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FINE STRUCTURE THEORY OF THE CONSîRUCTIBIE UN]VERSE IN

o(- AND p-nnCUnSrON THEoRY

Wolfgang Maass

Priority argunents and arguments fron the fj-ne structure theory
of I - Gödelrs universe of constructible sets - meet together in
ct- ancl p-recursion theory. In this paper we stress the contributions
of set theory and try to give an iclea how the fj-ne structure of I is
usecl in q- antl p-recursion theory. The reader shoulcl be familiar with
I but nearly no prerequisÍtes from recursíon theory are required since
all the notions we need are clefined in terms of set theory and a short
introcluctlon to priorlty arguments is given in the beginning. Since we

concentrate on a demonstration of typical methocls rather than on a
clescrlptlon of the variety of results the reader should consult for the
latter the survey papers by S.D.Frledman, M.lerman, R.A,Shore and S.G.

Sfunpson which will appear in the ?roceeclings of the Second S¡rmposiun

on Generallzect Recursion îheory in Oslo 1977.

We restrlct our attentlon to the existence of incomparable
degrees and consider correspondlng constructions in orclinary recurslon
theory (onn), e-recursion theory ( a is always an aclnissible orclinal
in the following) ancl p -recursion theory ( p fs always a linit
orilinal i-n the fo11ow1ng which nay be inactmissible). ln course of
this one can observe how the priority argunents from ORT tend to
collapse and arguments from the fine structure theory of I take
over. The use of set theoretical rnethod.s makes it then possible to
prove for inatlnissible p results wlthout counterpart in ORT. As a
new result we will construct in this paper incomparable p-recursive
clegrees for many inacimissible ß .

Forllnitordinals p aset AelO 1s ca1led B-recursively
enumerable (p-r.e.) if A is clefinable over LÊ by some >1 -
fornula which nay contain elenents of I'p as parameters (we write
then: A is El lp ). ff .4. ancl \p - A are P-=.e. then A j-s

fJ-recurslve. Sets that are elements of Lç are ca1
h/e reserve the letters K , H for p-finite sets.

One further deflnes for ArB s I,p =(rB (that A

led p-finite and

n 1sA

f3-reduclble to 3 ') il there 1s a p-r.e. set W" (we fix an
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unlTersal 2l L(, predicate UÞ a¡d. wrlte We for
such that the followlng two equivalences holcL :

K s¡. * 3 H1 H2 ( <OrKrH1rH2) € r¡/ea H1 S B aHrs Lß- B )

K 9Ip- A {, 1H1 H2 (<1rKrH,' ,H2l u trrl" a H1 E B ¡ H2* T,O - B )

One often comnunicates the lndex e by wrltlng O aå t .

The equivalence relation =ß is defined by

A =ß B :e A <Ê ,r B +-UA and. the equivalence classes wlth
respect to =p are callecl p -d.egrees.

For the special case ß = t, these are the baslc notions of ORI.

Observe that for any linit orclinal ß there ie really an enumeration

procedure for ß-r.e. sets : If A 1s tlefinecl over l^ by the

2., -formula Y we generate nechalically L1rLZr...rl,V ,.. ( y. p )

ancl enumerate at stage y of this process those x into A for
which ol F Y(x) becomes true (in tne following we will often

wrlte Iy F tx e A1 lnsteaat of Ltr Þ ¡#(x) for some fixed. 21

tlefinitlon Y ). A <. B means of course that A 1s Turing rectuclble

to B , i.e. A can be substituted by B as an oracle for Turing

machines. The 31ven generallzatlon <ß ls tntultively Justlfled if
one lnslsts that every single computation in p -recursion theory is a

(l -f lnite obJect.

TLe way fron r.l to p took sone time ancl was clone 1n several
steps. Krelsel ancl Sacks considered the case _._ 0 = .,, t* (ilmeta
recursÍon theoryn) where one has that the ,.,CK -".". subsets of r¡
are just the IT] sets. [he notlon of an aclmissible orctinal wae
Lntrotlucecl by Krlpke and Platek in ord.er to get a class of orcllnals
where the assoclated recurslon theory has nany conmon features¡ e.g.
lf K 1s a-ffnlte and f is a:r or-recurslve functlon suoh that
K I tlon f then fËKl ls agaln ¿-finlte. An enormous amount of
papers has been wrltten on ú-recurslon theory, among others by
Lerman, Sacks, Shore a.nd Sirnpson. Much of its attractÍon is clue to
the fact that the basic notions and nost of the easy results of ORT

ea¡ inmeclfately be transferred. to (-recursion theory. Thus d.-

uÊ(e,.) )
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iecurslon theory ls the canonical place to stucty the ileeper parts of
QRI in a generalizeal context and the results show that interestlng
d.lstinctlons and. phenon na oceur. þ-recursion theory was started by

S.Friect¡nan anal Sacks L2) , f31 . Many slnple facts fron ORT are not
true ln lnadniselble recursion theory ( e.C. the replacenent scheme

whieh we mentloned for d.-recurslon theory ). Sut nany of these facts
nay be more or less accltlental so that it remains to explore the
ilhard coretr of recursion theory without admissibility. In additlon

(3-recursion theory helps to understanal sone parts of a-recurslon
theory ( see e.g. t7l ).

