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It has been known for quite a while that the Vapnik-Chervonenkis 
dimension (VC-dimension) of a feedforward neural net with linear 
threshold gates is at most O(w . log w), where w is the total number of 
weights in the neural net. We show in this paper that this bound is in 
fact asymptotically optimal. More precisely, we exhibit for any depth 
d 2 3 a large class of feedforward neural nets of depth d with w weights 
that have VC-dimension Q(w . log w). This lower bound holds even if 
the inputs are restricted to Boolean values. The proof of this result 
relies on a new method that allows us to encode more "program-bits" 
in the weights of a neural net than previously thought possible. 

The Vapnik-Chervonenkis dimension VC-dimension ( N )  of a neural net 
N with n input nodes is defined as the size of the largest set S R" 
which is "shattered" by N in the sense that every function F : S + (0 , l )  
can be computed by N with some assignment of real numbers to its 
weights. 

The VC-dimension of a neural net N is an important measure for 
the expressiveness of N, that is, for the variety of functions that can be 
computed by N with different choices for its weights. In particular it 
has been shown in Blumer et al. (1989) and Ehrenfeucht et al. (1989) that 
the VC-dimension of N essentially determines the number of training 
examples that are needed to train N in Valiant's model (Valiant, 1984) 
for probably approximately correct learning ("PAC-learning"). 

It has been known for quite a while that the VC-dimension of a neural 
net with linear threshold gates and w edges (respectively w weights) is 
at most O(w . logw). This result, which holds for arbitrary real valued 
input patterns, was first shown by Cover (1964) (see also Cover 1968), and 
later by Baum and Haussler (1989). It has frequently been conjectured 
that the "true" upper bound is O(w). This conjecture is quite plausible, 
since a single linear threshold gate with w edges has VC-dimension w + 1. 
Furthermore it is hard to imagine that the VC-dimension of a network of 
linear threshold gates can be larger than the sum of the VC-dimensions 
of the individual linear threshold gates in the network. 
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We disprove this popular conjecture by showing that for any depth 
d 2 3 quite a number of neural nets N of depth d have a VC-dimension 
that is superlinear in the number w of edges in N .  In particular, we 
exhibit for arbitrarily large w E N neural nets N of depth 3 (i.e., with 2 
hidden layers) with w weights that have VC-dimension 62(w.logw). This 
shows that the quoted upper bound of O(w log w) is in fact asymptotically 
optimal. 

It is of some interest to note that the upper bound O(w . log w) for the 
VC-dimension of a neural net with w weights holds even for the case of 
realvalued inputs, whereas our matching lower bound n(w.logw) for the 
VC-dimension of certain neural nets N;, with w weights holds already 
for the restriction of N;, to Boolean inputs. Our lower bound also shows 
that the well-known upper bound 2w log(eN) for the VC-dimension of a 
neural net with w weights and N computation nodes (due to Baum and 
Haussler 1989) is asymptotically optimal. 

The result of this paper may also be viewed as mathematical evidence 
for a certain type of "connectionism thesis": that a network of neuron- 
like elements is more than just the sum of its elements. We show that in 
a large neural net a single weight may add more than a constant to the 
VC-dimension of the neural net: its contribution may increase with the 
logarithm of the total size of the neural net. 

Although we consider in this paper only neural nets with linear 
threshold gates, it is obvious that the same lower bound can also be 
derived for neural nets with other activation functions such as ~ ( y )  = 
1/(1 + e-Y) (see Rumelhart and McClelland 1986) or piecewise linear 
(respectively, polynomial) functions of a similar type (see Sontag 1992; 
Maass et al. 1991; Maass 1993). 

This paper improves our earlier results from Maass (1992) (see Maass 
1993 for an extended abstract), where we had exhibited neural nets of 
depth 4 with superlinear VC-dimension. Both our preceding results and 
the proof of our new result employ classical circuit construction meth- 
ods due to Neciporuk (1964) and Lupanov (1972). Bartlett (1993) has 
independently derived lower bounds for the VC-dimensions of various 
neural nets of depth 2 and 3 that are linear in the number w of weights. 

The neuralnets that are considered in this paper are feedforward neural 
nets with linear threshold gates (or simpler: threshold gates), that is, 
gates that apply the heaviside activation function to the weighted sum xyll ~ , y i  + no of their inputs yl . . . ym. The parameters nl ,  . . . a, and N O  
are the weights of such gate. We will consider in this paper only neural 
nets with Boolean inputs and one Boolean output. 

The depth of a neural net is the length of the longest path from an 
input node to the output node (= output gate). The depth of a gate in a 
neural net is the length of the longest path from an input node to that 
gate. We refer to all gates of depth d as "level d" of a neural net. 

