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Abstract

It is shown that high order feedforward neural nets
of constant depth with piecewise polynomial activation
functions and arbitrary real weights can be simulated
for boolean inputs and outputs by neural nets of a
somewhat larger size and depth with linear threshold
gates and weights from {-1,0,1}. This provides the
first known upper bound for the computational power
and VC-dimension of the former type of neural nets. It
is also shown that in the case of first order nets with
piecewise linear activation functions one can replace ar-
bitrary real weights by rational numbers with polynomi-
ally many bits, without changing the boolean function
that is computed by the neural net. In order to prove
these results we introduce two new methods for reducing
nonlinear problems about weights in multi-layer neural
nets to linear problems for a transformed set of para-
meters.

In addition we improve the best known lower bound
for the VC-dimension of a neural net with w weights and
gates that use the heaviside function (or other common
activation functions such as o) from Q(w) to Q(wlogw).
This implies the somewhat surprising fact that the
Baum-Haussler upper bound for the VC-dimension of
a neural net with linear threshold gates is asymptoti-
cally optimal.

Finally it is shown that neural nets with piecewise
polynomial activation functions and a constant number
of analog inputs are probably approximately learnable
(in Valiant’s model for PAC-learning).
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1 Introduction

We examine in this paper the computational power and
learning complexity of high order analog feedforward
neural nets N, i.e. of circuits with analog computa-
tional elements in which certain variables are treated
as programmable parameters. We focus on neural nets
N of bounded depth in which each gate g computes a
function from R™ into R of the form <y, ...,ym> —
Y(Q%(y1,-..,Ym)). We assume that for each gate g ,y9
is some fixed piecewise polynomial activation function
(also called response function). This function is applied
to some polynomial Q4(y,...,ym) of bounded degree
with arbitrary real coefficients, where y;, ...,y are the
real valued inputs to gate g. One usually refers to the
degree of the polynomial Q9 as the “order” of the gate
g- The coefficients (“weights”) of Q9 are the program-
mable parameters of A/, whose values may arise from
some learning process.

We are primarily interested in the case where the
neural net A computes (respectively learns) a boolean
valued function. For that purpose we assume that the
real valued output of the output gate g,u: of N is
“rounded off”. More precisely, we assume that there
is an “outer threshold” T,,; (which belongs to the pro-
grammable parameters of ) such that the output of N’
is “1” whenever the real valued output z of g.: satisfies
z > Toyt, and “0” if z < Toy:. In some results of this
paper we also assume that the input <z;,...,zp> of N
is boolean-valued. It should be noted, that this does not
affect the capacity of N to carry out on its intermedi-
ate levels (i.e. in its “hidden units”) computations over
reals, whose real-valued results are then transmitted to
the next layer of gates.

Circuits of this type have rarely been considered in
computational complexity theory, and they give rise
to the principal question whether these intermediate
analog computational elements will allow the circuit to
compute more complex boolean functions than a cir-
cuit with a similar layout but digital computational el-
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ements. Note that circuits with analog computational
elements have an extra source of potentially unlimited
parallelism at their disposal, since they can execute op-
erations on numbers of arbitrary bit-length in one step,
and they can transmit numbers of arbitrary bit-length
from one gate to the next.

One already knows quite a bit about the special
case of such neural nets AN/ where each gate g is a
“linear threshold gate”. In this case each polynomial
Q*(y1,---,Ym) is of degree < 1 (i.e. a weighted sum),
and each activation function 9¢ in N is the “heavi-
side function” (also called “hard limiter”) H defined by
M(y) =1ify >0and H(y) =0if y <0 (e. g. see [R],
[Ni], [Mu], [MP], [PS], [HMPST], [GHR], [SR], [SBKH],
[BH], [A], [L]). The “analog versus digital” issue does
not arise in this case, since the output of each gate is a
single bit. A key result for the analysis of these circuits
was the discovery of Muroga et. al. (see [Mu]) that it is
sufficient to consider for a linear threshold gate with m
boolean inputs only weights a;,...,a, and a bias aq
that are integers of size 20(™1°6€™) (this upper bound
is optimal according to a recent result of Hastad [Has]).
With the help of this a-priori-bound on the relevant bit-
length of weights it is easy to show that the same arrays
(Fa)peN of boolean functions Fn, : {0,1}" — {0,1}
are computable by arrays (N")neN of neural nets of
depth O(1) and size O(n°(")) with linear threshold
gates, no matter whether one uses as weights arbitrary
reals, rationals, integers, or elements of {—1,0,1}; see
[Mu], [CSV], [HMPST], [GHR], [MT]. The resulting
class of arrays (Fn), N of boolean functions is called
(nonuniform-) TC® ((HMPST], [J]).

