types of activation functions. Although these polynomial upperbounds for the VC-dimension cannot be used to prove positive PAC-learning resultsfor neural nets, they are still considered to be quite relevant for practical applicationsof neural nets. Bounds for the VC-dimension of a neural netN provide a quantitativerelationship between the \apparent error" of a trained neural net N � on a randomlydrawn training set S (where the weight-assignment � may for example arise fromsome heuristic learning algorithm such as backpropagation), and the \true error"of N � for new examples drawn from the same distribution. Theorem 3.1 covers aspecial case of this relationship (for the case where N � has apparent error 0), andthe general case is covered by Theorem 4.1 in the next section. This Theorem 4.1 isformulated for the more general setting of neural nets with real valued outputs. Thepseudo-dimension of a neural net N (respectively of its associated function class F)which occurs in Theorem 4.1 coincides with the VC-dimension of N for the specialcase of neural netsN with boolean output, Y = f0; 1g, and the discrete loss function`D. We will present in the next theorems the most important known results regardingupper and lower bounds for the VC-dimension of neural nets.Theorem 3.2 (Wenocur and Dudley [WD])Assume that the network architecture Nd consists of a single linear threshold gatewith d inputs. Then VC-dimension (Nd) = d+ 1 for any domain X with f0; 1gd �X � Rd, and for any weightspace W with Z �W � R.Proof: In order to show that VC-dimension (Nd) � d + 1 one applies Radon'sTheorem (see [E], p. 64). Radon's Theorem states that any set T of � d+2 pointsin Rd can be partitioned into sets S0 and S1 such that the convex hull of S0 andthe convex hull of S1 intersect. Obviously such sets S0; S1 cannot be separated by ahyperplane, and therefore there exists no � 2 Rd+1 such that 8 x 2 S0(N �d (x) = 0)and 8x 2 S1(N �d (x) = 1). Hence no set T � Rd of size > d+1 can be shattered byNd.On the other hand it is straightforward to verify that the set T := f0g [fei :i 2 f1; : : : ; dgg can be shattered by Nd: For any given function g : T ! f0; 1g the14

function N �d with � = h�0; �1; : : : ; �di de�ned by�0 = (0 ; if g(0) = 1�1 ; otherwiseand �i = (1 ; if g(ei) = 1�1 ; otherwisehas the property 8 x 2 T�g(x) = N �d (x)�:One important general property of classes C of bounded VC-dimension is exhib-ited by Sauer's Lemma (see[BEHW]): It states that for any �nite domain X andany k 2 N the class C that consists of all subsets of X of size up to k is the maximalsize class C � 2X with VC-dimension(C) � k. Hence we have for any class C � 2Xwith VC-dimension(C) � k that jCj � kPi=0 �jXji � � jXjk + 1. Applied to the neuralnet Nd from Theorem 3.2 we get that for any �nite set X � Rd there exist at mostjXjd+1+1 di�erent ways of partitioning X by halfspaces. This observation is crucialfor the estimate of the VC-dimension of multi-layer neural nets in the next theorem.Theorem 3.3 (Cover [C 64], [C 68]; see also Baum and Haussler [BH])Let N be an arbitrary network architecture with linear threshold gates that has dinput nodes, 1 output node, and w programmable parameters.Then VC-dimension(N) = O(w � logw) for any weightspace W � R and anydomain X � Rd.Proof: Let T � Rd be some arbitrary set of size m � 2 that is shattered by N .By the preceding remark any gate g in N can compute at most jXj fan-in(g)+1 + 1di�erent functions from any �nite setX � Rfan-in(g) into f0; 1g (fan-in(g) denotes thenumber of inputs of gate g). Hence N can compute at most Qg gate in N(mfan-in(g)+1+1) � m2w di�erent functions from T into f0; 1g. If T is shattered by N then N cancompute all 2m functions from T into f0; 1g. In this case the preceding implies that2m � m2w, thus m = O(w � logw).It is hard to imagine that the VC-dimension of a network of linear thresholdgates can be larger than the sum of the VC-dimensions of the individual linearthreshold gates in the network. Hence on the basis of Theorem 3.2 it has frequentlybeen conjectured that the \true" upper bound in Theorem 3.3 should be O(w). Thefollowing result disproves this popular conjecture by showing that the superlinearupper bound of Theorem 3.3 and the related upper bound of Baum and Haussler[BH] are asymptotically optimal. This implies that in a larger neural net an averageprogrammable parameter contributes more than a constant to the VC-dimension of15

the neural net. In fact, its average contribution can be as large as
(logw), andhence increase with the total size of the neural net. Therefore one may interpretthe following result as mathematical evidence for a certain type of \connectionismthesis": that a network of neuron-like elements is more than just the sum of itscomponents.Theorem 3.4 ([M 93a] and [M 93c])Assume that (Nd)d2N is a sequence of neural nets of depth � 3, where Nd has dboolean input nodes and O(d) gates.Furthermore assume that Nd has
(d) gates on the �rst hidden layer, and atleast 4 log d gates on the second hidden layer. We also assume that Nd is fullyconnected between any two successive layers (hence Nd has �(d2) programmableparameters), and that the gates of Nd are linear threshold gates (or gates with thesigmoid activation function �(y) = 11+e�y , with round-o� at the network output).Then VC-dimension(Nd) = �(d2 � log d), hence VC-dimension(Nd) = �(w logw)in terms of the number w of programmable parameters of Nd.The proof of Theorem 3.4 proceeds by constructing a particular sequence(Md)d2N of neural nets with superlinear VC-dimension. It is easy to show thatthese nets (Md)d2N can be embedded into arbitrary given nets (Nd)d2N with theproperties from Theorem 3.4.. This implies that the Nd also have superlinear VC-dimension.Assume that d is some arbitrary power of 2. We construct a neural net Mdof depth 3 with 2d + log d input nodes and � 17d2 edges such that VC-dimension(Md) � d2�log d. This construction uses methods due to Neciporuk [N] and Lupanov[L].We construct Md so that it shatters the setT := fepeq~em : p; q 2 f1; : : : ; dg;m 2 f1; : : : ; log dgg � f0; 1g2d+log d;where ep; eq denote unit vectors of length d and ~em denotes a unit vector of lengthlog d (thus every x 2 T contains exactly three \1", one in each of the three blocksof length d; d, and log d).Fix some arbitrary map F : T ! f0; 1g. We construct a neural net Md thatcomputes F in such a way that only the values of the weights wi;q in Md (and notthe architecture of Md) depend on this particular function F . One encodes F by afunction g : f1; : : : ; dg2 ! f0; 1glog d by settingg(p; q) := hF (epeq~e1); : : : ; F (epeq~elogd)i:For simplicity we �rst assume that g(�; q) is 1-1 for every q 2 f1; : : : ; dg. Theng(�; q) is invertible and we can de�ne for q 2 f1; : : : ; dg and i 2 f0; : : : ; d � 1g theweights wi;q by wi;q = p :, g(p; q) = bin(i);16