We will focus our attention on neural nets that are layered in the sense 
that for each gate all paths from an input node to that gate have the same 
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length. This means that only gates on successive levels are connected by 
an edge, and input nodes are connected by an edge only with gates on 
level 1. This is not a serious restriction, since for i + 1 < j one may 
replace an edge between nodes on levels i and j by a path of length j - i 
(by introducing j - i - 1 "dummy" gates on the intermediate levels). It 
is obvious that a layered neural net of depth d has exactly d - 1 hidden 
layers. 

One calls a layered neural net fully connected if any two nodes on suc- 
cessive levels (including input nodes and gates on level 1) are connected 
by an edge. 

We use the standard notation f = O(g) for arbitrary functions f , g  : 
N + N to indicate that both f = O(g) and f = sZ(g). 
Theorem 1. Assume that (Nn)nEN is any sequence offully connected layered 
neural nets of depth d 2 3. Furthermore assume that N, has n input nodes and 
@(n)  gates, of which R(n) gates are on thefirst hidden layer, and at least 4 logn 
gates are on the second hidden layer of N,. 

Then N, has O(n2)  edges and VC-dimension (N,) = @(n210gn). 

The proof of Theorem 1 proceeds by "embedding" into the given neu- 
ral nets N, of Theorem 1 the special neural nets Mi, that are constructed 
in the following Theorem 2. The precise derivation of Theorem 1 from 
the construction of Theorem 2 is given after the proof of Theorem 2. 

Theorem 2. Assume that n is some arbitra y power of 2. Then one can construct 
a neural net M ,  of depth 3 with n input nodes and at most 17n2 edges such that 
VC-dimension ( M n )  2 n2 . logn. 
Proof of Theorem 2. One may view the weights of a neural net M ,  
collectively as the "program" of M,. It is obviously no problem to em- 
ploy large weights in a neural net. But the question is how many bits of 
the weights are actual "program-bits" in the sense that they contribute 
to the VC-dimension of the neural net. We will exhibit in this proof a 
method for "efficient programming" of a neural net that allows us to en- 
code an unusually large number of "program-bits" in the weights. More 
precisely we show that on average each of the @ ( n 2 )  weights can be used 
to store R(1og n )  "program-bits." Furthermore our construction requires 
only integer weights whose absolute value is polynomial in n. Hence 
all weights have bit-length O(1og n) ,  and our construction shows that a 
constant fraction of all weight-bits can be used to store the "program" 
of M,. 

Before we describe the precise construction of the desired neural net 
M,,, we first illustrate this method for "efficient programming" of a neu- 
ral net in a simpler example. This "example" will turn out to be an es- 
sential building block for the construction of M,. We construct a neural 
net M with n2 integer weights of size polynomial in n that can be pro- 
grammed to compute any n-tuple of permutations of {el,. . . , en} (where 
ei E (0,l)" is the ith unit vector). Since (n!)" = 28(n2'ogn) different n- 
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tuples of permutations of {el , .  . . en} exist, this construction of M may 
be viewed as an example for "efficient programming" of a neural net [in 
the sense that on average R(1ogn) bits of each weight are relevant for 
determining the function that is computed by MI. 

The neural net M will have 2 .  n inputs and n outputs. For the con- 
struction of M we assume that h is an arbitrary given function from 
{el, . . . , en}' into {el , .  . . ,en} such that for any j E (1,. . . , n }  the function 
h (.,el) is a permutation of {el, . . . , en}. Obviously any n-tuple of permu- 
tations of {el , .  . . , e,} can be represented by such a function h. We define 
for i, j E { 1, . . . , n }  weights wIJ by 

wl,, = r w (er, e,) = el 

This implies that for any p ,  q E (1,. . . , n }  one has h(e,, eq) = el * wl,q = 
p * C;=, wl,, . (eq), = p [we write (x), for the jth coordinate of a vector XI. 
Hence one may take as the ith output gate of M a gate that checks (for 
example via the AND of two threshold gates) whether c;=, w,,) . (eq), = 

C21 r . (ep)r (i.e., w , , ~  = p ) .  It is easy to verify that this neural net M 
computes the given function h. 