In comparison, very little is known about upper
bounds for the computational power and the learning
complexity of feedforward neural nets whose gates g
employ more general types of activation functions 9.
This holds in spite of the fact that “real neurons and
real physical devices have continuous input-output re-
lations” (Hopfield [Ho]). In the analysis of information
processing in natural neural systems one usually views
the firing rate of a neuron as its current output. Such
firing rates are known to change between a very small
number of spikes and several hundred spikes per sec-
ond (see ch. 20 in [MR]). Hence the activation function
v9 of a gate g that models such a neuron should have
a “graded response”. It should also be noted that the
customary learning algorithms for artificial neural nets
(such as backwards propagation [RM]) are based on gra-
dient descent methods, which require that all gates ¢
employ smooth activation functions 9.

In addition, it has frequently been pointed out
that it is both biologically plausible and computation-
ally relevant to consider gates g that pass to 49 in-

m
stead of a weighted sum ) a;y; + ap some polynomial
=1

Q%(y1,.--,ym) of bounded degree, where y,, ..., ym are

circuit inputs or outputs of the immediate predecessors
of g. Such gates are called sigma-pi units or high or-
der gates in the literature (see p. 73 and ch. 10 in
[RM], also [DR), (H], [PG], [MD]). Apparently Theorem
3.1 and Theorem 4.4 of this paper provide the first up-
per bounds for the computational power and learning
complexity of high order feedforward neural nets with
non-boolean activation functions.

The power of feedforward neural nets with other
activation functions besides H has previously been in-
vestigated in [RM] (ch.10), [S1], [S2], [H], [MSS], [DS],
[SS]. In particular Sontag [S2] constructed an arbitrarily
smooth monotone function © and neural nets N, of size
2 (') with activation function © such that A, can com-
pute with sufficiently large weights any boolean function
F, :{0,1}* — {0, 1} (hence N, has VC-dimension 2").

It has also been shown in [MSS] that for the very
simple piecewise linear function 7 defined by n(y) = 0
fy<0,ny)y =y if 0<y<1 and 7n(y) = 1if
y > 1 ([L] refers to a gate g with ¥9 = 7 as a “threshold
logic element”) there are functions f : {0,1}" — {0,1}
that can (for any n) be computed on some constant size
neural nets of depth 2 with activation function 7 and
small integer weights, but which cannot be computed
by any constant size neural nets of depth 2 with linear
threshold gates (and arbitrary weights). [DS] exhibits
an even stronger increase in computational power for
the case of quadratic activation functions.

Hence even simple non-boolean activation functions
provide more computational power to a neural net than
the heaviside-function. However it has been open by
how much they can increase the computational power in
the presence of arbitrary weights (only the case of poly-
nomially bounded weights and uniformly continuous ac-
tivation functions was previously covered in [MSS]). E.
Sontag has pointed out that known methods do not even
suffice to show for a constant depth neural net N, of size
O(no(l)) with n inputs and activation function =, that
there is any boolean function F,, : {0,1}" — {0, 1} that
can not be computed on A, with a suitable weight-
assignment. Correspondingly no better upper bound
than the trivial 2" could be given for the VC-dimension
of such N,, (with n boolean inputs). From the technical
point of view, this inability was caused by the lack of an
upper bound on the amount of information that can be
encoded in such neural net by the assignment of weights.
For this model it is no longer sufficient to analyze a sin-
gle gate with boolean inputs and outputs. Even if the
inputs and outputs of the neural net are boolean valued,
the “signals” that are transmitted between the hidden
units are real valued. Furthermore one can give no a-
priori bound on the precision required for such analog
signals between hidden units, since one has no control
over the maximal size of weights in the neural net. Note
that a computation on a multi-layer neural net of the
here considered type involves products of weights from
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subsequent levels. Hence, if some of the weights are ar-
bitrarily large, one needs arbitrarily high precision for
the other weights.

The main technical contribution of this paper are
two new methods for reducing nonlinear problems about
weights in multi-layer neural nets to linear problems for
a transformed set of parameters. These two methods
are presented in the sections 2 and 3 of this paper. We
introduce in section 2 a method that allows us to prove
an upper bound for the information-capacity of weights
for neural nets A, of constant depth and polynomial
size with piecewise linear activation functions (hence
in particular for 7). As a consequence one can simu-
late any such analog neural net by a digital neural net
of constant depth and polynomial size with the heavi-
side activation function (i.e. linear threshold gates) and
weights from {—1,0,1}. This result also implies that
the VC-dimension of A,, can be bounded above by a
polynomial in n.

In section 3 we introduce another proof-technique,
that allows us to derive the same two consequences
also for neural nets with piecewise polynomial activa-
tion functions and nonlinear gate-inputs Q4(y, ..., ¥m)
of bounded degree.

In section 4 we derive in Theorem 4.1 a new lower
bound of Q(w - logw) for the maximal possible VC-
dimension of a neural net with w weights. This result
implies that the well-known upper bound of [BH] for
neural nets with linear threshold gates is optimal up
to constant factors. We conclude section 4 with a posi-
tive result for learning on neural nets in Valiant’s model
[V] for probably approximately correct learning (“PAC-
learning”). We exploit here the implicit “linearization”
of the requirements for the desired weight-assignment
that is achieved in the new proof-techniques from sec-
tions 2 and 3.

More detailed proofs of the results of this extended
abstract can be found in [M].

The following definitions are used throughout this
paper.

