FINE STRUCTURE THEORY OF THE CONSTRUCTIBLE UNIVERSE IN
o~ AND F-RECURSION THEORY

Wolfgang Maass

Priority arguments and arguments from the fine structure theory
of L - Godel's universe of constructible sets - meet together in
@~ and R-recursion vheory. In this paper we stress the contributions
of set theory and try to give an idea how the fine structure of 1L is
used in «- and P-recursion theory. The reader should be familiar with
L but nearly no prerequisites from recursion theory are required since
all the notions we need are defined in terms of set theory and a short
introduction to priority arguments is given in the beginning. Since we
concentrate on a demonstration of typical methods rather than on a
description of the variety of results the reader should consult for the
latter the survey papers by S.D.Friedman, M.Lerman, R.A.Shore and S.G.
Simpson which will appear in the Proceedings of the Second Symposium
on Generalized Recursion Theory in Oslo 1977.

We restrict our attention to the existence of incomparable
degrees and consider corresponding constructions in ordinary recursion
theory (ORT), w=-recursion theory (& is always an admissible ordinal
in the following) and @-recursion theory ( 3 is always a limit
ordinal in the following which may be inadmissible). In course of
this one can observe how the priority arguments from ORT tend to
collapse and arguments from the fine structure theory of L take
over. The use of set theoretical methods makes it then possible to
prove for inadmissible @ results without counterpart in ORT. As a
new result we will construct in this paper incomparable [A~recursive
degrees for many inadmissible (3 .

For limit ordinals (3 a set A ¢ Lp is called (-recursively
enumerable (@ -r.e,) if A is definable over Ip by some 21 -

formula which may contain elements of L{3 as parameters (we write
then: A is Z; Iy ). If A and L - A are pB-r.e. then A is

] Q-recursive. Sets that are elements of L@ are called E-finite and

we reserve the letters K , H for F-finite sets.

One further defines for A,B ¢ LB that A 5ﬁ B (" A is

(3 ~reducible to B ") if there is a @-r.e. set W, (we fix an
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universal Z1 Lp predicate UP  and write W, for uh (e,*) )
such that the following two equivalences hold :
KsgA & 3 H1 H2 ( <O,K,H1,H2> € We A H1 € Ba H2 3 L(3 -B)

Kelpg-4A® I H H (<1,KH,H> eWya Hi e Bale L@—B).
One often communicates the index e by writing A sg B .
The equivalence relation =n is defined by
A =p B :& A $a Ba B sﬂA and the equivalence classes with
respect to =@ are éalled ﬁ-degrees.
For the special case B= w these are the basic notions of ORT.

Observe that for any limit ordinal R there is really an enumeration
procedure for (3-r.,e. sets : If A 1is defined over Lﬂ by the
i1 -formula ¥ we generate mechanically LysDpseeesly 5o (X < )
and enumerate at stage y of this process those x into A for
which I‘X E w(x) becomes true (in the following we will often
write LY E [xe Al instead of L."f E v(x) for some fixed 21
definition Y ). A ¢, B means of course that A is Turing reducible
to B, i.e. A can be substituted by B as an oracle for Turing
machines, The given generalization 56 is intuitively justified if
one insists that every single computation in @-recursion theory is a
B -finite object.

The way from w to ( took some time and was done in several
steps. Kreisel and Sacks considered the case N = (01CK ("meta
recursion theory") where one has that the u1CK -r.e. Subsets of w
are just the TT1 gets. The notion of an admissible ordinal was
introduced by Kripke and Platek in order to get a class of ordinals
where the associated recursion theory has many common features, e.g.
if X 1s o« =-finite and f is an wa-recursive function such that
K € dom £ then f[K] is again o-finite. An enormous amount of
papers has been written on a-recursion theory, among others by
Lerman, Sacks, Shore and Simpson., Much of its attraction is due to
the fact that the basic notions and most of the easy results of ORT
can immediately be transferred to o-recursion theory. Thus o-
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recursion theory is the canonical place to study the deeper parts of
ORT in a generalized context and the results show that interesting
distinctions and phenom na occur, (-recursion theory was started by
S.Friedman and Sacks [2] , [3] . Many simple facts from ORT are not
true in inadmissible recursion theory ( e.g. the replacement scheme
which we mentioned for o-recursion theory ). But many of these facts
may be more or less accidental so that it remains to explore the
"hard core" of recursion theory without admissibility. In addition

f# -recursion theory helps to understand some parts of o-recursion
theory ( see e.g. [7]1 ).