where bin(i) 2 f0; 1glog d denotes the binary representation of i 2 f0; : : : ; d � 1g.In order to illustrate the construction principle ofMd we �rst assume that someb 2 f1; : : : ; log dg has been �xed. By de�nition of g one hasF (epeq~eb) = 1, (g(p; q))b = 1,9 i 2 f0; : : : ; d � 1g((bin(i))b = 1 ^ g(p; q) = bin(i));where (x)b denotes the b-th bit of any bit-string x. The networkMd employs linearthreshold gates G+i ; G�i on level 1, which are de�ned by the conditionG+i (ep; eq) = 1, dPr=1 r � (ep)r � dPr=1wi;r � (eq)rG�i (ep; eq) = 1, dPr=1 r � (ep)r � dPr=1wi;r � (eq)r:The term (ep)r has value 1 if and only if p = r, hence dPr=1 r � (ep)r = p and dPr=1wi;r �(eq)r = wi;q. It is obvious that for any values of p; q; i at least one of the two gatesG+i ; G�i gives output 1 for input ep; eq. Furthermore both gates give output 1 forinput ep; eq if and only if wi;q = p, i.e. g(p; q) = bin(i). Hence a threshold gate onlevel 2 of Md that outputs 1 wheneverd�1Xi=0with (bin(i))b=1 G+i (ep; eq) +G�i (ep; eq) � d2 + 1can be used to check whether 9 i 2 f0; : : : ; d� 1g((bin(i))b = 1 ^ g(p; q) = bin(i)),which is equivalent to F (epeq~eb) = 1.In the general case when b is a variable, one uses for each possible value b 2f1; : : : ; log dg a separate circuit of depth 2 as described before, which simultaneouslychecks whether b = m for the last block ~em of the input epeq~em. This yields a circuitof depth 3 that gives output 1 if and only if F (epeq~em) = 1.Finally we have to remove the simplifying assumption that g(�; q) is 1-1 for everyq 2 f1; : : : ; dg. According to [N], [L] there exist for any function g : f1; : : : ; dg2 !f0; 1glog d four auxiliary functions g1; g2; g3; g4 : f1; : : : ; dg2 ! f0; 1glog d such thatgj(�; q) is 1-1 for every q 2 f1; : : : ; dg and every j 2 f1; : : : ; 4g, and such thatg(p; q) = (g1(p; q)� g2(p; q) ; if p � d=2g3(p; q)� g4(p; q) ; if p > d=2(where � denotes a bitwise EXCLUSIVE OR). One can construct in the previouslydescribed way for j = 1; : : : ; 4 separate threshold circuits of depth 3 that checkwhether (gj(p; q))b = 1 (respectively whether (gj(p; q))b = 0), using the fact thatgj(�; q) is 1-1 for every q 2 f1; : : : ; dg. It is not very di�cult to combine thesecircuits into a single network of depth 3 that checks whether (g(p; q))m = 1, i.e.whether F (epeq~em) = 1. 17

It is obvious from the construction that the architecture of the resulting networkMd is independent of the speci�c function F : T ! f0; 1g. Hence Md has VC-dimension � 2d + log d.We refer to [M 93c] for further details.Subsequently Sakurai [Sa] has shown that if one allows real valued network inputsthen the lower bound of Theorem 3.4 can be extended to certain neural nets of depth2. In addition he has shown that for the case of real valued inputs one can determineexactly the constant factor in these bounds.In applications of neural nets one usually employs nets with continuous activationfunctions, because only for multi-layer neural nets with smooth activation functionsone has found learning algorithms (such as backpropagation) that perform well. Inorder to estimate the number of training examples that are needed in such applica-tions, it has become of interest to determine bounds for the VC-dimension of neuralnets with continuous activation functions. In order to get a boolean network outputfrom such net we assume that its output gate is still a linear threshold gate.It turns out that the superlinear lower bound from Theorem 3.4 also holds fornets with the common activation function �(y) = 11+e�y . However it is not clearhow sharp this lower bound is for nets with smooth activation functions, sinceit is much harder to prove upper bounds for the VC-dimension of such neuralnets. In particular, it turns out that one cannot expect any �nite upper boundif one just assumes that the analog activation functions in N are \very smoothsquashing functions". Sontag [S] has shown that for the real-analytic function	(y) := 1� arctan(y) + cosy7(1+y2) + 12 a neural net with 2 real valued inputs, 2 hid-den units with activation function 	 and a linear threshold gate as output gatehas in�nite VC-dimension. Note that this function 	 is strictly increasing and haslimits 1; 0 at �1 (hence it is a \squashing function"). For the case of neural netswith d boolean inputs Sontag constructed activation functions with the same analyticproperties as the function 	, such that the neural net with the same architecture asabove has the maximal possible VC-dimension 2d.In view of the preceding results it is clear that in order to prove signi�cantupper bounds for the VC-dimension of an analog neural net one has to exploitrather speci�c properties of its activation functions, such as the structure of theirexplicit de�nitions.The �rst upper bound for the VC-dimension of a neural net whose gates employthe activation function �(y) = 11+e�y is due to Macintyre and Sontag. By using asophisticated result from mathematical logic (order-minimality of the elementarytheory L of real numbers with the basic algebraic operations and exponentiation)they have shown: 18

Theorem 3.5 (Macintyre and Sontag [MS])Let N be any feedforward neural net with arbitrary activation functions that arede�nable in the theory L (such as �(y) = 11+e�y), and a linear threshold gate asoutput gate. Then the VC-dimension of N (for arbitrary real inputs and arbitraryreal weights) is �nite.In addition, for neural nets N with discrete inputs from f�K; : : : ;Kgd, onelayer of hidden units with activation function �, and a linear threshold gate at theoutput it has been shown by Bartlett and Williamson that the VC-dimension of Nis bounded by O(w log(wK)), where w is the number of weights in N (see theirrelated Theorem 4.3 in the next section).It was shown in [M 93a] that analog neural nets of arbitrary constant depth withd boolean inputs, boolean output, and polynomially in d many gates with piecewisepolynomial activation functions and arbitrary real weights, can be simulated bypolynomial size neural nets that consist entirely of linear threshold gates. Hencea polynomial upper bound for the VC-dimension of such neural nets follows im-mediately from Theorem 3.3. Subsequently Goldberg and Jerrum have shown thatwith the help of Milnor's theorem from algebraic geometry one can prove directlya polynomial upper bound for arbitrary polynomial size neural nets with piecewisepolynomial activation functions (in fact their argument also applies to the case ofpiecewise rational activation functions).Theorem 3.6 (Goldberg and Jerrum [GoJ])Let N be any neural net with piecewise polynomial activation functions (with O(1)pieces each), arbitrary real inputs and weights, and boolean output. Then the VC-dimension of N is at most O(w2), where w is the total number of weights in N .We will sketch a proof of the corresponding bound for the pseudo-dimension ofsuch neural nets in the next section (Theorem 4.4).Open problems:6. Is the VC-dimension of every network architecture of depth 2 with boolean in-puts, linear threshold gates and w programmable parameters bounded by O(w)?[Theorem 3.2 shows that the answer to the corresponding question for depth1 is positive, and Theorem 3.4 shows that the answer is negative for any depthd � 3.]7. Consider any network architecture N with linear threshold gateshy1; : : : ; ymi 7! sgn mXi=1 �iyi + �0! :Can the VC-dimension of N become larger if we replace at the hidden nodes ofN the \heaviside activation function" sgn by some common smooth activation19