Definition 1.1 A network architecture (or “neural
net”) N of order k is a labelled acyclic directed graph
<V,E>. Its nodes of fan-in 0 are labelled by the input
variables z1,...,2,. FEach node g of fan-in m > 0 is
called a computation node (or gate), and is labelled by
some activation function 9 : R — R and some polyno-
mial Q9(y1,...Ym) of degree < k. Furthermore N has
a unique node of fan-out 0, which is called the output
node of N' and which carries as an additional label a
certain real number T,y (called “the outer threshold of
N7).

The coefficients of all polynomials Q9(y1,...ym) for
gales ¢ in N and the outer threshold T,y: are called
the programmable parameters of N'. Assume that N

337

has w programmable parameters, and that some num-
bering of these has been fized. Then each assignment
a € RY of reals to the programmable parameters in N
defines an analog circuit N&, which computes a function
z — N%(z) from R" into {0,1} in the following way:
Assume that some input £ € R" has been assigned to
the input nodes of N'. If a gate g in N has m immediate
predecessors in <V, E> which output y;,...,ym € R,
then g outputs Y9 (Q%y1,.-.,ym)). Finally, if gous is
the output gate of N and goy: gives the real valued out-
put z (according to the preceding inductive definition)
we define N%(z) = 1 if z > T,y and N%(z) = 0 if
2z < Tout, where Tyyy is the outer threshold that has been
assigned by o to gout.

Any parameters that occur in the definitions of
the activation functions v9 of N are refered to as

architectural parameters of N.

Definition 1.2 A function v : B — R is called
piecewise polynomial if there are thresholds t,, ..., ty €
R and polynomials Py, ..., Py such that t, < ... < t;
and for each i € {0,...,k} :t; <z <t;y1 = (z) =
Pi(z) (we set ty := —0o and tg41 = 00).

If k is chosen minimal for vy, we refer to k as the
number of polynomial pieces of v, to Py, ..., Py as the
polynomial pieces of v, and to ty,...,t; as the thresh-
olds of v. Furthermore we refer to ty,...,t; together
with all coefficients in the polynomials Py,...,P: as
the parameters of v. The mazimal degree of Py, ..., P
is called the degree of . If the degree of v is
< 1 then we call v piecewise linear, and we refer
to Py,...,Pr as the linear pieces of v. Note that
we do not require that v is continuous (or monotone).

If v occurs as activation function 9 of some nel-
work architecture N, then one refers to the parameters
of ¥ as architectural parameters of N.

Definition 1.3 Assume that N is an arbitrary net-
work architecture with n inputs and w programmable pa-
rameters, and S C R" is an arbitrary set. Then one
defines the VC-dimension of N over S in the follow-
ing way: VC-dimension(N,S) := maz{|S| IS’ cSs
has the property that for every function F : S’ — {0,1}
there exists a parameter assignment o € RY such that
Vz € S'(N*(z) = F(z))}-

“VC-dimension” is an abbreviation for “Vapnik-
Chervonenkis dimension”. It has been shown in
[BEHW] (see also [BH], [A]) that the VC-dimension of

a network architecture A determines the number of ex-
amples that are needed to train A.



2 A Bound for the Information -
Capacity of Weights in Neural
Nets with Piecewise Linear Ac-
tivation Functions

We consider for arbitrary a € N the following set of
rationals with up to a bits before and after the comma:

a-1 .
Q, = {reQ r=s-y, b;-2 forb; € {0,1},i=

-a,...,a—1and s € {-1, 1}} Note that for any r €
Q,:Irl<2° < 22¢ . min{|'| | ' € Q, and 7' # 0}.

Theorem 2.1 Consider an arbitrary network ar-
chitecture N of order 1 over a graph <V, E > with n
input nodes, in which every computation node has fan-
out < 1. Assume that each activation function 7% in
N is piecewise linear with parameters from Q,. Let
w:= |V|+ |E| + 1 be the number of programmable pa-
rameters in N.

Then for every a € RY there ezists a vector
o =< B, > € QY with integers s5y,...,5u,t
of absolute value < (2w + 1)! - 222Cv+1) such that
Vz € Q; (Nﬁ(g) =N9'-'(g)). In particular N&' com-

pules the same boolean function as N,

Remark 2.2 The condition of Theorem 2.1 that all
computation nodes in A/ have fan-out < 1 is automati-
cally satisfied for d < 2. For larger d one can simulate
any network architecture A of depth d with s nodes by
a network architecture N’ with < ;25 - 5971 < 3591
nodes and depth d that satisfies this condition. Hence
this condition is not too restrictive for network archi-
tectures of a constant depth d.

It should also be pointed out that there is in the as-
sumption of Theorem 2.1 no explicit bound on the num-
ber of linear pieces of ¥¢ (apart from the requirement
that its thresholds are from Q,). For example these ac-
tivation functions may consist of 2% linear pieces (with
discontinuous jumps in between). Furthermore 77 is not
required to be continuous or monotone.