Post asked in 1944 whether there are r.e. sets which are neither
in the degree O ( the degree of the empty set ) nor in the degree
0' ( the degree of the universal Z, L, predicate u© ).

Post's problem was solved in 1956 by Friedberg and Muchnik who
invented the priority method and constructed two r.e. sets A and B
which are incomparable with respect to £, . The sets A and B
are enumerated during an effective process in « steps and we write
A, for the set of elements which have been put into A Dbefore step
o (analogous for B ). We fix an enumeration of the universal

f1 L, predicate so that the notation We makes sense, During the
1

o

construction one tries to satisfy for every e € «w the requirements

ReA tE 1 A éf B and ReB :2 1 B 5: A . A requirement
ReA is satisfied by establishing a counterexample to the relation

A é: B . We try to make x a counterexample to the relation A éﬁ B
at step ¢ of the construction if

3H1H26Lw(<1,x,H1,H2>ew AH1‘_=B°,;\H2£L“)-B,)

e,

in which case we put x into A at step ¢, We promise then at step
4 to keep all elements of H2 out of B and if we don't injure
this promise at a later step by putting an element of H2 into B

we have made X a real counterexample to A é: B . A conflict

arises because at some step o'> ¢ we may want to satisfy some
requirement Re,B in an analogous way (with A and B interchanged)
by putting a suitable x' into B and it might happen that x' e H2.

The conflict is solved according to the "priorities" 2e respective-
A B

ly 2e'+1 of these requirements Re If 2e < 2e'+1

end R,
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we don't put x' into B at step o' so that a new attempt with
some x'' 2 sup H2 has to be made at some later stage in order to
satisfy Re,B ; if 2e 2 2e'+1 we put x' into B at step ¢' soO
that a new attempt has to be made in order to satisfy ReA at a
later step.

Of course we need not make a new attempt for any requirement as
long as the promise associated with an earlier attempt for this re-
quirement is not yet injured. So the construction is designed in such

R A
a way that the following holds ( we write R2e for Re and R2e'+1
for R_,B )

.
.

el
Priority Lemma : If o is such that after step o no attempt

1s made in order to satisfy a requirement Re with e < € then
there is a step o 20 such that after step & no attempt is made

in order to satisfy Rg .

With the help of the Priority Lemma one can prove by induction
on e the crucial fact that for every eew there is a o0, < @
such that no attempt for some Re' with e' < e 1is made after step

O'e .

A

If there exists an attempt for Re at step % where the

associated promise is not yet injured or if a new attempt for ReA
is made at a step after qée then the promise associated with this
attempt for ReA will never be injured according to the definition

B 1s success-

of Toe Thus a counterexample to the relation A ég

fully established. A moment's thought shows that in case that A sz’B
holds we would always be able to make a new attempt for ReA after
step oo if necessary (consider x e w- A ; it is easy to make

sure that w - A is unbounded). Thus the desired incomparability of

A and B is proved.
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There is no problem to do a similar construction for any ad-
missible o such that an analogous version of the Priority Lemma
holds (the construction is of course done in o steps and we have to
consider requirements Re for every e e « ). But if we consider then
as in ORT for every e e & the least step a, such that after this
step no attempt for any Re' with e' <« e 1is made we have problems
to show as in ORT by induction on e that o, < exists., The pro-
blem occurs at limit points A< « of the priority list where we
have to show first that the set {vel e <Al is bounded below a
before we can apply the Priority Lemma and get o <o, There exists
of course a bound for {crel e <Al if o is 22 -admissible since
the function e + o is 22 Ly o 21 -admissibility is not enough
since this function can't be 21 L,y -

Nevertheless Sacks and Simpson [9] constructed for every ad-

missible ¢ a«-r.e. sets A , B of incomparable degree. Their con-
struction is designed in consideration of the fine structure of L,
in such a way that the growth of the 22 Ly function can be con-
trolled without the axiom of 22 - admissibility., We will give here

a short sketch of their construction since notions and arguments from
the fine structure theory of I are essentially involved.