function such as �(y) = 11+e�y , or�(y) = 8><>: 0 ; if y < 0y ; if 0 � y � 11 ; if y > 1 ?[This problem is open both for the case of boolean and for the case of realvalued network inputs. It is demonstrated in [MSS] that certain neural netscan compute more boolean functions if one replaces their heaviside activationfunctions by � or �.]8. Can one close the gaps between the best known upper bounds and the best knownlower bounds for the VC-dimension of neural nets with w weights, activationfunctions � or �, and boolean network output?[For � the best known upper bound is \<1" (see Theorem 3.5) and the bestknown lower bound is
(w logw) (see Theorem 3.4). For � the best knownupper bound is O(w2) (see Theorem 3.6) and the best known lower bound is
(w logw) (see Theorem 3.4)].9. Is e�cient PAC-learning possible for the hypothesis class H de�ned by networkarchitectures of linear threshold gates of depth 2 and some \interesting" classC ��/ H of target concepts?[[KV] have shown that if C contains all concepts computable by polynomialsize threshold circuits of a certain �xed depth larger than 2, then C is notPAC-learnable with any \reasonable" hypothesis class H. Hence for a positivelearning result it is crucial to limit the \computational power" of C.]4 Agnostic PAC-Learning of Functions on NeuralNetsThe previously discussed learning models are not suitable for the analysis of learningon neural nets in the context of real world learning problems, because they arebased on an unrealistic assumption. Consider for example the numerous datasetsfor real world classi�cation problems that are used in machine learning as benchmarkproblems for empirical comparisons of heuristic learning algorithms (see e.g. [Ho],[WK]). These datasets have in common that one cannot assume that the \examples"are generated by a target concept CT of a speci�c structure (e.g. a speci�c neuralnet N �), as required by the previously discussed learning models. Hence one isforced to drop the assumption that C � H.Apparently the only learning model that is applicable to real world learningproblems is Haussler's extension [Ha] of the PAC-learning model, the model foragnostic PAC-learning (this notion is due to Kearns, Schapire, and Sellie [KSS]).In this model one makes no a-priori assumption about any \target concept" which20

generates the examples hx; yi 2 X � Y . Instead, one allows arbitrary distributionsA of examples hx; yi from X � Y , for which one does not even require that thereexists any function F : X ! Y such that F (x) = y for all examples hx; yi. Thusone allows in particular that the same x 2 X may occur in di�erent examples hx; yiand hx; y0i with y 6= y0 (i.e. the examples may be noisy; the probabilistic concepts of[KS] occur as a special case). Another important improvement of Haussler's modelis that it does not require that Y = f0; 1g. Hence we can also analyze in thismodel the complexity of learning real valued functions on neural nets where notonly the outputs of intermediate gates, but also the outputs of the output gates arenon-boolean. This is an important step, since there exists some evidence that thespeci�c strength of adaptive neural nets (in contrast to other quite successful learningmethods from applied machine learning such as decision tree induction (see [WK])lies in areas such as process control, where some unknown smooth function has to beapproximated by the neural net. It should also be noted that the backpropagationlearning algorithm is often applied in this more general framework.In the following de�nition of Haussler's model for agnostic PAC-learning weconsider for a �xed domainX and a �xed range Y a classA of distributions on X�Y(not on X !). Compared with the regular PAC-model this class A simultaneouslyplays the role of the class of distributions D on the domain, and of the class C oftarget concepts. The only class that plays the same role as in the standard de�nitionof PAC-learning is the class H � Y X of hypotheses. This class is determined by thelearning approach of the learner, e.g. by a speci�c neural network architecture.Obviously in this generalized framework the way in which the quality of a hy-pothesis H 2 H is evaluated has to change, since we no longer assume that thereexists a target concept (or target function) which is consistent with all or at leastmost examples in a given random sample. Therefore one now compares the per-formance of each H 2 H with that of the best H 0 2 H, or (with an eye towardsfeasibility) with that of the best G 2 T from some speci�ed \touchstone class"T � H (see [KSS]).This framework is adequate for real world learning situations, where some datasetS = (hxi; yii)i�m with �nitely many points from X � Y is given to the learner,without any guarantee that any hypothesis H 2 H performs well on S. For examplefor an application in medicine (where one would like to support the physician byan automated diagnosis system) the sample S may consist of records from a largenumber of previous patients. In the agnostic PAC-learning model one assumes thatS results from independent drawings of elements from X � Y with regard to someunknown distribution A 2 A.Each possible hypothesis H 2 H is a function from X to Y . Its performance ona sample S (\the apparent error on S") is measured by the term 1m mPi=1 `�H(xi); yi�,for some suitable loss function ` : Y �Y ! R+. For example in the case Y = R onemight choose `(z; y) := jz�yj, in which case 1m mPi=1 `�H(xi); yi� measures the average21

vertical distance of the datapoints hxi; yii 2 S from the graph of the function H.The real goal of the learner is to minimize for the underlying distribution A 2 Athe socalled \true error" of his hypothesis, i.e. the term Ehx;yi2A[`(H(x); y)]. Thisterm measures the average prediction loss of hypothesis H on new datapoints hx; yithat are generated by the same (unknown) distribution A on X � Y .For many learning problems it is impossible to bring the true error of the besthypothesis H 2 H close to 0 (for example it may be the case for some distributionA that every function F : X ! Y has a true error Ehx;yi2A[`(F (x); y)] � 14 becauseA is very \noisy"). Hence the best one can hope for is to �nd a hypothesis H 2 H,whose true error is close to that of the best hypothesis H 0 2 H, i.e. close toinfH 02H Ehx;yi2A[`(H 0(x); y)]:However even this goal is often unattainable because of computational di�culties.Therefore it makes sense to consider in addition a \touchstone class" T � H, whichprovides a more modest benchmark for evaluating the quality of hypotheses H 2 H.The goal of the learner is then to �nd a hypothesis H 2 H whose true error is closeto infG2T Ehx;yi2A[`(G(x); y)]:An example for a positive result of this type is provided by Theorem 4.7, where Tis the class of functions that are computable on a smaller neural net N (whereasH is the class of functions computable on a larger neural net ~N whose architecture\supports" the learning algorithm that is used).De�nition: Let X (\domain") and Y (\range") be arbitrary sets, and let ` :Y �Y ! R+ be some arbitrary function (\loss function"). Let A be some arbitraryclass of distributions on X � Y , and let T and H be classes of functions from Xinto Y (e.g. classes of functions computable on some �xed network architectures).The task of the learner is to determine a sample-bound m("; �) so that he cansolve the following problem for any given "; � > 0:For any distribution A 2 A and any given sample S = (hxi; yii)i�m of m � m("; �)points from X � Y that are drawn independently according to A, he is supposedto compute from S; ", and �, the representation of some hypothesis H 2 H (e.g.a parameter assignment � for some network architecture) so that with probability� 1� �: Ehx;yi2A[`(H(x); y)] � infG2T Ehx;yi2A[`(G(x); y)] + ":If the sample-bound m("; �) can be bounded by a polynomial in 1" and 1� , and if therepresentation of such hypothesis H can be computed from S; " and � by an algorithmwhose computation time is bounded by a polynomial in 1" ; 1� , and the length of S, wesay that T is e�ciently PAC-learnable by H assuming A. In the special case whereT = H one says that H is e�ciently PAC-learnable assuming A.22