Remark 2.3 Previously one had no upper bound
for the computational power (or for the VC-dimension)
of multi-layer neural nets N with arbitrary weights and
analog computational elements (i.e. activation func-
tions with non-boolean output). Theorem 2.1 implies
that any A of the considered type can compute with
the help of arbitrary parameter assignments o € R"
at most 20(w*(a+10gw)) different functions from Q into
{0, 1}, hence VC-dimension (N, Q}) = O(w?(a+log w))
(see Remark 3.3 for a slightly better bound, and for a
related bound for the case of inputs from R").

Furthermore Theorem 2.1 implies that one can re-
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place all analog computations inside N by digital arsth-
metical operations on not too large integers (the proof
gives an upper bound of O(wa + wlog w) for their bit-
length). Thus one can simulate for inputs from {0,1}"
any depth d network architecture A as in Theorem 2.1
with arbitrary parameter assignments & € R” by a net-
work architecture of depth O(d) and size O(a®().wO(V)
with heaviside-gates and weights from {—1,0, 1} ([CSV],
[PS], [HMPST], [GHRY], [SR], [SBKH]). The same holds
for inputs from QJ if they are given to N in digital
form.

Sketch of the proof of Theorem 2.1 We use the
following result.

Lemma 2.4 (folklore; see [MT], [M]) Consider a
system Az < b of some arbitrary finite number of linear
inequalities in | variables. Assume that all entries in A
and b are integers of absolute value < a.

If this system has any solution in R', then it has a
solution of the form <*r,...%t>, where 51,...,51,t are
integers of absolute value < (21 + 1)!a?*1. |

The difficulty of the proof of Theorem 2.1 lies in
the fact that with analog computational elements one
can no longer treat each gate separately, since interme-
diate values are no longer integers. Furthermore the
total computation of A can in general not be described
by a system of linear inequalities, where the w pro-
grammable parameters of A’ are the variables in the
inequalities (and the circuit inputs as well as the ar-
chitectural parameters of N are the constants). This
becomes obvious if one just considers the composition
of two very simple analog gates g, and gz on levels 1
and 2 of NV, whose activation func'iiions 71, 72 satisfy
71(v) = 72(y) = y. Assume z = ) oizi + o is the

t=1
m
input to gate g1, and g, receives as input ) ajy; + g
j=1
where y; = 71(z) = z is the output of gate g;. Then g2
n
Y iz + ao) +

m
outputs af - Z:z o’ y; + cp. Obviously
J =

this term is not linear in the weights a},ay,...,an.
Hence if the output of gate g, is compared with a fixed
threshold at the next gate, the resulting inequality is
not linear in the weights of the gates in V.

If the activation functions of all gates in N were lin-
ear (as in the example for g; and g3), then there would
be no problem because a composition of linear func-
tions is linear. However for piecewise linear activation
functions it is not sufficient to consider their compo-
sition, since intermediate results have to be compared
with boundaries between linear pieces of the next gate.

We introduce in this paper a new method in order
to handle this difficulty. We simulate A% by another
neural net A[c]¢ (which one may view as a “normal
form” for N'2) that uses the same graph <V, E > as



N, but different activation functions and different val-
ues & for its programmable parameters. The activation
functions of N[c] depend on |V| new architectural pa-
rameters ¢ € R'VI, which we call scaling parameters in
the following. Although this new neural net has the
disadvantage that it requires |V| additional parameters
¢, it has the advantage that we can choose in /V[t_:] all
weights on edges between computation nodes to be from
{~1,0,1}. Since these weights from {—1,0,1} are al-
ready of the desired bit-length, we can treat them as
constants in the system of inequalities that describes
computations of Nlc]. Thereby we can achieve that all
variables that appear in the inqualities that describe
computations of AV'[¢] (the variables for weights of gates
on level 1, the variables for the biases of gates on all
levels, the variable for the outer threshold, and the new
variables for the scaling parameters c) appear only lin-
early in those inqualities. Hence we can apply Lemma
2.4 to the system of inequalities that describes the com-
putations of A for inputs from Qj, and thereby get
a “nice” solution &',¢’ for the programmable parame-
ters & and the architectural parameters ¢ in N'. Finally
we observe that we can transform N [c_"]é' back into the
original network architecture A with an assignment of
small “numbers” o’ to all programmable parameters in

N.

Consider the activation function y of an arbi-
trary gate g in N. Since 7y is piecewise linear,
there are fixed architectural parameters {; < --- <
te, o, ...,k bo,-..,b in Q, (which may be different
for different gates g) such that with to := —oco and
tiy1 := +oo one has 7(z) = a;z + b; for z € R with
t; <z <tiy1;i=0,..., k. For an arbitrary scaling pa-
rameter ¢ € R"’ we associate with 04 the following piece-

wise linear activation function v°: the thresholds of ~°

are c-t1,---,c-t and its output is v°(z) = a;z + ¢ - b
forz € Rwithc-t; <z <c-tig1;i=0,...,k (set
c-tg 1= —00, € - tpy1 := +00). Thus for all reals ¢ > 0

the function ¥¢ is related to y through the equality:
Vz € R (v°(c- z) = c-¥(2))-