Post askeat in 1944 whether there are r.e. sets which are neither
in the de-gree O ( tfre degree of the empty set ) nor in the degree

Or ( tfre aletree of the universal 2l L. preclicate U- ).
Post I s problen was solvecl in 1956 by Friedberg anci Muchnik who

lnventect the priority nethod a,:rd constructeil two r.e. sets À ancl B

which are lnconparable wi-th respect to <c¡ . The sets A and B

are enurneratect clurlng an effectlve process ln Q steps and we write
Aa for the set of elements which have been put into A before step
c (analogous for n ). We fix an enuneratlon of the universal

2,1 L. preclicate so that the notai;ion 
""r, 

nakes sense. Durlng the

constructlon one tries to satisfy for every e é r.r the requirements

*"o :e r I <i I ancl 
^"" 

:5 r B fi A . A requlrement

*"O is satisfied by establlshj-ng a counterexample to the relatlon

A <l I . We try to make x a counterexample to the relation o a.| 
"

at otep q of the construction if
3 H1 HZ eI,o.((1, x riH. ,Hz)"W"r.n H1 EBo'^ HzèI'a-Br )

ln whlch case we put x into À at step ø. We pronise then at step

cf to keep a1l elenents of HZ out of B and 1f we clonrt lnjure

this pronise at a later step by putting an elenent of HZ into B

we have made x a real counterexample to A 3: B . A conflict
arises because at some step gt > v l¡re nay want to satisfy some

^Brequlrement R"r- in an analogous way (with A and B interchanged)

by putting a sultable xr lnto B ancl it night happen that xt e H".

îhe confl-ict 1s solvecl accorcllng to the rrpriorlties'r 2e respective-

ly 2et+1 of these requirements *"o Ðtal R",B : If 2e < 2et+1
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r,ìre donrt put xt lnto B at step qr so that a new attempt with

sorne xr t ) sup iI, has to be made at some later stage in order to
Rsatisfy R"r" ; if 2e >.2et+1 we put xt into B at step 6t so

that a new attempt has to be nade in orcler to satisfy a"O at a

later step.

0f course we need. not nake a ner,v attempt for any requirement as
long as the pronise associated with an earlier attempt for this re-
quirement is not yet injured.. So the construction is designecl in such
a way that the following holds ( we write

for R",B ) :

R2" for 
""o 

and R2",*1

Prioritv lemma : If c is such that after step

ls mad.e ln order to satisfy a requirement R" with

there is a step & >e such that after step ã no

in order to satisfy Rã

e no attempt

e <õ then

atternpt 1s made

Wlth the help of the Prlorlty lernma one can prove by lnductlon
on e the cruclal fact that for every e é r.t there is a o" . e
such that no attenpt for sone Re, with er < e is mad.e after step

ae'

If tlrere exists an attempt for *"O at step n2" where the

assocj-ated promise is not yet lnjured or if a ne\^r attempt for *"O

is nade at a step after ,2e then the pronlse assocÍated with this
attempt for O"O will never be lnjured accorcllng to the defini-tion
of ø2e . Thus a counterexarnple to the relation A <3 B 1s success-

fu11y established. A nomentrs thought shows that in case that A S: B

holds we would always be able to nake a new attempt for O"U after
step n.e if necessary (consicler x e r.r- A ; it is easy to make

sure that ¡¡¡ - A 1s unbounded). Thus the deslred incomparability of
A and B is proved.
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' There is no problem to do a sinllar construction for any ad-
nisslble 4 such that an analogous versj-on of the Priority lemma

holds (the constructlon is of course clone in oc steps and we have to
consider requirements R" for every e ê d ). ¡ut 1f we consitler then
as in ORT for every e c u the least step o" such that after thls
step no attempt for any Re, with er < e is made we have problens
to show as in ORT by lncluction on e that te ( . exists. The pro-
blem occurs at limit poínts ). ¡ æ of the priority llst where we

have to show flrst that the set {c"l e < l} is bounded below G

before \4¡e can apply the Priorlty Lenma and get oA, n. There exists
of course a bound for {4" I e < }1 if ct is Z, -admissible slnce
the function e É t" is 2z Lo . f,' -admissibility is not enough

since this function canrt be 21 Ln .

Nevertheless Sacks and Simpson [9] constructecl for every ad.-

mlssible ¿ o(-r.e. sets A , B of incomparable alegree. Their con-
struction 1s designed. in conslderation of the fine structure of lo
ln such a way that the growth of the ZZ Ln function can be con-
trolled without the axion of E, - adnisslbtlity. hre will gÌ-ve here
a short sketch of their construction since notions and arguments from
the fine structure theory of I are essentially involved.