The above method for "efficient programming" of a neural net M can- 
not be used directly to show that a neural net has a large VC-dimension, 
because for that we have to be able to compute many 0 - 1 valued rather 
than vector-valued functions F on a neural net. However, the subsequent 
construction shows that any 0 - 1 valued function F (with a suitable 
domain S) can be encoded by four functions gl, . . . ,g4, which are each 
n-tuples of permutations of {el , .  . . , e,}. Hence we can employ in the 
construction of M ,  the preceding method for "efficient programming" 
of n-tuples of permutations in a neural net. The only difference is that 
in M, the output of each function gk will be considered in binary repre- 
sentation (i.e., gk outputs bin(i) E (0, l}log" instead of el E (0, l}", where 
bin(i) is the binary string that represents the natural number i - 1). This 
will be necessary since each bit of bin(i) will be used to encode the value 
of F for a different input. 

We will now describe the precise construction of a neural net M ,  with 
O(n') edges and VC-dimension(M,) 2 n2 . log n. 

We assume that n is of the form 2"' for some nonzero n' E N. This 
implies that n is even and that logn E N. We construct a neural net 
M ,  with 2n + logn bina inputs and O(n2) weights that shatters the 
following set S (0, 7 Ogfl of size n2 . log n: 

S := (e,eqe, : p , q  E (1,. . . , n }  and m E {l,. . . ,logn}} 

where e, E {0,1}" denotes the rth unit vector of length n (r = 1,. . . , n) ,  
and em E {O,l}log" denotes the mth unit vector of length logn (m = 1,. . ., 
logn). Thus each u E S contains exactly three Is. 

Fix any map F : S + {Oil}. One can encode F by a function g : 
{e l , .  . . , + (0, 1}I0g" where the mth output bit of g(e,, e4) equals 1 if 
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and only if F(e,e,e,) = 1. It is straightforward to show (as follows) that 
for any function g : (e l , .  . . + (0, l}logn there exist for k = 1,. . . , 4  
functions g k  : (el,. . . ,en}’ -+ (0, l}logn such that g k ( . ,  e4) is 1 - 1 for every 
fixed q E ( 1 , .  . . , n} ,  and such that for all p,9 E (1,. . . , n} :  

The symbol CB denotes here the bit-wise exclusive OR (i.e., parity) on 
bit-strings of length log n. 

To justify this claim, one chooses for each fixed e4 simultaneously 
for k = 1,2 values for gk(e1, eq), gk(e2,e4), . . . in such a way that earlier 
assigned values for g k ( . ,  eq) are avoided. After gl(e,, e4) and g2(ep, e4) 
have been defined for p = 1,. . . , I  < n/2,  one can choose for gl(er+l, e4) 
any string in (0, 1}logn that is not in the set 

Then one sets g2(er+1, eq) := g(el+l, e4) @ gl(e,+l, e4). One continues the 
definition of gl(ep, e4) and g2(ep, e9) for p > n / 2  in an arbitrary manner 
so that gl(., e4) and g2(., e4) become 1 - 1. The definition of g3(-, e4) and 
g4(., e4) is analogous. 

The neural net M ,  computes F in the following way. The output 
gate on level 3 is an OR of 4logn threshold gates. These threshold 
gates consist of logn blocks of 4 threshold gates, such that for any b E 
(1,. . . , logn} some threshold gate in the bth block outputs 1 for network 
input epeqem if and only if m = b and (g(e,,eq))b = 1 [i.e., F(e,e,e,) = 11. 
More precisely, the ath threshold gate in block b outputs 1 if and only if 
the ath one of the following 4 conditions is satisfied: 

4. m = b A p > n / 2  A (g3 (ep,e4))b = 0 A (g4 (ep3e4))b = 1. 

The subcondition ”m = b” is satisfied if and only if (epeqem)2,,+b = 1. 
The subcondition “p 5 n/2” is satisfied if and only if C:=, r . (ep)r 5 n/2,  
hence it can be tested by a threshold gate on level 1 (analogously for 
“p > n/2”) .  The remaining subconditions are tested with the help of 8n 
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threshold gates on level 1 that involve weights wk,,,/ E (1, . . . , n } ,  which 
are defined by the condition 

wk,,,/ = r H gk ( e r ,  e l )  = bin(i). 