In lack of a better terminology we will refer to this learning model as agnostic PAC-learning. Previously [KSS] had used this term only for a special case of this learningmodel (where Y = f0; 1g; T = H; ` is the discrete loss function, and A is such thatfor each sample there exists some concept consistent with the sample). One shouldnote that we are considering here a much more general framework.Since we assume that the learner has no a-priori knowledge about the actualdistribution A 2 A, and since he gets to see only a �nite sample S from A, hecannot measure the true error of any hypothesis H 2 H. Instead, he can onlymeasure the apparent error of a hypothesis on the random sample S that is drawnaccording to A. Therefore the learner needs to know how large he should makethe sample size m("; �) so that with high probability for every possible hypothesisH 2 H the apparent error of H on S is close to the true error of H. It turns outthat one can give such bounds for the required sample size in turns of the pseudo-dimension of H. This notion provides a useful generalization of the notion of aVC-dimension for classes of hypotheses with non-boolean output.In order to de�ne the pseudo-dimension of a neural net N one has to specifya loss function ` that is used to measure for any example hx; yi 2 X � Y thedeviation `(N �(x); y) of the prediction N �(x) of the neural net from the targetvalue y. Popular choices for ` are `(z; y) = jz� yj, `(z; y) = (z� y)2, or the discreteloss function `D : X � Y ! f0; 1g with `D(z; y) = 0, z = y.De�nition: The pseudo-dimension dimP̀ (N) of N with respect to the loss func-tion ` is de�ned as the maximal size of a set T � X �Y which is shattered by N inthe sense that 9 t : T ! R 8 g : T ! f0; 1g 9 � 2 Ww 8 hx; yi 2 T(`(N �(x); y) � t(hx; yi) , g(hx; yi) = 1):Note that in the special case if Y = f0; 1g, if the networkN outputs only booleanvalues, and if ` is the discrete loss function `D, then the pseudo-dimension dimP̀ (N)coincides with the VC-dimension of N .If the sizem of a training set S = (hxi; yiii�m) (which is randomly drawn accord-ing to some arbitrary distribution A over X � Y) is relatively large in comparisonwith the pseudo-dimension of N then the \apparent error" 1m mPi=1 `(N �(xi); yi) ofN � is (with high probability) close to the \true error" Ehx;yi2A[`(N �(x); y)] of N �,provided that the range of the values `(N �(x); y) is bounded. This relationship ismade more precise by the following result.23

Theorem 4.1 (Pollard [P]; Haussler [Ha])Assume that the class FN ;` of all functions hx; yi 7! `(N �(x); y) with � 2 Ww isa permissible class of functions from X � Y into some arbitrary bounded interval[0; r] (the \permissibility" of FN ;` is a somewhat technical measurability assumption,which is always satis�ed if the weightspace W is countable, e.g. for W � Q).Then for any distribution A over X � Y and any sample S = (hxi; yii)i�m of m\training-examples" (which are drawn independently according to distribution A) onehas for any given "; � > 0 and any sample-size m � 64r2"2 (2� dimP̀ (N) ln 16er" + ln 8�)that with probability � 1� �:8� 2 Ww���� 1m mXi=1 `(N �(xi); yi)� Ehx;yi2A[`(N �(x); y)]��� � "�:Open problem:10. Can one relax the lower bound for m in Theorem 4.1?Remark 4.2a) The preceding result provides a tool for analyzing a rather serious problemin experiments with learning on neural nets N : the e�ect of \over�tting".Over�tting occurs when the training of the neural net on some �nite sample S(e.g. via backprop) yields some hypothesis H = N � whose apparent error onthe training set S is quite small, but which performs badly on new data (i.e.H has a rather large true error). This e�ect tends to occur if S is relativelysmall compared with the complexity (i.e. the number w of programmableparameters) of the neural net N . The preceding Theorem 4.1 gives an explicitbound for a su�cient size of the sample (in terms of the pseudo-dimension ofN) so that over�tting is unlikely to occur.b) Theorem 4.1 allows us to reduce agnostic PAC-learning on a neural net N tothe �nite optimization problem of computing for a sample S = (hxi; yii)i�m ofsu�ciently large size m a weight-setting � for N that minimizes the apparenterror of N � on S.For example, for m � 64r2("=3)2 (2� dimP̀ (N) ln 16er"=3 + ln 8�), where e is the baseof the natural logarithm, it su�ces to compute for a random sample S =(hxi; yii)i�m which is drawn according to some arbitrary distribution A overRd � Y some � 2 Qw such that��� 1m mXi=1 `(N �(xi); yi)� inf�02Qw 1m mXi=1 `(N �0(xi); yi)��� � "3 :By Theorem 4.1 we then have with probability � 1 � � (with regard to therandom drawing of S) that���Ehx;yi2A[`(N �(x); y)]� inf�02Qw Ehx;yi2A[`(N �0(x); y)]��� � ":24

c) Haussler [Ha] has developed in addition a somewhat di�erent method forbounding the sample size for agnostic PAC-learning of functions on neuralnets. He has shown that it su�ces to bound the \capacity" of such neuralnets, and he has proven good bounds for the capacity of neural nets withLipschitz-bounded activation functions (such as �) if the weights are bounded.For neural nets N with the sigmoid activation function �(y) = 11+e�y the onlyknown upper bounds for the pseudo-dimension are given by a corresponding gener-alization of Theorem 3.5 (Macintyre and Sontag [MS]), and by the following result:Theorem 4.3 (Bartlett and Williamson[BW])Let N be a neural net of depth 2. Assume that the gates on level 1 use the ac-tivation function � (alternatively these gates may compute a radial basis functiony = hy1; : : : ; ymi 7! e�jjy�cjj with \weights" c 2 Rm), and that the output gate onlevel 2 outputs a weighted sum of its inputs.Then for discrete inputs from f�K; : : : ;Kgd the pseudo-dimension of N is atmost 8w log2(11 � wK), where w denotes the total number of weights in N .The proof uses an exponential parameter transformation in order to transformthe function that is computed by N into one that is polynomial in its parameters.One can then apply Milnor's Theorem in a similar fashion as in Theorems 3.6 and4.4.For neural nets N with piecewise polynomial activation functions one can givethe following upper bound.Theorem 4.4 Let N be an arbitrary network architecture of order O(1) with wreal valued weights, arbitrary piecewise polynomial (or piecewise rational) activationfunctions that consist of O(1) pieces of degree O(1), and real-valued network inputsand outputs.Assume that the loss function ` is de�ned by `(z; y) = jjz � yjjp for some p 2f1; 2; : : : ; g.Then dimP̀ (N) = O(w2).Proof: The proof proceeds analogously as that of Theorem 3.6. Set D :=dimP̀ (N), let d be the number of input nodes, and let l be the number of outputnodes ofN . Then there are values (hxi; yi; zii)i=1;:::;D 2 (Rd+l+1)D such that for everyb : f1; : : : ;Dg ! f0; 1g there exists some �b 2 Rw so that for all i 2 f1; : : : ;DgjjN �b(xi)� yijjp � zi , b(i) = 1:For each i 2 f1; : : : ;Dg one can de�ne in the theory of real numbers the setf� 2 Rw : jjN �(xi) � yijjp � zig by some �rst order formula �i with real valuedconstants of the following structure: �i is a disjunction of � qw � 2l conjunctions of� 2w+ l+1 atomic formulas, where each atomic formula is a polynomial inequalityof degree � (2vr)w (v is a bound for the order of N , see De�nition 1.1, and r is25