Define for any linit ordinal (, the Zr, -projectum qnn P of (l

(one usually writes p* ror qlp! in recursion theory) to be the

least 3 < (l such that some Zn LO function naps P 1-1 into 6 .,

Since there exist parameter free Al \O well-orderlngs <O of

lp for every l3 r" can get a parameter free 2l L(, definable 2,'

skolem function hO for every (¡ . hp is a partlaf function Ln + T,n

and j-f X s lÊ is closed under pairing and t.l 9 X then we have

h C X I *r,' oU ; in fact h Ê Xf is the least 2,, -elementary sub-

structure of I'o which contains X .
t,

V/e will often use Jensenrs Cond.ensatlon Lemma [1]

for every ã., substructure t ar,, Op the transitive collapse of S

has the form ly for some ü a (t

One says that x € ê i-s a (reEul-ar) ß-cardinal if

Lß F [x ls a (regular) cardina]- I and x ts the p-cardinali-ty

of some x e Ln lf t'U Þlx = card (x) f

which says that
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For adnisslble d regular c.-cardinals behave wlth respect to
d, -recurslve functlons like rrrealrr regular cardinals. An lnportant
example 1s the following Lemma d-ue to Sacks anal Simpson (I'emma 2.3.
ln t9l). Conslder for a proof c-recursive enumerations of the ln-
volved c-r.e. sets a.nal use the aclnissibility of e .

lemna : j.ssune that d. is admlssible, X is an infinite
regular cr.-carclj-na1 , 6 ?* a¡d the sequence <K" I e <.f > of

a -flnlte sets Ku of ot-carclinality less than ,c is simultaneously

d-r.e. (r.e. the set f <erx>le <"f a xeK"l ls q,-r.e.).

Ihen U { f" I e <6 } is ot-flnite ancl of e-carclinallty less than x

Ihis lenma is used in the proof of Sacks and Sirnpson 1n order to
show the existence of the bounds d" for every príority e € o¿ . Ke

ls defined to be the set of steps in the construction where an attenpt
is made for requirement Re (this ls a refinenent of the argurnent in
ORT where it was sufflcient to conslder just sup K" ). one shows then
by ind.uction on e that for every e < r< the set K" is e-finite
and of o.-carcllnality less than x if x 1s a regular o¿-cardlnal.
At successor stages of this lnclucti.ve argument it is used. that the
only situatlon where a new attempt for some requirement R" has to
be made 1s the followlng : Àfter an earlier attempt for R" an

attenpt for some requirement R", with et < e was made whlch in-
jured the pronise associated with the earlier attempt for R" . Tlre

lnttuctive argunent cloesnrt brake down at linlt stages because the
precectlng Lemma can be used at this polnt. Thus the construction fron
ORT works as well 1f a is the linit of a-carcllnaIs. More sophisti'
catecl constructions have to be used for the other d .

In case that dt< c¿ there 1s an escape whlch became stanclartl

in q.-recursion theory : we nake a shorter priority list by flxlng
a 1-1 q.-recursÍve map f fron c{. lnto ct*. Then requirement R"

gets the prì-ority f(e) and we can essential-1y argue as before slnce

ot* is an a-carctinal (d.efine here K" for e < o('r to be the set of

steps where an attenpt is made for requirement nr-1(e) if e e Rg f
define K" ,= f otherwise). ¡ technical probl-en occurs in thls
approach slnce Rg f cantt be a-finite (otherwise f'1 woulct be a

cou¡terexample to the admissibility of 4 ). But it can be shown that
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Rg f ny e T:, for every t. n* by taking a sultable 2., ekolen

hu11 and consitlerlng the transltive collapse of it. This is sufflcieut

sinceonehasthenforevery t.o* that fn (o."à') isknown

durln6 the construction from sone stage oX on.

For the final ancl. .least trlvial case where

a ereateEt c¿-carcllnal x < c' one observes that then the set of t
such that lf < :., I, is unbounded in a. (fake for a proof the >1

skolen hu1l S of some Ot in l. where t > x . S ls transltive

slnce x is the greatest a-carcllnal, thus S = I,ó for sone 6¿o'

by the collapsing Lemma. Ilfe have ln fact 6. a since ó = e would

1nply that n* 4,¿ .). Conslder nor¡t some Ot *=., O* such that

x < ü < oc. Then Y ls aclnissible, d*= x and x 1s the greatest

y -carctlnal whtch is exactly the (1ess difficult) sltuatlon whlch

was considered (for d instead of y ) in tUe prececling case. one

iterates then the prevlous trlck for every such Y ancl uses ^ 2l L{

functlon ttr whlch maps ¿' 1-'l lnto x to give prlorlties for re-

qulrements R" with " ê F . 0f course one doesntt know at the be-

glnning of the constructlon in aclvance whlch the 21 substructures

ld of Ld are but at any step a > t of the constructlon (observe

tbat at step q one may essentlally use Just the lnfornation whlch

is ava11able in ls ln order to keep the constructed sets À r B

a -r.e.) one knows for which 6 = I OO a t,, Oo, hold's and one has

the (somehow canonlcally chosen) 2, O, proJection tü at hanct ln

order to attach prlorltles to the R" wlth e < y . One perforns

then the argument from the prevlous case for tt instead. of ot where

I, -, is the next 2,, substructure of I,e after L, . The argument
Y'

shows here tbat Kå , the set of steps between y and y' where an

attenpt for Rr;1 {") is macte, 1s for enery e < x yr-flnite antl of

*_ and there i

yr-card.lnallty less than x ; thus

below tr' by some oj . aut since

further attempt will be nade for Rf

1s ln particular bounclecl

, { I.' o we have that no

(e) at anY steP after ü'