Define for any limit ordinal @ the 2 -projectum onp(3 of f3

(one usually writes (3* for o1p(B in recursion theory) to be the

least 4 <f such that some X Ly function maps B 1-1 into 4§ .
Since there exist parameter free A‘I L(; well-orderings <[3 oi‘

Lp for every (3 we can get a parameter free 21 L(g definable 21

skolem function hﬁ for every (@ . h(3 is a partial function Ln-) L(3

and if X = L(3 is closed under pairing and w e X then we have

hiX1 '42 I‘B ;3 in fact hLXJ is the least 21 -elementary sub-
1

structure of L(; which contains X .

We will often use Jensen's Condensation Lemma [13 which says that

for every 21 substructure S <z L@ the transitive collapse of S
1
has the form LX for some y = G .

One says that x € 3 is a (regular) B-cardinal if

Lp F[x is a (regular) cardinal] and x 1is the Q-cardinality
of some x e L, if La ELx = card (x)1 .
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For admissible @& regular a-cardinals behave with respect to
o =recursive functions like "real!" regular cardinals. An important
example 1s the following Lemma due to Sacks and Simpson (Lemma 2.3.
in [9]). Consider for a proof wa-recursive enumerations of the in-
volved o-r.e, sets and use the admissibility of e« .

Lemma : Assume that o is admissible, X is an infinite
regular a-cardinal, 57;4 and the sequence <Kel e<d> of
o -finite sets Ke of o-cardinality less than x is simultaneously
o -r.e. (i.e, the set {f<e,x>le <« Ao x e K.} is a-Tr.e.).

Then U{Kel e<d} is a-finite and of w-cardinality less than x ,

This Lemma is used in the proof of Sacks and Simpson in order to
show the existence of the bounds % for every priority e € o . Ke
is defined to be the set of steps in the construction where an attempt
is made for requirement Re (this is a refinement of the argument in
ORT where it was sufficient to comsider just sup Ke ). One shows then
by induction on e that for every e < x the set Ke is w-finite
and of o -cardinality less than »x if x is a regular o-cardinal.
At successor stages of this inductive argument it is used that the
only situation where a new attempt for some requirement Re has to
be made is the following : After an earlier attempt for Re an
attempt for some requirement Re' with e' <« e was made which in-
jured the promise associated with the earlier attempt for Re . The
inductive argument doesn't brake down at limit stages because the
preceding Lemma can be used at this point., Thus the construction from

ORT works as well if o _is the limit of a-cardinals. More sophisti-

cated constructions have to be used for the other a.

In case that a*< o there is an escape which became standard
in o&-recursion theory : we make a shorter priority list by fixing
a 1-1 oa-recursive map f from o into o, Then requirement Re
gets the priority f(e) and we can essentially argue as before since
o* is an a-cardinal (define here Ke for e < o to be the set of
steps where an attempt is made for requirement Rf—1(e) if eeRgf ,
define Ke = + otherwise). A technical problem occurs in this
approach since Rg f can't be a-finite (otherwise f'1 would be a

counterexample to the admissibility of o ). But it can be shown that
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‘Rg f ny € L, for every y < o* by taking a suitable Z1 skolem
hull and considering the transitive collapse of it., This is sufficient
since one has then for every y <x® that fa (& x X) is known
during the construction from some stage oy on.