Among these there are 4n threshold gates G{, (ep ,  e , )  on level 1 that output 
1 if and only if cyz, r . ( e p ) r  2 C;=, Wk,,,, 1 (e , ) ]  (i.e., p 2 wk,,,,), and 4n 
threshold gates G,,(e,, e , )  on level 1 that output 1 if and only if Cr=, r . 
(ep)r  L c;=, Wk,I,/ . (e,) ,  (i.e., p 5 Wk,l,q), for k = I , .  . . ,4  and i = 1,. . . , n. 
These are the only weights in the neural net M,, that depend on the 
function F : S -+ {0,1}. By definition one has that for each k, i at least 
one of the two gates G&(e,, e , ) ,  Gk,,(ep, e,) outputs 1. Furthermore for any 
k E { 1, . . . ,4} and any e,e,e,, E S there is exactly one i E { 1, . . . , n }  such 
that both of these gates output 1. This index i is characterized by the 
equality gk(e,, e,) = bin(i). Hence one can check whether (gk(e,, eq))b = 1 
by testing whether 

and one can check whether (gk(ep, eq))b = 0 by testing whether 

c 
, = I . .  .,I 

Furthermore the sums on the left-hand side of both inequalities can only 
assume the values n / 2  or ( n / 2 )  + 1. Therefore one can test the AND of 
two subconditions of this type and of the subconditions "rn = b" and 
" p  5 n/2" ("p > n/2") by a single threshold gate on level 2 of M,. Hence 
one can test each of the conditions (l), . . . , (4) by a separate threshold 
gate in the bth block on level 2. 

Altogether the network M ,  has 2n + log n Boolean inputs and 8n + 2 
threshold gates on level 1 (the first hidden layer), which are connected 
by 16n2 + 2n edges to level 0 (the input level). Among these are the 8n2 
edges with the weights wk,i,j that depend on the function F : S + ( 0 , l )  
(all other weights and thresholds in M ,  are independent of F). 

On level 2 (the second hidden layer) the network M ,  has 4logn 
threshold gates that test the conditions (l), . . . , (4) as described before. 
Each of these gates is connected by 1 + 2n edges to gates on level 1, and 
by one edge to some input node. On level 3 the network M ,  has an OR 
that is connected by 4 log n edges to the gates on level 2. 

In order to change M ,  into a layered neural net we add 4 log n thresh- 
old gates on level 1 and replace the former 4logn edges between input 
nodes and gates on level 2 by paths of length 2 (with the new 4logn 
threshold gates on level 1 as intermediate nodes). Thus as a layered neu- 
ral net M,, has 8n + 4 log n + 2 gates on level 1 and 4 log n gates on level 2, 
16n2 + 2n + 4 log n edges between input nodes and gates on level 1, and 
(2n + 2) . 4  log n edges between gates on levels 1 and 2. 
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Altogether the constructed layered neural net M,, consists of 2n+log n 
input nodes, 8n +8 log n + 3 computation nodes, and 16n2 + (8 log n + 2)n + 
16logn edges. Obviously the nodes and edges of M,, are independent 
of the given function F : S + (0, l}, whereas the weights on 8n2 of the 
edges depend on F (these weights range over (1,  . . . , n}). 

Since the function F : S + (0 , l )  that is computed by M,, was choosen 
arbitrarily, the construction implies that the set S is shattered by M,. 

Proof of Theorem 1. Since N;, has O(n)  gates, n ( n )  gates on level 1, and 
n input nodes, it is obvious that N;, has @(n2) edges. 

Let K 2 1 be some natural number such that each of the given neural 
nets N;, from Theorem 1 has at least n /K  gates on level 1. For n 2 28K 
we choose 2 E N maximal of the form 2,' for some n' E N such that 

Hence VC-dimension ( M n )  2 IS1 = n2 . logn. 0 

n 
(*)82 + 410gn + 2 5 -. K 

It is obvious that the rational number n/14K in place of 2 satisfies (*). 
Hence for n 2 28K we can find within the interval [ n / 2 8 K ,  n/14K] some 
power of 2 that satisfies (*). This implies that the previously defined 
natural number 2 satisfies 2 2 n/28K. Furthermore we have 4log2 5 
4 log n, since ii 5 n. Thus the given neural net N, has at least 82+4 log 2+ 
2 gates on level 1, at least 4 log 2 gates on level 2, and at least 1 gate on 
each level I with 3 5 I 5 d. Furthermore N, has n 1 22 + log2 input 
nodes. 

Since N, is by assumption fully connected, the preceding consider- 
ations imply that the graph of Mi, is contained as a subgraph in the 
graph of N, (where each node of Ma occurs in N, on the same layer as 
in M i ) .  Hence we can simulate Mi, on N, by assigning the value 0 to 
all superfluous input nodes of N,, and by assigning the weight 0 to all 
superfluous edges of N,. Furthermore we select in the case d > 3 one 
node on each of the levels 4,. . . , d  of N, and set its weights so that it 
computes the identity function on the output from the selected gate on 
the preceding level. 

Since N, can simulate any computation of M i ,  it follows that VC- 
dimension (N,) 2 VC-dimension ( M i )  2 

n 2 
fi2.10g2> (&) . logm =R(n2.logn). 0 
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