Kf

r,t
d

go
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that
"å

is ln fact already the final bound below ct for the attenpts

which are made 1n order to satisfy Rf;1{")

Thus the exlstence of inconparable o(-r.e. degrees 1s shown for
every aclmissibl-e. q, .

In orcler to get further lnformation about the structure of d-r.e.
degrees snd cr-r.e. sets more complicated constructions are necessary

which usually requlre tlre use of the ã, projectum of o¿ ( uzpu).
Thls occurs if the argument requires tbat every fZ I, subset of an

lnitial segment of the priority I1st is ct-fÍnite. Thus the priorlty
list nust be no longer than

92rnr= f 6 <o(thereexlstssome ZZ\o set S=6 suchthat
S 1s not o¿-finite) .

skolem functlons exist and by usì-ng this fact it can be shown that
9 Zro =e2p e (consicÌer the transitive collapse of a suitable >'2

skolem hu1l). It 1s just this equality which makes then the priorlty
construction posslble since r¡re can use a f , pro jection of a lnto

9 2rn analogously as before ln oriler to attach priorltles whereas

ueually we couldntt use a 2, Lo functlon for thls purpose because

q -recurslve approxlnations to sueh a function clonrt converge good

enough (we have to use ot-recursive approxirnations during the con-

struction because the construction 1tself must of course remaln o¿-

recurslve ) .

Tb.e sketchecl proof for the equality gzro=c'2Pcr used the ad-

missibillty of a (on1y for aclmissible a' 2Z Ln deflnable ã, skolen

functions are eas11y available). ¡ut it was shown by Jensen ln the

Uniformizat lon Theoren E1 I that one ca¡ prove in fact for every lirnit

oritinal (l that gnr' =cr np (l for every n Þ. 1 by using a more

sophlsticatecl argument (mastercodes). It 1s this situation whlch one
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hopes to flnd agaln in recurslon theory : that adrnlssibility is a

useful but in prlnotpal unnecessary assumptlon for sone basic con-

structlons of recurslon theory.

There i.s another polnt where the exarnple of Jensenrs Uniformization

lheorem 1s j-nstructive : Although the result is uniform for alì- P

there is one step in the proof where one has to argue by cases de-

pending on whether soroe structure is strongly inaclmlssible (see de-

finition below) or not, nanely lemma 12 on p.93 ín [1] I'or the

strongly inaclmissible case one uses an argument which would.nrt work

for the aclnissibl-e case since the inad.misslbil-ity is used ln arrpo-

slt1ve" way: rrThere exlsts a certaln p-recurslve cofinal function..rr

(see Renark 2) at the end of thls paper). Therefore it j-s useful to

be open ninttecl in ttre step from or- to p-recursion theory and to look

for typical new effects besitles trying to recover the faml1lar ones.

One of the roost surprising new features of lnaclmlssible recurslon

theory is the appearance of p-recursive (1.e. A1 Ip ) sets whlch are

not in the degree o , the p-degree of the enpty set (S.Friedman 127

t4l ) z Tf q. is a p-recursive function whlctr maps some d . (l
oofinally into P anal Ul3 ls an universal 2l LO preclicate (tnus

uÊ e Or ) then the p-degree r of the p-recursive set

{<y,x> I ro(y)F tx e ußlJ
lies strictl-y between 0 and 0t and r is an upper bound. for all
p -recurslve degrees. Observe that we are followlng the usual con-

vention ancl say that a clegree has a certain property 1f the degree

contains a set with this property.

The exlstence of a p-recursive degree r > 0 is not a contra-

dlction since 1f a set is p -recurslve this tefls us something about

the definability of the set whereas the p-aegree of a set glves us

infornation about the behaviour of this set as an oracle. A algB

neans that A can always be substituted by B as an oracle ancl (3-



d.egrees are

tt A =(rBtt
ÁrBsLA

we have that

for every

Dts:

of

is
Ag
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just equlvalence classes of oracles. The relation
occurs as well outsitle of recurslon theory : If the sets

are regular over rU (i-.e.

A =f, B is equlvalent to

n>0 andevery D9LÊ

n<IrêrB>

Vy.0(Ànlyelp) )ttren

D

for the least 6=Q such

ó into ê exists. lrle have

Inatlnisslble recursion

ls 2,, < Lê,A > iff

tr'or any linit 13 one writes q 1cf P
that a p-recursive cofinal functloh from

that slcf P < f3 lff ß is i-naclrnlssible.

theory tends to split lnto two cases :

ß*< ø1cf fI < (, (p isrrweaklyinadnlssible") andtt

P* t a 1cf p (ir is rrstronslv inailmissi-blerl

(observe that one has always li*. fi for inatlnlssible fI t4l ).