Assume that & € RY is some arbitrary given as-
signment to the programmable parameters in N. We
transform N2 into a “normal form” N'[c]¢ in which all
weights on edges between computation nodes are from

{~1,0,1}, such that ¥z € R" (Ng(_z_:) = N[dé(2))-
We proceed inductively from the output level towards
the input level. Assume that the output gate gou: of

m
N2 receives as input ) a;yi +ao, where ay,...,am, a0

i=1
are the weights and the bias of gou: (under the assign-
ment ) and yi, . .., Ym are the (real valued) outputs of
the immediate predecessors gi,...,gm of g. For each
i€ {1,...,m} with a; # 0 such that g; is not an input

lexil

node we replace the activation function v; of g; by v; %,
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and we multiply the weights and the bias of gate g; with
|a;|. Finally we replace the weight a; of gate gout by
sgn(a;), where sgn(a;) := 1if a; > 0 and sgn(a;) := -1
if a; < 0. This operation has the effect that the multipli-
cation with |a;]| is carried out before the gate g; (rather
than after g;, as done in N'%), but that the considered
output gate gou: still receives the same input as before.
The analogous operation is then inductivily carried out
for the predecessors g; of gour (note however that the
weights of g; are no longer the original ones from NeS
since they have been changed in the preceding step). We
exploit here the assumption that each gate has fan-out
<1

Let & consist of the new weights on edges adjacent
to input nodes, of the resulting biases of all gates in
N, and of the (unchanged) outer threshold Tou¢. Let ¢
consist of the resulting scaling parameters at the gates

of N. Then we have Vz € R" (N 2(z) = N [g_]ﬁ(g))

Finally we have to replace all strict inequalities of the
form “s; < s2” that are needed to describe the compu-
tation of N[c]2 for some input z € Q7 by inequalities
of the form “s; + 1 < s3”. This concerns inequalities of
the form s < ¢ - t;, where c - t; is the threshold of some
gate g in N¢] and s is its gate input, inequalities of the
form s < Tyt where s is the output of gou:, and inequal-
ities of the form 0 < c for each scaling parameter c. In
order to achieve this stronger separation it is sufficient
to multiply all parameters &, ¢ in N by a sufficiently
large constant K. For simplicity we write again &, ¢
for the resulting parameters. We now specify a system
Az < b of linear inequalities in w variables z that play
the role of the w parameters &, ¢ in the computations of
N[ for all inputs z from Q. The constants of these
inequalities are the coordinates of all inputs z € Qs
the architectural parameters of the activation functions
v in N, the constants —1,1 that occur in A as weights
of edges between computation nodes, and the constant
1 that arises from the replacement of strict inequalities
“81 < 32» by “81 + 1 S 32».

For each fixed input z € QJ one places into the
system Az < b up to two linear inequalities for each
gate g in V. These inequalities are defined by induction
on the depth of g. If g has depth 1, t; < --- <t are
the thresholds of its activation function v in A, and its

n n
input ) aiz;+aoin Nc]& satisfies c-t; < Y aizi+ao

i=1 i=1
n
and Y a;zi+ao+1 < c-tj41, then one adds these two
i=1
inequalities to the system (more precisely: if j = 0 or
j = k then only one inequality is needed since the other
one is automatically true).

 If ¢ is a successor gate of g, it receives from g for
some specific j € {0,...,k} an output of the form



n
(3 aizi + ap) + ¢ - b; (where c is the scaling pa-

i=1
rameter of gate g). Note that this term is linear, since
aj,b; are fixed parameters of gate g. In this way one
can express for circuit input z the input I(z) of gate g’
as a term that is linear in the weights, biases and scal-
ing parameters of its preceding gates (we exploit here
that in A the weight on the edge between ¢’ and each
predecessor gate is a fixed parameter from {-1,0,1},
naot a variable) If this innut I{2) satisfies in M[p]_ the

uvv o 'usluvl\—’ A1 VIS AlpPUY A \w ) SGUISnlS A Jv vial

inequalities ¢’ - ¢}, < I(z) and [(z) +1 < ' -ty (where

1<... <t are the thresholds of ¢ inN, and ¢ is the
scalmg parameter of ¢’ in N), then one adds these two
inequalities to the system Az < b (respectively only one
if 7/ = 0 or j' = k’). Note that all resulting inequalities
are linear, in spite of the fact that they may contain
variables for the scaling parameters and biases of all
gates. It should also be pointed out that the definition
of this system of inequalities is more involved than it
may first appear, since the sum of terms I(z) depends
on the chosen inequalities for all predecessor gates (e.g.
on j in the example above).