the maximal degree of a polynomial or rational piece of an activation function inN). The disjunctions arise here from using di�erent combinations of pieces from theactivation functions. The conjunctions consist of all associated comparisons withthresholds of the activation functions. The factor 2 in the degree bound arises onlyin the case of piecewise rational activation functions.By de�nition one has that �i(�b) is true if and only if b(i) = 1, for i = 1; : : : ;D.Hence for any b;~b : f1; : : : ;Dg ! f0; 1g with b 6= ~b there exists some i 2 f1; : : : ;Dgso that �i(�b) and �i(�~b) have di�erent truth values. This implies that at least oneof the � K := D � qw � 2l � (2w+ l+1) atomic formulas that occur in the D formulas�1; : : : ;�D has di�erent truth values for �b; �~b (where q is a bound for the maximalnumber of polynomial or rational pieces in an activation function of N).On the other hand, each of the � K atomic formulas is a polynomial inequality ofdegree � (2vr)w (where r is the maximal degree of a polynomial or rational piece ofan activation function in N). Hence a theorem of Milnor [Mi] (see also [R]) impliesthat the number of di�erent combinations of truth assignments to these atomicformulas that can be realized by di�erent � 2 Rw is bounded by (K � (2vr)w)O(w).Thus we have 2D � (K � (2vr)w)O(w), which implies by the de�nition of K thatD = O(w) � (logD + w log q). This yields the desired estimate D = O(w2) forq = O(1).Open problem:11. Can the bound of Theorem 4.4 be improved to O(w logw)?[Theorem 3.4 provides a lower bound of
(w logw) for certain networkarchitectures of this type.]Agnostic PAC-learning can be reduced to a �nite optimization problem accordingto Remark 4.2 b). However it turns out that the resulting �nite optimization problemis computationally quite di�cult for most concrete learning problems. The followingresult shows that any e�cient algorithm for agnostic PAC-learning with hypothesisclassH can (for some choices ofA; `, and T) be used to solve e�ciently the associated\minimizing disagreement problem" for H.Theorem 4.5 (Kearns, Schapire and Sellie [KSS])Let X be some arbitrary set and Y := f0; 1g. Let A be the class of all distributionson X � Y , and let `D be the discrete loss function (i.e. `D(z; y) = 0 if z = y and`(z; y) = 1 if z 6= y). Assume that H is e�ciently PAC-learnable assuming A (withrespect to loss function `D). Then there exists a randomized polynomial time algo-rithm MD which solves the following minimizing disagreement problem associatedwith H:Given any �nite sequence (hxi; yii)i�m of elements of X � Y (possibly with rep-etitions and contradictory labels for the same x 2 X) the algorithm MD with input26

(hxi; yii)i�m computes some H 2 H which satis�es with probability � 34 :���fi � m : H(xi) 6= yig��� = infH 02H ���fi � m : H 0(xi) 6= yig���:Proof: Let S � X � Y be the multi-set which is generated by the sequence(hxi; yii)i�m. Let A be the uniform distribution over S, and de�ne " := 1m+1 and� := 14. Let LEARN be any e�cient PAC-learning algorithm for H assuming A(with loss function `D).We construct the randomized algorithmMD as follows. MD draws (internally)a sample S 0 of m� 1m+1 ; 14) examples from S according to the uniform distribution USover S, where m("; �) is the polynomially bounded sample-complexity of LEARN.By assumption the algorithm LEARN computes from this sample S 0 some H 2 Hsuch that with probability � 34 (with regard to the drawing of S 0) the followingholds: Ehx;yi2UShjH(x)� yji � infH 02H Ehx;yi2UShjH 0(x)� yji + 1m+ 1 :Since every point in S has a weight of at least 1m under the uniform distribution USover S, the hypothesis H cannot a�ord to misclassify any example more than nec-cessary in order to achieve this performance. HenceH is a solution of the associatedminimizing disagreement problem.Obviously in the special case Y = f0; 1g e�cient agnostic PAC-learning is at leastas di�cult as e�cient learning in the regular PAC-model. In fact, it is strictly moredi�cult as the following arguments show. The \minimizing disagreement problem"for a hypothesis space H contains as a subproblem the task to �nd someH 2 H thatis consistent with the sample S, provided there exists such H 2 H. This subproblemcaptures the computational demands for PAC-learning with hypothesis class H inthe standard PAC-model. It turns out that for various important classes H thissubproblem is computationally feasible (and hence e�cient PAC-learning with H ispossible in the standard PAC-model), whereas the minimizing disagreement problemfor H is computationally \hard" (and hence e�cient agnostic PAC-learning withhypothesis class H is impossible according to Theorem 4.5).The following result shows that the class H of halfspaces over f0; 1gd is anexample for a class that is e�ciently learnable in the standard PAC-model, but notin the model for agnostic PAC-learning.Theorem 4.6 (Hoe�gen, Simon and Van Horn [HSV])For all d 2 N let Ad be the class of all distributions on f0; 1gd � f0; 1g. ThenR 6= NP implies that H = (HALFSPACEdf0;1gd)d2N is not e�ciently PAC-learnableassuming A = (Ad)d2N. 27

Proof: It is shown in [HSV] that it is NP-hard to decide for an arbitrarymulti-set S of positive and negative examples from some domain f0; 1gd (i.e. S �f0; 1gd � f0; 1g) and an arbitrary given k 2 N, whether there exists some H 2HALFSPACEdf0;1gd that misclassi�es at most k of the examples in S.On the other hand it follows from Theorem 4.5 that an e�cient PAC-learningalgorithm for H assuming A would give rise to a randomized polynomial time algo-rithm for this NP-complete decision problem.Since the preceding result shows that agnostic PAC-learning is not even possiblefor a perceptron, the question arises whether one can prove anything positive foragnostic PAC-learning on neural nets. One characteristic feature of all the well-known negative results about PAC-learning on neural nets (see [BR], [J], [KV], andTheorem 4.6) is that one transfers to neural nets a type of asymptotic analysis thathas become customary in the analysis of algorithms for digital computation. Oneassumes in these negative results that the number w of programmable parameters inN goes to in�nity. However this analysis is not quite adequate for many applicationsof neural nets, where one considers a relatively small �xed neural net, and the inputis given in the form of relatively few analog inputs (e.g. sensory data). In addition,for many practical applications of neural nets the number of input variables is �rstreduced by suitable preprocessing methods (e.g. principal component analysis).Hence it is also of interest to �nd out whether e�cient PAC-learning is possible fora neural net with e.g. w := 20 programmable parameters.For a network architecture N with boolean inputs and outputs and w = O(1)programmable parameters the question whether N can PAC-learn has a trivial pos-itive answer since N can only compute O(1) di�erent functions. However for thecase of rational or real inputs (and/or outputs) such N can compute in�nitely manydi�erent function, and the nontrivial asymptotic question arises (in the regular andin the agnostic PAC-learning model) whether there exists an e�cient learning algo-rithm for N that allows it to learn any target function with arbitrarily small trueerror if su�ciently many training examples are provided. Obviously the precedingnegative results leave open the question whether there exists for a �xed neural net ~Na PAC-learning algorithm whose computation time can be bounded by a polynomialin 1" ; 1� , in the maximal bit-length n of its d input numbers fromQ, and in the bounds for the allowed bit-length of weights in ~N (but where the size of ~N may occur inthe exponent of the time bound). A positive result in this direction is given by thefollowing Theorem 4.7. We use there as \touchstone class" the class of all functionscomputable on a given neural net N with rational weights of bit-length s.LetQn be the set of rational numbers that can be written as quotients of integerswith bit-length � n. We write jjzjj1 for the L1-norm of a vector z 2 Rl.28