S.tr'riednan [2] , L4f , i53 showed. that inconparable ?"-".e.
degrees exist if P is weakly lnaclmissibfe or if (l is strongly in-
actmissible ancl Þ* i" a lgggþ¡ p-cardinal . We wl-ll show Ín the

followlng that for these P there exist in fact Ê-recursive degrees

which are lncomparable. Thus 1t seems to be a typical phenomenon of

inatlnisslble recursion theory that p-recursive degrees behave like
r.e. degrees 1n the aclmissible case.

For weaklv inaclmissible ß the existence of lncomparable Ê-""-
cursive degrees was shown in Ë61 by using a collapsing argurnent. If
(] is weakly inaclmissible then there is an admisslbl-e structure

tLz= a"r,"rp, T ) , the rradmissible collapse of Lß"

such that one has for every set A g la1 cf ê that A is 2l Lß lff
A is E I Ø. So far this approach is 1n the line of the collapse

whj-ch was introcluced by Jensen as a tool 1n the fine structure theory

L ¡ He collapsed fF to a structure <LprrM) (so this collapse
rrsmal-l-errr in case that p> ølcf p > Br ) such that for any set

o(U* we have that ¡' is >1 < lp*rM ) iff A is >Z I'e L17
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Tbe structure <Irf]* rM) is 1n general not ad.nlssible but nevertheless

one can handLe " It(lp*rü) set in nany situatlons better than a

EroF set ( see the proof of the Unifornizatlon Theoren [1] ). fUe

atlvantage of the collapse 0t is clifferent : It doesnrt save a quantl-

fier but nakes it possible to red.uce questions about p -degrees to

questlons about Ol-degrees which ane eaeler to solve tlue to the ad'-

mtssibility of O- . In particular a combinatorial argunent shows tbat

the etructure of p -recurslve clegrees wlth ap and the structure of

€1. -r.e. degrees witb 4ø are isomorphlc. Since there exist lncom-

parable r.e. clegrees in d (one has to use a vartation of the

Sacks-slnpson proof since il 1s an adnisslble structure with an

ad.ditional preclicate , see lBl , CloJ ) we get incomparable p-recurslve

tlegrees for weakly inatlnlsslble p Uuch less is known about the

strongly lnactmlssible case. The rest of thls paper is tlevoted to a

proof of the fol-l-owlng result:

Theoren : Assume that F i" strongly inactnissible antl p* fs a

regular p-cardÍnal. Then there exist lncomparable p-recursive

degrees.

The ry¡[ ls baseci. on arguments that have been lntroclucecl into

p -recursion theory by S.Frledman in order to construot lncomparable

O -r.e. degrees for the same cfass of P t2)'C5J . fhese arguments

are of special interest in the context of this paper since their heart

]-Sa conbinatorial prlnciple whlch is very close to O L1l ( Jensen

used the vaì-id.ity of O in I in order to disprove the Souslin

Hypothesis in I ).
It seems hopeless to construct directly A1 T,Ê sets of incom-

parable degree. Therefore we use a Ii-ttl-e trick. lfe construct ê-=.".
sets A ancl B in (ì*' * steps (i.e. we run x tines through pñ)

where x is in the following the /3-cardtnal crlcf B . Define

<6rx). 4""" : <+ ( x is put into A before step 13"'(ó +1 ) )
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Si.nce 4""" ls p-recursive and since one can see lmmediately that

A <--^ A-^- we construct A and B in such a way that t A. +..^ B---- \nllr rec " wF rec
and rB ,rF 4""" hold where B"u" Ìs defined like Aru" . The

relatlon " *rF rr -vreakly p-reduclbl-e to- is defined like rr éU I'

on the second page but with the sets K 1n the d.efinition restrictecl

to one element sets { xi . Since we have that D1 
= *p D2 ancl

o, =(, ,S inplies O, *rl, D= for any sets DlrDZrDS the p-recur-
slve sets A=ec ,3""" will then be incornparable with respect to <p.

trie fix as in [5] p-finite sequences . St I g . ê*, :

If there is a p-cardinal g such that fl^ = g* (i.e. pr is the

next p-cardinal after g ) define

t t tr is minimal such that

sJ
Otherwise define Syr= F (f) n T,prc

Then in both cases the (3-cardinality of tt is less than P*
for every f .