For the final and least trivial case where o = o and there is

a greatest oa-cardinal x< « one observes that then the set of 4

such that LJ 5 21 Lo is unbounded in o (Take for a proof the 21
skolem hull S of some LX in L, where y > »x . 5 1s transitive
since x 1is the greatest a-cardinal, thus S = Lé for some d<o
by the Collapsing Lemma. We have in fact § < o since &=« would
imply that a¥ < Y .). Consider now some Lg '42.1 L. such that

X < y <o, Then y 1is admissible, g*: x and x 1is the greatest
Y -cerdinal which is exactly the (less difficult) situation which
was considered (for o instead of y ) in the preceding case. One
iterates then the previous trick for every such y and uses a 21 La'
function fX which maps y 1-1 into x to give priorities for re-
quirements Re with e ey . Of course one doesn't know at the be-
ginning of the construction in advance which the 21 substructures

L of L‘x are but at any step o >y of the construction (observe

.4
that at step o one may essentially use just the information which
is available in L, in order to keep the constructed sets A , B
o -r.e.) one knows for which & =y L < s, L, holds and one has
the (somehow canonically chosen) 21 LX projection fb' at hand in
order to attach priorities to the Re with e < y . One performs
then the argument from the previous case for y' instead of o where

LX' is the next 21 substructure of L, after LX « The argument
shows here that Kg , the set of steps between y and <Y' where an
attempt for R.-1 is made, is for every e < x '~finite and of

fy (e) ‘ b
y'-cardinality less than x ; thus Kg is in partieular bounded
' -4 3

below ¥ by some Te - But since LX' < 21 L, we have that no

further attempt will be made for R.-1 at any step after 3" 80
Ty (e)
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that qg is in fact already the final bound below o for the attempts
which are made in order to satisfy R,-1 .
£y (e)

Thus the existence of incomparable o-r.e. degrees is shown for

every admissible « .

In order to get further information about the structure of a-r.e.
degrees and o-r.e, sets more complicated constructions are necessary

which uswally require the use of the Zé projectum of o« (o¢2pat),

This occurs if the argument requires that every 22 Lu subset of an
initial segment of the priority list is a-finite. Thus the priority
list must be no longer than

YZ,a = pm § 4 o (there exists some 22 L, set S = § such that

S is not o-finite) .
For admissible o one can see immediately that 22 L, definable Zé
skolem functions exist and by using this fact it can be shown that
?2,‘1 =02po (consider the transitive collapse of a suitable 22
skolem hull), It is just this equality which makes then the priority
construction possible since we can use a 22 projection of & into
[4 2, analogously as before in order to attach priorities whereas
usually we couldn't use a 23 Lu function for this purpose because
& -recursive approximations to such a function don't converge good
enough (we have to use o -recursive approximations during the con-
struction because the construction itself must of course remain o-
recursive).
The sketched proof for the equality gz’a =o2poa used the ad-

missibility of o« (only for admissible « ElZILu definable Zé skolem
functions are easily available). But it was shown by Jensen in the

Uniformization Theorem [1] that one can prove in fact for every 1limit

ordinal (3 that n a =onp (3 for every n 3> 1 by using a more
’

sophisticated argument (mastercodes). It is this situation which one
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hopes to find again in recursion theory : That admissibility is a
useful but in principal unnecessary assumption for some basic con-
structions of recursion theory.

There is another point where the example of Jensen's Uniformization
Theorem is instructive : Although the result is uniform for all {3
there is one step in the proof where one has to argue by cases de-
pending on whether some structure is strongly inadmissible (see de-
finition below) or not, namely Lemma 12 on p.93 in [1] . For the
strongly inadmissible case one uses an argument which wouldn't work
for the admissible case since the inadmissibility is used in a "po-
sitive" way: "There exists a certain {3-recursive cofinal functiomn.."
(see Remark 2) at the end of this paper). Therefore it is useful to
be open minded in the step from o- to f-recursion theory and to look

for typical new effects besides trying to recover the familiar ones.

One of the most surprising new features of inadmissible recursion

theory is the appearance of p3-recursive (i.e.A1 LG ) sets which are
not in the degree O , the (3-degree of the empty set (S.Friedman [2]
471 ) : If q 1is a ﬁ—recursive function which maps some § < @
cofinally into (3 and uf is an universal zZ, In predicate (thus
B e o ) then the 3-degree r of the G-recursive set
{<X,x> | Lq(y)': [xeUulP32

lies strictly between O and O' and r is an upper bound for all
(3 -recursive degrees. Observe that we are following the usual con-
vention and say that a degree has a certain property if the degree
contains a set with this property.