Theorem 4.7 ([M 93b])Let B � R be an arbitrary bounded set. Let N be some arbitrary high order networkarchitecture with d inputs and l outputs. We assume that all activation functions ofgates in N are piecewise polynomial with architectural parameters from Q.Then one can construct an associated �rst order network architecture ~N withlinear threshold gates and gates with activation functions from the class fx 7! x; x 7!x2g, as well as a polynomial m(1" ; 1�) and a learning algorithm LEARN ~N such thatfor any given s; n 2 N and any distribution A over Qdn � (Qn \ B)l the followingholds:For any sample S = (hxi; yii)i=1;:::;m of m � m(1" ; 1�) examples that are independentlydrawn according to A the algorithm LEARN ~N computes from S; s; n in polynomiallyin m; s and n many computation steps an assignment ~� of rational numbers to theprogrammable parameters of the associated network architecture ~N such thatEhx;yi2A[jj ~N ~�(x)� yjj1] � inf�2Qws Ehx;yi2A[jjN �(x)� yjj1] + "with probability � 1 � � (with regard to the random drawing of S).The proof of Theorem 4.7 is mathematically quite involved, and we can givehere only an outline. It consists of three steps:(1) Construction of the auxiliary neural net ~N .(2) Reducing the optimization of weights in ~N for a given distribution A to a�nite nonlinear optimization problem.(3) Reducing the resulting �nite nonlinear optimization problem to a family of�nite linear optimization problems.Details to step (1): We use the same construction as in [M 93a].If the activation functions g in N are piecewise linear and all computationnodes in N have fan-out � 1 (this occurs for example if N has just one hidden layerand only one output) then one can set ~N := N . If the g are piecewise linear butnot all computation nodes in N have fan-out � 1 one de�nes ~N as the tree of thesame depth as N , where subcircuits of computation nodes with fan-out m > 1 areduplicated m times. The activation functions remain unchanged.If the activation functions g are piecewise polynomial but not piecewise linear,one has to apply a rather complex construction which is described in detail in thejournal version of [M 93b]. In any case ~N has the property that all functions thatare computable on N can also be computed on ~N , the depth of ~N is bounded by aconstant, and the size of ~N is bounded by a polynomial in the size of N (providedthat the depth and order of N , as well as the number and degrees of the polynomialpieces of the g are bounded by a constant).29

Details to step (2): With the help of the pseudo-dimension and Theorem 4.1one can reduce the desired optimization of weights in ~N (with regard to an arbitrarygiven distribution A of examples hx; yi) to a �nite optimization problem.Fix some interval [b1; b2] � R such that B � [b1; b2]; b1 < b2, and such that theranges of the activation functions of the output gates of ~N are contained in [b1; b2].We de�ne r := l � (b2 � b1) , and F := ff : Rk � [b1; b2]l ! [0; r] : 9 � 2 Rw 8x 2Rk 8y 2 [b1; b2]l (f(x; y) = jj ~N �(x)� yjj1)g:Assume now that parameters "; � 2 (0; 1) with " � r and s; n 2 N have beengiven. For convenience we assume that s is su�ciently large so that all architecturalparameters in ~N are from Qs (we assume that all architectural parameters in N arerational). We de�nem�1" ; 1�� := 257 � r2"2 �2 � dimlP (~N) � ln33er" + ln8�� :By Theorem 4.1 one has for m � m(1" ; 1�); K := p2578 , and any distribution A overQkn � (Qn \ [b1; b2])l(1) PrS2Am [f8f 2 F : j(1m Xhx;yi2S f(x; y))� Ehx;yi2A[f(x; y)]j � "K g] � 1 � �;where Ehx;yi2A[f(x; y)] is the expectation of f(x; y) with regard to distribution A.We design an algorithm LEARN ~N that computes for any m 2 N, any sampleS = (hxi; yii)i2f1;:::;mg 2 (Qkn � (Qn \ [b1; b2])l)m;and any given s 2 N in polynomially in m; s; n computation steps an assignment~� of rational numbers to the parameters in ~N such that the function ~h that iscomputed by ~N ~� satis�es(2) 1m mXi=1 jj~h(xi)� yijj1 � (1 � 2K)"+ inf� 2 Qws 1m mXi=1 jjN �(xi)� yijj1:This su�ces for the proof of Theorem 4.7, since (1) and (2) together imply that, forany distribution A over Qkn� (Qn \ [b1; b2])l and any m � m(1" ; 1�), with probability� 1 � � (with respect to the random drawing of S 2 Am) the algorithm LEARN ~Noutputs for inputs S and s an assignment ~� of rational numbers to the parametersin ~N such thatEhx;yi2A[jj ~N ~�(x)� yjj1] � inf� 2 Qws Ehx;yi2A[jjN �(x)� yjj1] + ":Details to step (3): The computation of weights ~� that satisfy (2) is nontrivial,since this amounts to solving a nonlinear optimization problem. This holds even30