If we wrlte sone t . fl*.x in the form n = (\*.ó* tr r¡re meanì

that y . (1* and this )f is callecl the stage of step c .ql

Ao will be the set of elements which have been put into A be-

fore step q .

lhe following requirenents wifl be satisfied cluring the con-

struction:
¿e D-wB "rec

e
"N 'p (y) ^ r,p where

tiF vardIc

R A : rA
e

A

A
e

e

T

ù

KegA å

K"t *^()
below 13* )

3 6< x (f" - Apr.5 is bounded below P" )

*-o""" + ãó<x(r"-d'pÉ isbou¡decl

and analogous requirements 0"" , T"B , S"B where the rol-es of A

and. B are interchanged. ( K" j-s an abbreviatlon for f(e) where

K is some fi-xed p-recurslve function from F onto lp ). Observe

SA
e

that if (t* - I is unboundect in (3* *¿ all requirements are



satj-sfiecl then A is sirnple but the converse doesnrt holcl .

The set Mo. is the set of those requirenents which are considered

at step o = Pn'ó+l of the construction ( t is a fixed p-recurslve

proJectlon of p into P* ; q is a fixecl p-recursive cofinal
function from x into A ; we writ" ra(á)(uX, tt to{a¡h I r(e)¿l ):

Mø is the set of a1l- s"A, s"B, T"A, T"B, <g,R"A) ,.g,R"B) such

thar te(ó)1e¡+, fq(ó)(") . t and s e sr .

We fix a well-ordering <c of every Mo 1n such a way that the

map ù Ê *q is p-recursive.

step c = ß*'ó+y :
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Construction: We will only describe the

A part of the constructlon, the B part is analogously.

If stage f was cancelled at sone step q,t < 6, we d-o nothing

and proceed. to the next step.

If y = O we first put all y into A such that ".6ry), Ar""n

was promised at some step crr

cancell-ed before step q .

= F*. át+¡" < t and stage dt was not

the following will be done then at step s (for ¡ = 0 and

T)0):
We run through the set M a accordlng to the well-ordering <o' and

nake attenpts for the elements if possible as it is described in the

following :

Assune thet Q € Mo, is considered next cluring this run through

Mo.If anattenptwasmadefor Q atsomestep õ=f3*.ã*y.n r¡re

go to the next requlrenent in Mo. . Otherwise the folì-owing will be

d.one : We write ã for the set of those elements which have been

put into A untiL then (1... at sone step t, < c or during an

atteropt at step a for some Qr e M, such that Qt<o, Q ) ; ã 1s

analogously defined.

We further define :



352

î4,= 1.6'ry> | y)f,^ ((veî a¡¡d y wasputlnto A atsome

step q'=ßr.ó'+ttwith crré<r ) (vdÍ and.itwaspromlsetlat
some step õ=p*.3+y (t) with ë<e to satisfy "<ó'ryreA""""))

ancl

pA := L<Z,y>l ã, * n 3<ó'¡r)é Êu(¡'. i )l antt

NA:= l<ã,y>l y)f n((í.6n y4.Lfg*"(c+r¡)v(E<&.* 
^

(veÍ anclatsonestep Ç=pF'J+y with õss itwaspromi-secl

to satisfy ".ó' ,y> É 4"""" for some 6t ¡ i ) ) ) Ì
The sets PB, PB, NB are clefined analogously.

For sets M" rM. I x ,, ßt we say that Mr rMo are consistent
ta

: +) rI 61 6rv (61( 6zn.ó1ry>c M1 nrf2,y> eM2 )

Observe that we are uslng a p -flnlte palring function 4 , | :

fj*'ß* å ç* (with associated proJections fr1, 1r" ) such that for
any sets MIIMZ € pt we have that M1 " M2 is bounded below ß^ iff
M1 anai 14.2 are bounded below ê'ç.

lle have now fixed. the notation at the polnt of the constructlon

where we start to conslder the requirement Q e M

If Q ã .grRoA) we look then whether a tripel <xrKrH> exists

such that x > ¡' ,. tr=[Kln y+r =,i n õrÉttJ n¿ = {^ x+ X 
^

KrH e T,6x a KrH g x^(3k ¡ PB r K, NBv H are consistent ¿<ó,x>Ï ,

NA are conslstent ,.. 3 Hj HZu Lg.(¿¡ (( ln16¡ F

[<t*trf-1rlf.z, 1>ehr"1)r. H1 -PB.¡ Ku g¡HzçNB, If.,(xxd -g)).

If such a tripel cloesnrt exist we go to the next requirement in

Mo, . Otherwise we choose the existing trlpel {. xrKrHT mininal wlth

respect to aA and make an attempt for a grR"A; at step t with
( xrKrH ) . r,Ve put then inmedlately x into A and every y such

that <6ryl e K into B . For <6t ry> e K wlth ót> cÇ we further
promise to satlsfy tt 16t ,vl . 8"""" . For < 6t ,y> e H with c( r)<1

we pronlse to satisfy " (¡ír,I)É 8""""
If Q = t"o or Q = t"o we do nothlng if *o(ó)1e) t
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0therwlse if Q = n"U we look whether some y >.y exists such

that ye re(l)1"¡ " 
y¿ [^ PA, H consistent wlth H:- x'[y]

If such a y exlsts we nake an attenpt for t"O and. take the least

such y and pronise to sati-sfy " <órry) É A"""tt for all 6t > 5

For Q = t"n we look whether y > tr exists such that

16' ,yr. *l(ó)1e) for some 6t > 6 anci l<6ry>Ì , NA are con-

sistent. If such a y exists we make an attenpt for t.O aud put the

least such y into A .