It is clear that the resulting system Az < § has a
solution in RY, since z := <&, ¢> is a solution. Hence
we can apply Lemma 2.4, which provides a solution 2z’
of the form < % >;;, . with integers s,...,5y,t of
absolute value < (2w + 1)! 220C2v+1)  Let A[¢'] be
the net A’ with this new assignment < &',¢ > := 2/
of “small” parameters By definition we have Vz €
Qi (N%(z) = N [g']& ). We show that one can trans-
form this net A'[¢']¢ into a net A€ with the same ac-
tivation functions as N2 but a new assignment a’ of
“small” parameters (that can easily be computed from
&', c’). This transformation proceeds inductively from
the input level towards the output level. Consider some
gate g on level 1 in A that uses (for the new parameter
assignment ¢’) the scaling parameter ¢ > 0 for its activa-
tion function . Then we replace the weights al, L, 0p
and bias ag ofgateginﬂ[g’]é' by &,..., %a & ,and7
by 7. Furthermore if r € {~1,0, 1} was in N the weight
on the edge between g and its successor gate g, we as-
sign to this edge the weight ¢ - r. Note that g’ receives
in this way from g the same input as in N[¢]& (for
every circuit input). Assume now that af,...,al, are
the weights that the incoming edg% of ¢’ get assigned
in this way, that af is the bias of ¢’ in the assignment
2 =<d, c’ >, that ¢/ > 0 is the scaling parameter of
¢ inN [_']"’ that 4/ is the actlvatlon functlon of ¢’ in

N. Then we assign the new weights 7}, cety —C'P and the
new bias 22 to ¢/, and we multiply the weight on the
outgoing edge from ¢’ by ¢'.

By construction we have that Vz € R" (V€'(z) =

N[ (2)), hence
Vz € QF (N€'(z) = N'%(z)). .

3 Upper Bounds for Neural Nets
with Piecewise Polynomial Ac-
tivation Functions

Theorem 3.1 Consider an arbitrary array (Nn), N
of network architectures Ny, of order O(1) and of depth
O(1) with n inputs and O(n®M) gates, in which the gate
function v9 of each gate g is piecewise polynomial of
degree O(1) with O(n®(1)) polynomial pieces, and where
the architectural parameters of 9 are arbitrary reals (v9
need not be continuous, or monotone).

Then there ezists an array (N")neN of network ar-

chitectures N, of order 1 and of depth O(1) with n in-
puts and O(n®W) gates, such that each gate g in Na
uses as ils aclivation function the heaviside function H
(i-e. g is a linear threshold gate), and such that for each
assignment o of arbitrary reals to the programmable pa-
rameters in N, there is an assignment & of O(n°(1))
numbers from {—1,0,1} to the programmable parame-
ters in N, such that Vz € {0,1}" (N&(z) = Na(z))-

In particular  VC-dimension (N, {0,1}") =
O(n°M). Furthermore for any assignment (@n)neN
of real valued parameters the boolean functions that are
computed by (N,;!")neN are in TCO.

Remark 3.2 Very recently Macintyre and Sontag
[MS] have proven finite upper bounds for the VC-
dimension of network architectures with the activation
function o(y) = 1/(1+ e~Y) and inputs from R". How-
ever no polynomial upper bounds are known for such
nets for either real or binary inputs. The preceding
Theorem 3.1 provides polynomial upper bounds for the
VC-dimension of network architectures whose activation
functions are spline approximations to o of any fixed de-
gree (see Remark 3.3 for the case of real inputs).

Idea of the proof of Theorem 3.1 This proof is
quite long and involved, even for the simplest nonlinear
case where the activation functions consist of 2 polyno-
mial pieces of degree 2. Note that in contrast to the
model in [SS] the magnitude of the given weights in A,
may grow arbitrarily fast as a function of n.

We first note that by the following observation we
may assume w.l.o.g. that the given network architec-
tures A, are of order 1. One has y -z = 2((y +2)% —
y?—z?). Hence one can eliminate nonlinear polynomials
Q7 as arguments of activation functions by introducing
intermediate gates with linear gate inputs and quadratic
activation functions.

One can transform each net A;* into a normal
form N* of constant depth and size O(n°(})) with
all weights on edges between computation nodes from
{-1,0,1}, in which all gates g have fan-out < 1, and
all gates g (except for the output gate) use as activa-
tion functions 49 piecewise polynomial functions of the
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following special type: ¥ consists of up to 3 pieces, of
which at most one is not identically 0, and in which
the nontrivial piece outputs a constant, or computes a
power y — y* (where k € N satisfies k = O(1)). We can
choose &, such that one has “s; +1 < s9” for all strict

inequalities “sy < s3” that arise in N.Z» for inputs from
{0,1}" when one compares some intermediate term sy
with the threshold s, of some gate, or with the outer
threshold (analogously as in the proof of Theorem 2.1).
This transformation can be done in such a way that
vz € {0, 1}"Wa*~(z) = Na®*(2))-

Although we have now transformed NqZ* into a sim-
ilar “normal form” N, as in the proof of Theorem 2.1,
a new source of non-linearity arises when one tries to de-
scribe the role of the programmable parameters of N
by a system of inequalities. Assume for example that
g is a gate on level 1 with input a;z; + a2z, and ac-
tivation function 77 (y) = y?. Then this gate g outputs
a?z? + 20n097172 + o?z3. Hence the variables o, az
will not occur linearly in an inequality which describes
the comparison of the output of g with some threshold
of a gate at the next level.