if each activation function in ~N is piecewise linear, because even then the weightsfrom successive layers are multiplied with each other.We employ a method from [M 93a] that allows us to replace the nonlinear con-ditions on the programmable parameters � of ~N by linear conditions for a trans-formed set c; � of parameters. We simulate ~N � by another network architectureN̂ [c]� (which one may view as a \normal form" for ~N �) that uses the same graphhV;Ei as ~N , but di�erent activation functions and di�erent values � for its program-mable parameters. The activation functions of N̂ [c] depend on jV j new architecturalparameters c 2 RjV j, which we call scaling parameters in the following. Althoughthis new network architecture has the disadvantage that it requires jV j additionalparameters c, it has the advantage that we can choose in N̂ [c] all weights on edgesbetween computation nodes to be from f�1; 0; 1g. Hence we can treat them as con-stants with at most 3 possible values in the system of inequalities that describescomputations of N̂ [c]. Thereby we can achieve that all variables that appear in theinqualities that describe computations of N̂ [c] for �xed network inputs (the vari-ables for weights of gates on level 1, the variables for the biases of gates on all levels,and the new variables for the scaling parameters c) appear only linearly in thoseinqualities. Furthermore one can easily compute from � values for � and c so that8x 2 Rd � ~N �(x) = N̂ [c]�(x)� :At the end of this proof we will also need the fact that the previously describedparameter transformation can be inverted, i.e. one can compute from c; � an equiv-alent weight assignment � for ~N (with the original activation functions).We now describe how the algorithm LEARN ~N computes for any given sampleS = (hxi; yii)i=1;:::;m 2 (Qkn � (Qn \ [b1; b2])l)m and any given s 2 N with the helpof linear programming a new assignment ~c; ~� to the parameters in N̂ such that thefunction ~h that is computed by N̂ [~c]~� satis�es (2). For that purpose we describethe computations of N̂ for the �xed inputs xi from the sample S = (hxi; yii)i=1;:::;mby polynomially in m many systems L1; : : : ; Lp(m) that each consist of O(m) linearinequalities with the transformed parameters c; � as variables. Each system Ljreects one possibility for employing speci�c linear pieces of the activation functionsin N̂ for speci�c network inputs x1; : : : ; xm, and for employing di�erent combinationsof weights from f�1; 0; 1g for edges between computation nodes.One can show that it su�ces to consider only polynomially in m many systemsof inequalities Lj by exploiting that all inequalities are linear, and that Lj containsonly O(1) variables.We now expand each of the systems Lj (which has only O(1) variables) into alinear programming problem LPj with O(m) variables. We add to Lj for each ofthe l output nodes � of N̂ 2m new variables u�i ; v�i for i = 1; : : : ;m, and the 4minequalitiest�j (xi) � (yi)� + u�i � v�i ; t�j (xi) � (yi)� + u�i � v�i ; u�i � 0; v�i � 0;31

where (hxi; yii)i=1;:::;m is the �xed sample S and (yi)� is that coordinate of yi whichcorresponds to the output node � of N̂ . In these inequalities the symbol t�j (xi)denotes the term (which is by construction linear in the variables c; �) that representsthe output of gate � for network input xi in this system Lj. We expand the systemLj of linear inequalities to a linear programming problem LPj in canonical form byadding the optimization requirementminimize mXi=1 X� output node(u�i + v�i):The algorithm LEARN ~N employs an e�cient algorithm for linear programming(e.g. the ellipsoid algorithm, see [PS]) in order to compute in altogether polynomiallyin m; s and n many steps an optimal solution for each of the linear programmingproblems LP1; : : : ; LPp(m). We write hj for the function from Rk into Rl that iscomputed by N̂ [c]� for the optimal solution c; � of LPj . The algorithm LEARN ~Ncomputes 1m mXi=1 jjhj(xi)� yijj1 for j = 1; : : : ; p(m): Let ~j be that index for which thisexpression has a minimal value. Let ~c; ~� be the associated optimal solution of LP~j(i.e. N̂ [~c]~� computes h~j). LEARN ~N employs the previously mentioned backwardstransformation from ~c; ~� into values ~� for the programmable parameters of ~N suchthat 8x 2 Rk(~N ~�(x) = N̂ [~c]~�(x)). These values ~� are given as output of thealgorithm LEARN ~N .We refer to the journal version of [M 93b] for the veri�cation that this weightassignment ~� has the desired properties, and for the construction in the more generalcase where the activation functions of N are piecewise polynomial.Remark 4.8a) The algorithm LEARN ~N can be speeded up substantially on a parallel ma-chine. Furthermore if the individual processors of the parallel machine areallowed to use random bits, hardly any global control is required for this paral-lel computation. We use polynomially in m many processors. Each processorpicks at random one of the systems Lj of linear inequalities and solves thecorresponding linear programming problem LPj . Then the parallel machinecompares in a \competitive phase" the costs mPi=1 jjhj(xi) � yijj1 of the solu-tions hj that have been computed by the individual processors. It outputs theweights ~� for ~N that correspond to the best ones of these solutions hj. If oneviews the number ~w of weights in ~N no longer as a constant, one sees that thenumber of processores that are needed is simply exponential in ~w2, but thatthe parallel computation time is polynomial in m and ~w.b) The proof of Theorem 4.7 uses an idea that promises to bear further fruits:Rather than insisting on designing an e�cient learning algorithm for every32

neural net, one designs learning algorithms for a subclass of neural nets ~Nwhose architecture is particularly suitable for learning. This may not be quitewhat we want, but it su�ces as long as there are arbitrarily \powerful" networkarchitectures ~N that support our learning algorithm. It is likely that this ideacan be pursued further with the goal of identifying more sophisticated typesof special network architectures that admit fast learning algorithms.Open problems:12. Does Theorem 4.7 also hold for ~N := N?13. Can one improve the time bound of the learning algorithm in Theorem 4.7 toO(2O(~w) � poly(1" ; 1�))?[The time bound of LEARN ~N contains a factor of the form 2O(~w2), see thejournal version of [M 93b].]14. Can one extend Theorem 4.7 to network architectures N with the sigmoidactivation function?15. Can one prove further positive results for agnostic PAC-learning by exploit-ing the observation that various real world classi�cation problems give rise todistributions A over X � Y that have special structural properties (e.g. forY = f0; 1g one often has that very simple hypotheses can \predict" the labelsof examples quite well, see [Ho])?5 ConclusionSeveral of the existing results about learning on neural nets are negative results.However one should not interpret these results as saying that e�cient learning onneural nets is impossible. In fact, e�cient learning on neural networks is a reality,both on existing arti�cial neural nets and even more on neural systems of livingorganisms. Hence one should view these negative results as useful hints, whichguide us towards a better understanding of the essential mechanisms of learning onneural nets, and towards the development of more adequate theoretical models.AcknowledgementsI would like to thank Ian Parberry for his suggestion to write up these notes, andGiancarlo Mauri for giving me the opportunity to lecture from a draft of these notesat the \1993 Advanced School on Computational Learning and Cryptography" ofthe European Association for Theoretical Computer Science. I also would like tothank Michael Schmitt for his helpful comments.33

References[A] D. Angluin, \Queries and concept learning", Machine Learning, vol.2, 1988, 319 - 342[AB] M. Anthony, N. Biggs, \Computational Learning Theory", CambridgeUniversity Press, 1992[Au] P. Auer, \On-line learning of rectangles in noisy environments", Proc.of the 6th Annual ACM Conference on Computational Learning The-ory, 1993, 253 - 261[BW] P. L. Bartlett, R. C. Williamson, \The VC-dimension and pseudodi-mension of two-layer neural networks with discrete inputs", preprint(1993)[BH] E. B. Baum, D. Haussler, \What size net gives valid generalization?",Neural Computation, vol. 1, 1989, 151 - 160[BR] A. Blum, R. L. Rivest, \Training a 3-node neural network is NP-complete", Proc. of the 1988 Workshop on Computational LearningTheory, Morgan Kaufmann (San Mateo, 1988), 9 - 18[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, \Learn-ability and the Vapnik-Chervonenkis dimension", J. of the ACM, vol.36(4), 1989, 929 - 965[CM] Z. Chen, W. Maass, \On-line learning of rectangles", Proc. of the 5thAnnual ACM Workshop on Computational Learning Theory 1992, 16- 28[C 64] T. M. Cover, \Geometrical and statistical properties of linear thresh-old devices", Stanford PH. D. Thesis 1964, Stanford SEL TechnicalReport No. 6107-1, May 1964[C 68] T. M. Cover, \Capacity problems for linear machines", in: PatternRecognition, L. Kanal ed., Thompson Book Co., 1968, 283 - 289[E] H. Edelsbrunner, \Algorithms in Combinatorial Geometry", EATCSMonographs on Theoretical Computer Science, vol. 10, Springer(Berlin, New York), 1987[EHKV] A. Ehrenfeucht, D. Haussler, M. Kearns, L. Valiant, \A general lowerbound on the number of examples needed for learning", Informationand Computation, vol. 82, 1989, 247 - 261[G] S. I. Gallant, \Neural Network Learning and Expert Systems", MITPress (Cambridge, 1993) 34