The cases where Q is a requirement .grReB, , l"B, S"B are

treated analogously.

In any case if we nake an attenpt for Q at step cr and put

some y into A ( B ) or pronlse to satisfy " .ótry). A"ec (Br.c)"

or tt <Át ry> la Ä""" (8""")tt we sinulta¡reously cancel every stage

t'>t with y>.U' .

If aL1 requlrements Q - Mø have been consiclered. in the describecl

way we go to tbe next step.

Encl of construction.

It is not difficult to see that the construction is p-recursive:

By uslng the cleflnitlon of x one can tlefine by recurslon a P-

recurslve function tr' : x . lO such that F(ó) = ¡, is for every

6 < a a p-finlte functlon from p+ lnto lp* where f¿ (t) ¿e-

scribes what happens at step ß*, ¿ * y of the constructlon for every

v . P". One can see that every f6 is a p-fj-n1te function by uslng

the fact that ("J* is a regular p-cardinal-. tt foltows inned.iately

fron these considerations that À, B are P-".". and that Arec ,

Bru" are p-recursive sets.
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The constructlon is a variatlon of Fried.rnants construction [5]
and in orcler to show that thls construction works as it is supposed

to tlo a fixpoint argunent is appJ-ied. ?hese kind of arguments do not

occur in ORT and are an ingrealient from set theory. The difference to

ORT will becone cl-ear in the last Irelnna where one uses not an lntluction

on the priorlty. Fixpolnt arguments are used as well in more ad-vanced

parts of q,-recurslon theory (e.g. Density Theorenßtl , existence of

minimal palrs 8127 , exlstence of high clegrees t?l ).

Here we consider fixpoints of 2., skolen hulls :

For the parameter q € lp of the precetling constructlon and the more

lnteresting case where ßr is a suòcessor p-cardinal g* clefine

F := id.Ê*l ò.=(( Erskolenhullof ¡ug+1 .íqJ 1n on)

n fl*)
Then F is u¡bounaleal in pr since

dó ;= (( >,, skolem hul-1 of ó v y +1 " {q} ) " ß* )

ls an elenent of F for every 6 . f\* .

The effective verslon < S - I y. ß*> of Q r ls used. in order

to overcome the dlfflculty that we don't have in strongly inaclmisslble

p tirat for every y . p" a step ol . P*,x exists such that

A n I - Ao. . Therefore one tries to satisfy the requirements *"O,
aR"" for every trguessrr g concerning A ny and B nF . Qt gives

for every ¡' a sma1l set t, of guesses g ancl t, ls defined 1n

suchawaythat ¡nl-Sd and Bny.Str forevery g€F
(tnis is shown by consiclerlng ttre transitive collapse of a suitable

I, skolen hull)

In the construction here \^re use Ot in order to guess not only

whicb elements w111 flnally be put into A respectively B but as

well yhen these elenents will be put lnto A respectively B , i.e.
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we guess at 4""" 
^ t and 8""" n t .

Observe that during the construction one cloesnrt know which t
are elements of F . Thus one treats every y. l3o

an elenent of F .

Lemna i) : T,et M be the set l.rl* such that

stage tr 1s never cancelled

x. y A xx y ç [
À"""nUtstr^Bt""ntr'

M is unboundecl in (\* .

Proof:

Case 1 : Ê*= ç* (i.e. ç and pf, are successÍve p-cardinals)

It is easy to check that F - ( g +1 ) 1s a subset of M

Case 2 : ßx 1s a lirnit ß-carclinal

For thls less serlous case one eonstructs for any given tO wlth

x . tO . P* a contlnuous lncreasing sequence <tt lrí < x> as follows

a)

b)

c)

Then

V,.". 1 
> tc

Y.l" and 6.c
* * y" 9, {t+1

!ß
Since ø 1cf '

ordinal less than

of those

ancl

and.

1s mininal such that at steps

only stages i. V"+t are

as if it woulcl be

o= fJo,ó* y wlth

cancelled ancl such that

td

(p*) = p* holds Ë51 we have that y

p* ana it is easy to see that tr é M

= 1im
t<J< f¡ is an

Iemma ra I : Assume that at sone step q = ß*.6+ ¡ with

t. Þ1 of the constructj-on it is promised at an attenpt for some re-
quirement Q e Mo. to sat-lsfy (6trY> € 4""" or <6trÍ> # A"u" '

Then we have 1n fact that <6'¡Ï) é 4""" respecttvely <3'rY, CA=""'

(analoguously for 8""").
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Proof : îhe case " <ó',y> a A"""tt is trlvlal. For the case

,, <6trX, É 4r""" assune that Q = < grR"B> (the case Q = 1"4 is

treatetl s1nlIarIy) and that î, PA, NA are the sets which are definetl

lnnedlately before the attenpt wtth tripel < xrKrH > is matle for
this Q€Mø.Wehavethen l>nl ,y4ir6'>.6 ancl <6'ry)€H.