We solve this new problem in the following way. We
fix an arbitrary assignment &, of real numbers to the
programmable parameters of N,. We introduce for the
system of inequalities L(Na ", {0,1}") (that describes
the computations of N.= for all inputs z € {0,1}") new
variables v for all nontrivial parameters in N7 (ie. for
the weights on edges between input nodes and compu-
tation nodes, for the bias of each gate g, for the output
of gates with constant output, for the outer threshold
T..: and for the thresholds t{,t§ of each gate g). In
addition we introduce new variables for all products of
such parameters that arise in the computation of NZn.
We have to keep the inequalities linear in order to apply
Lemma 2.4. Hence we cannot demand in these inequali-
ties that the value of the variable v,s ,s (that represents
the product of af and of) is the product of the values
of the variables v{ and vj (that represent the weights
af respectively aj). We solve this problem by describ-
ing in detail in the linear inequalities LN, {0,1}")
which role the product of af and af plays in the com-
putations of Nyi-* for inputs from {0, 1}". It turns out
that this can be done in such a way that it does not
matter whether a solution A of L(Nn, {0, 1}") assigns
to the variable v,s ,s a value .A(v,,g’,,g) that is equal to
the product of the values A(v{) and A(v). In any case
A(vys,v9) is forced to behave like the product of A(v{)
and A(v3) in the computations of NE».

In more abstract terms, one may view A as a model
of a certain “linear fragment” L(Nn ", {0,1}") of the
theory of the fole of the parameters &, in the compu-
tations of N, >* on inputs form {0,1}". Such model

A (which will be given by Lemma 2.4) is some type of
“nonstandard model” of the theory of computations of
N, since it replaces products of weights by “nonstan-
dard products”. Such nonstandard model A does not
provide a new assignment of (small) weights to the net

N, only to a “nonstandard version” CA(AA/?Q") of the
net N>~ . However the linear fragment L(/\A/,,g"‘., {0,1}™)
can be chosen in such a way that C‘(/V,,g") com-

putes the same boolean function as NnZ~. Further-
more, if A consists of a solution with “small” values
as given by Lemma 2.4, then CA(jVng") can be simu-
lated by a constant-depth polynomial-size boolean cir-
cuit whose gates g are all MAJORITY-gates. This im-
plies that the boolean functions that are computed by
(CANA"))peN are in TCP®. However by construction
these are the same boolean functions that are computed
by (N"g")neN'
We refer to [M] for a detailed account of this proof.
]

Remark 3.3 Sontag [S3] suggested using the “quasi-
linearization” that is achieved in the proof of Theorem
3.1 in order to also get polynomial upper bounds for the
VC-dimension of constant depth neural nets A with
piecewise polynomial activation functions over the con-
tinuous domain R™: One counts the number of compo-
nents into which the weightspace is partitioned by the
hyperplanes that are defined by some arbitrary finite set
S C R” of inputs.

By letting @, vary and keeping the network archi-
tecture N, and the input z € S fixed one gets up to
20(n°®) (ifferent systems L(Nw ™,z) in the proof of
Theorem 3.1. Hence the total number I, of linear in-
equalities that arise in this way for different z € S and
different parameters a,, is bounded by [S]| . 20(n®W),
Furthermore the total number wy of variables that oc-
cur in these I, inequalities is bounded by O(n°M). This
implies with the help of Theorem 1.3 in [E] that VC-
dimension (N, R") = O(n°M).

One can apply in a similar fashion the “lineariza-
tion” that is achieved in the proof of Theorem 2.1. Con-
sider a neural net AV over a graph <V, E> as in The-
orem 2.1, but allow that each activation function v9
consists of < p linear pieces with arbitrary fixed real
parameters. Then one can show that VC-dimension
(N,R") = O(w?logp), where w := V| + |E|+ 1 is
the number of programmable parameters in N.

The preceding results, which first appeared in [M],
have subsequently been generalized by [GJ].
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4 Further Results about Learn-
ing on Neural Nets

All existing lower bounds for the VC-dimension of
neural nets with common activation functions such as
M, w, and o (with o(y) := 1/(1+e7Y)) are at best linear
in the number of edges (respectively weights) of the net
([BH], [B], [S2]). The following result provides the first
superlinear lower bound.

Theorem 4.1 One can construct for arbitrarily
large n € N network architectures N, of depth 4 with
n inpuls and < 33n edges such that V(C-dimension
(M, {0,1}") = n -logn. These network architectures
Ny can be realized with any of the common activation
functions H,w, o at ils gates.

Remark 4.2 This result solves an open problem
of Baum and Haussler [BH]. It shows that their up-
per bound of 2wlog(eN) = O(w -logw) for the VC-
dimension of an arbitrary neural net with linear thresh-
old gates, w weights, and N nodes (see [C], [BH]) is
optimal up to constant factors. The constant e denotes
here the base of the natural logarithm.