[GoJ] P. Goldberg, M. Jerrum, \Bounding the Vapnik-Chervonenkis di-mension of concept classes parameterized by real numbers", Proc. ofthe 6th Annual ACM Conference on Computational Learning Theory,1993, 361 - 369[H] J. Hastad, \On the size of weights for threshold gates", preprint (1992)[Ha] D. Haussler, \Decision theoretic generalizations of the PAC model forneural nets and other learning applications", Information and Com-putation, vol. 100, 1992, 78 - 150[HKLW] D. Haussler, M. Kearns, N. Littlestone, M. K. Warmuth, \Equivalenceof models for polynomial learnability", Information and Computation,vol. 95, 1991, 129 - 161[HSV] K. U. Hoe�gen, H. U. Simon, K. S. Van Horn, \Robust trainabilityof single neurons", to appear[Ho] R. C. Holte, \Very simple classi�cation rules perform well on mostcommonly used datasets", Machine Learning, vol. 11, 1993, 63 - 91[J] J. S. Judd, \Neural Network Design and the Complexity of Learning",MIT-Press (Cambridge, 1990)[KV] M. Kearns, L. Valiant, \Cryptographic limitations on learning booleanformulae and �nite automata", Proc. of the 21st ACM Symposium onTheory of Computing, 1989, 433 - 444[KS] M. Kearns, R. E. Schapire, \E�cient distribution free learning ofprobabilistic concepts", Proc. of the 31st IEEE Symposium on Foun-dations of Computer Science, 1990, 382 - 391[KSS] M. J. Kearns, R. E. Schapire, L. M. Sellie, \Toward e�cient agnosticlearning", Proc. of the 5th ACM Workshop on Computational Learn-ing Theory, 1992, 341 - 352[Li] N. Littlestone, \Learning quickly when irrelevant attributes abound:a new linear-threshold algorithm", Machine Learning, vol. 2, 1988,285 - 318[L] O. B. Lupanov, \On circuits of threshold elements",Dokl. Akad. NaukSSSR, vol. 202, 1288 - 1291; engl. translation in: Sov. Phys. Dokl.,vol. 17, 1972, 91 - 93[M 93a] W. Maass, \Bounds for the computational power and learning com-plexity of analog neural nets (Extended Abstract)", Proc. of the 25thAnnual ACM Symposium on the Theory of Computing, 1993, 335 -344 35

[M 93b] W. Maass, \Agnostic PAC-learning of functions on analog neuralnets", an extended abstract appears in the Proc. of the 7th AnnualIEEE Conference on Neural Information Processing Systems 1993;the full paper appears in Neural Computation.[M 93c] W. Maass, \Neural nets with superlinear VC-dimension", to appearin Neural Computation.[MSS] W. Maass, G. Schnitger, E. D. Sontag, \On the computational powerof sigmoid versus boolean threshold circuits", Proc. of the 32nd An-nual IEEE Symp. on Foundations of Computer Science, 1991, 767 -776[MT 89] W. Maass, G. Turan, \ On the complexity of learning from counterex-amples" (extended abstract), Proc. of the 30th Annual IEEE Symp.on Foundations of Computer Science, 1989, 262 - 267[MT 92] W. Maass, G. Turan, \Lower bounds and separation results for on-linelearning models", Machine Learning, vol. 9, 1992, 107 - 145[MT 93] W. Maass, G. Turan, \Algorithms and lower bounds for on-line learn-ing of geometrical concepts", to appear in Machine Learning[MT 94] W. Maass, G. Turan, \How fast can a threshold gate learn?", in:Computational Learning Theory and Natural Learning Systems: Con-straints and Prospects, G. Drastal, S. J. Hanson and R. Rivest eds.,MIT Press, to appear[MS] M. MacIntyre, E. D. Sontag, \Finiteness results for sigmoidal neuralnetworks", Proc. of the 25th Annual ACM Symposium on the Theoryof Computing, 1993, 325 - 334[Mi] J. Milnor, \On the Betti numbers of real varieties", Proc. of the Amer-ican Math. Soc., vol. 15, 1964, 275 - 280[MP] M. Minsky, S. Papert, \Perceptrons: An Introduction to Computa-tional Geometry" MIT Press (Cambridge, 1988)[MTT] S. Muroga, I. Todo, S. Takasu, \Theory of majority decision ele-ments", J. Franklin Inst., vol. 271, 1961, 376 - 418[Mu] S. Muroga, \Threshold Logic and its Applications, Wiley, New York1971[N] E. I. Neciporuk, \The synthesis of networks from threshold elements",Probl. Kibern. No. 11, 1964, 49 - 62; engl. translation in: Autom.Expr., vol. 7, No. 1, 1964, 35 - 39[RSO] V. P. Roychowdhury, K. Y. Siu, A. Orlitsky, \Advances in NeuralComputation", Kluwer Academic Publishers, to appear36

[PS] C. H. Papadimitriou, K. Steiglitz, \Combinatorial Optimization: Al-gorithms and Complexity", Prentice Hall (Englewood Cli�s, 1982)[P] D. Pollard, \Empirical Processes: Theory and Applications", NSF-CBMS Regional Conference Series in Probability and Statistics, vol.2, 1990[R] J. Renegar, \On the computational complexity and geometry of the�rst order theory of the reals, Part I", J. of Symbolic Computation,vol. 13, 1992, 255 - 299[Ro] F. Rosenblatt, \Principles of Neurodynamics" Spartan Books, NewYork, 1962[RM] D. E. Rumelhart, J. L. McClelland, \Parallel Distributed Processing",vol. 1, MIT Press (Cambridge, 1986)[Sa] A. Sakurai, \Tighter bounds of the VC-dimension of three layer net-works", Proc. of WCNN '93, vol. 3, 540 - 543[S] E. D. Sontag, \Feedforward nets for interpolation and classi�cation",J. Comp. Syst. Sci., vol. 45, 1992, 20 - 48[Va] P. M. Vaidya, \A new algorithm for minimizing convex functions overconvex sets", Proc. of the 30th Annual IEEE Symp. on Foundationsof Computer Science, 1989, 338 - 343[V] L. G. Valiant, \A theory of the learnable", Comm. of the ACM, vol.27, 1984, 1134 - 1142[WK] S. M. Weiss, C. A. Kulikowski, \Computer Systems that Learn",Mor-gan Kaufmann (San Mateo, 1991)[WD] R. S. Wenocur, R. M. Dudley, \Some special Vapnik-Chervonenkisclasses", Discrete Math., vol. 33, 1981, 313 - 318
37