Since PA v K , H are consistent it canrt be that y is put

into A because of this attenpt for a

Further the cancelllng of stages during the construction makes

sure that <6'rlu-> t 4""" can only happen because of an attenpt which

1s made for a requlrenent ô after the attempt for Q at some step

â = 0*.3+¡ wftrr the same stage y ancl ô = ¿' One has then

.á'ry> e iìA where fiA is the set NA whlch is defined imnediatety

before this attempt for ô tn"""fãre at step â y is nelther put

fnto A at once nor is a prornlse made to satlsfy <6",!> .4""" for
some ótt < 6t because of the consi-stency condition for this attempt.

Lernna iil ) :

a) fJ* - A and. P* - B are unbounded in f3 
*

b) KEA + f,6.x(K-Aß*.d isbouncleclbelow p*)
( analogous for B )

c) K s xr 13* - ar"" + 3 é < x ( r - 6 rF^ is bounded telow B¡ )

( analogous for B )

d) 1A é"p 3="" and rB -'rp4"""

Proof : The proof of a) ls trlvial since M E Ê* - A and

MeÊË-B
We need b) and c) only ín orci.er to make the proof of d) possible

and b), c) are provecl slrnilarly as d).

In order to prove d ) assume for a contrad.ictlon that O a ilr""""
By Lemna i) here exlsts ¡O e M such that f(e) < FO . W" have then
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that BO := 8""" n tO . SùO . I¡Ie want to show that an attenpt for

< B6rRuA> will be nade at soroe step o = Pt 6+yo

Takesoroe tt.M suchthat üttIO andsQme x€ (l*-L such

that x > ti . Choose 6Oe x such that ( use b) and c) ) :

A H1 rt2. rq(ao)(( lo{ao) Þ C < [ x] ,H1,H2'1t é tfel )

^ H1 s8""" ^HZ=, 
*"0* -3"""

,. ( u= [ it.,, 1 - Bpr.6O and H, - 6Ox px are bounded betow p*.

If there exists no 3 1 60 suclr that an attempt ls nade for
< BgrR"A> at step Ê{ó *yo then an attempt for < ggrR"A> will be

made at step oO != Ê*.dO*tO .

fhe trtpel < x,KrH> with K := Brec n x x ( c" [, Hl] -
(tlta¡ou Yo)) and H ;= H2 - ( óo * Ê*, x' to) has all the

properties (except perhaps minimali-ty) which are requi-red Ín order to

nake an attenpt for <B6rR"À> at step øO with <x,K,H¡. In par-

ticular K j-s p-finite (since tt 
" 

LH.'1 - BÊ*.OO 1s boundecl below

p* and (l*= gl rO ) and v¡e have that PB v K, NB v H are consistent

since otherwise we would get a contradictlon to

H E r " (J* - 8""" by uslng T,emrna ii).

Thus we can be sure that an attempt 1s made for <8grR"A> at

K9Br"" A

sone step q= p'-[+yg with a tripel
lem¡na ii) that

3 Hl HZ ( <{' xl ,H1,Hzr1) e W" a H.,

and slnce x is put into A at step

to o =ip B""" '

< xrKrH ) . lt foflows then fron

9 B ,r H^ Ê x t ßr- B )rec ¿ - t rec'

c we have got a counterexamPle

This finishes the proof of the Theorem.



358

Remarks

1 ) ffre constructed sets A , B have the same properties as in

f5j : They are weakly tame r.e. (i.". b) of lenna iiÍ) holds) and

incomparable with respect to 't -¿w(3

2) Before the Theorem we mentioned already the argument for the

strongly inaclmissible case in Lemma 12,p.93 in [1] , which is one step

in the proof of the Uniformization Theorem. this simple combinatorial

argument was in fact the key to our proof of the preceding Theorem

and. it can be isolated as follows :

Assume that P is strongly inaclmissible and q : ø1cfp + p

is a cofinal p-recursive function. Further assume that the set

A s Lrr is d.efined by the f. fornula ìy over f l,- and define the

set 4""" 9 trß* by < órx) " 4""" (=) rnlr¡ F t/(x)

Then we have O a0* O""" and the set A="" is p-recursi-ve.

The proof of this fact is trjvial : One just observes that for
KeL6* suchthat KçA wehavethat 4"""^v1cfQ rKelp*'

The fact holds as rvel-1, for structures f¡E< L^ ,B ) (¡ regular

over ,p ) with çTA instead of /3* .

Besiales the application of this fact in the proof of the Uni-

formization Theorem one can use it in order to show that for every

strongly inad.missj-bl-e fl and r,ueakly tame r.e. A s 16r (see [5])
we have that A < ^ß 

-'rec .

There is another application in c-recursj-on theory which gives

a rather unexpected. result :

Assume that s2cf q. < e2por = & (".S. o¿ = ¡d l. Then there

is a A, I'n set of degree Or I

(See [7] for other results about A2 lo degrees ,)
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