Idea of the proof of Theorem 4.1 One applies
some Shannon-type upper bound on circuit size, which
shows that all boolean functions F : {0,1}™ — {0,1}
can be computed by some threshold circuit Cr of depth
4 with O (—2'-;:-) edges. One just has to verify in addition
that these circuits Cp use the same underlying graph.
It is easy to show that these requirements are satisfied
by the construction of Neciporuk [N], which was later
improved by Lupanov [Lu]. |

We now turn to the analysis of computationally effi-
cient learning on analog neural nets in Valiant’s model
[V] for probably approximately correct learning (“PAC-
learning”). More precisely we consider the common
extension of this model to real valued domains due
to [BEHW]. Unfortunately most results about PAC-
learning on neural nets are negative (see [BR], [KV]).
This could either mean that learning on neural nets is
impossible, or that the common theoretical analysis of
learning on neural nets is not quite adequate.

We want to point here to one somewhat problem-
atic point of the traditional asymptotic analysis of PAC-
learning on neural nets. In analogy to the standard as-
ymptotic analysis of the runtime of algorithms in terms
of the number n of input bits one usually formalizes
PAC-learning on neural nets in exactly the same fash-
ion. However in contrast to the common situation for
computer algorithms (which typically receive their input
in digital form as a long sequence of n bits) for many
important applications of neural nets the input is given
in analog form as a vector of a small number n of ana-
log real valued parameters. These relatively few input
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parameters may consist for example of sensory data, or
they may be the relevant components of a longer fea-
ture vector (which were extracted by some other mech-
anism). If one analyzes PAC-learning on neural nets in
this fashion, the relevant asymptotic problem becomes a
different one: Can a given analog neural net with a fixed
number n of analog inputs approximate the target con-
cept arbitrarily close after it has been shown sufficiently
many training examples?

Theorem 4.3 Let N be an arbitrary network
architecture as in Theorem 2.1, where the architec-
tural parameters of the piecewise linear activation
functions may now be arbilrary reals. Lel Cy
{C C R™|3a € R¥Vz € R" (xc(z) = N(z))} be the
assoctated concept class over the domain R", where x¢
is the characteristic function of a concept C. Then Cyr is
properly PAC-learnable (i.e. Cpr s PAC-learnable with
hypotheses from Cyr).

Sketch of the proof of Theorem 4.3 We have
VC-dimension (Cx) < oo by Remark 3.3. Hence ac-
cording to [BEHW)] it suffices to show that for any
given set S of m examples for some target concept Cr
one can compute from S within a number of computa-
tion steps that is polynomial in m, %,-} an assignment
ag € RY to the variable parameters of A such that Yz €
S(xcr(z) = N2s(z)). The construction in the proof of
Theorem 2.1 implies that it is sufficient if one computes
instead with polynomially in m, ‘l,% computation steps
an assignment Gg,cg of parameters for the associated
neural net A such that Vz € § (xc., (z) = Ncg)és (g)).

The latter task is easier because the role of the parame-
ters &, ¢ in a computation of A for a specific input z can
be described by linear inequalities (provided one knows
which linear piece is used at each gate).

Nevertheless the following technical problem re-
mains. Although we know which output N'[cg]%s should
give for an input z € S, we do not know in which
way this output should be produced by A[cg]s. More
specifically, we don’t know which particular piece of
each piecewise linear activation function 9¢ of N will be
used for this computation. However this detailed infor-
mation would be needed for each z € S and for all gates
g of N in order to describe the resulting constraints on
the parameters &, ¢ by a system of linear inequalities.
However one can generate a set of polynomially in m
many systems of linear inequalities such that at least
one of these systems provides for all z € S satisfiable
and sufficient constraints for &, c.

For each of the resulting polynomially in m many
systems of inequalities we apply the method of the proof
of Lemma 2.4 (i.e. we reduce the solution of each system
of inequalities to the solution of polynomially in m many
systems of linear equalities), or we apply Megiddo’s



polynomial time algorithm for linear programming in
a fixed dimension [Me] in order to find values &g, cg for
which Ncg]¥s gives the desired outputs for all z € S.
By construction, this algorithm will succeed for at least
one of the selected system of inequalities. |

Theorem 4.4 Let N be an arbitrary high order net-
work architecture with arbitrary piecewise polynomial
activation functions. Then the associated concept class
Cur is PAC-learnable with an hypothesis class of the form
Cjr for a somewhat larger network architecture N.

Idea of the proof of Theorem 4.4: One uses as

hypotheses sets which are defined by a neural net N
of the same structure as the circuits CA(N) in the de-
tailed proof of Theorem 3.1 in [M]. For this network
architecture N one can express the constraints on the
assignment A by linear inequalities. Remark 3.3 implies
that VC-dimension (A, R") < co. Hence by [BEHW]
it suffices to show that for any set S of m examples for
a target concept from Cx one can compute in polyno-
mial time a consistent hypothesis from C4. This can be
done by applying the method from the proof of Lemma
2.4 in a manner analogous to the proof of Theorem 4.3;
or by applying linear programming in a fixed dimen-
sion [Me] to polynomially in m many systems of linear
inequalities. There is one small obstacle in generating
the associated partitions of S, since the corresponding
inequalities are not linear in the circuit inputs z. One
overcomes this difficulty by going to an input space of
higher dimension. |
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