The existence of a (3-recursive degree r > O is not a contra-

diction since if a set is (3-recursive this tells us something about

the definability of the set whereas the ﬁ-degree of a set gives us
information about the behaviour of this set as an oracle. A 5613

means that A can always be substituted by B as an oracle and (3-
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degrees are just equivalence classes of oracles. The relation
" A =%3B " occurs as well outside of recursion theory : If the sets
A, B s Lg are regular over L@ (i.e. VX‘ g (An L<Y e L{; ) ) then
we have that A = B is equivalent to

for every n > 0 and every D ¢ Lg D is 211<Iﬁ’A> iff

D 1is E‘n<L BY .

pr

For any limit @ one writes glef @ for the least § = 6 such
that a B-recursive cofinal function from ¢4 into (3 exists. We have
that ofcf 3 < 3 iff (3 is inadmissible. Inadmissible recursion

theory tends to split into two cases :

(3*5 clef 3 < p (R is "weakly inadmissible") and

B> ¢1cf (@ is "strongly inadmissible")

(observe that one has always (3* < (3 for inadmissible ArLald),

S.Friedman [2] , [4] , (5] showed that incecmparable (3-r.e.
degrees exist if (3 is weakly inadmissible or if (3 1is strongly in-
admissible and G* is a regular (3-cardinal. We will show in the
following that for these (3 there exist in fact [ -recursive degrees
which are incomparable., Thus it seems to be a typical phenomenon of
inadmissible recursion theory that ﬁ—recursive degrees behave like

r.e, degrees in the admissible case,

For weakly inadmissible (3 the existence of incomparable G-re-

cursive degrees was shown in [6] by using a collapsing argument. If

(3 is weakly inadmissible then there 1s an admissible structure

o .= <Lo'1cf(3'

such that one has for every set A € L¢1cf(3 that A is E& Iq3 iff

T?» , the "admissible collapse of L "

A is 2% OL . So far this approach is in the line of the collapse
which was introduced by Jensen as a tool in the fine structure theory
of L : He collapsed L@ to a structure <.LB*,M> (so this collapse
is "smaller" in case that (3> olcfp > B‘*) such that for any set

AELG,r we have that A is Z1<L M> iff A 1is 22 L(3 [17 .

(3#'
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The structure ‘Lﬁ*’M) is in general not admissible but nevertheless
one can handle a 21-<IB*,M> set in many situations better than a

2:2 Lp set ( see the proof of the Uniformization Theorem [1] ). The
advantage of the collapse Ol is different : It doesn't save a quanti-
fier but makes it possible to reduce questions about p-degrees to
questions about (l-degrees which are easier to solve due to the ad-
missibility of OL . In particular a combinatorial argument shows that
the structure of {3-recursive degrees with sp and the structure of
& -r.e. degrees with £, are isomorphic. Since there exist incom-
parable r.e. degrees in 0L (one has to use a variation of the
Sacks-Simpson proof since OL is an admissible structure with an
additional predicate , see [8] ,[10] ) we get incomparable f3-recursive
degrees for weakly inadmissible ﬁ . Much less is known about the
strongly inadmissible case. The rest of this paper is devoted to a

proof of the following result:

Theorem : Assume that 6 is strongly inadmissible and ﬂ* is a
regular p-cardinal. Then there exist incomparable p-recursive

degrees.

The proof is based on arguments that have been introduced into
(? -recursion theory by S.Friedman in order to construct incomparable
( -r.e. degrees for the same class of p [21,{5] . These arguments

are of special interest in the context of this paper since their heart

is a combinatorial principle which is very close to jQ_ [171 ( Jensen
used the validity of ¢ in L in order to disprove the Souslin
Hypothesis in T ).

It seems hopeless to construct directly 1&1 L@ sets of incom-
parable degree. Therefore we use a little trick. We construct ﬁ—r.e.
sets A and B in 3*3 x steps (i.e. we run X times through (%)

where x is in the following the (3—cardina1 1cf 3 . Define

<§,x> e Ao 19 ( x is put into A ©before step ﬁ#-(é +1) ) .
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Since Arec is @-recursive and since one can see immediately that

sw(} Arec we construct A and B 1in such a way that 7 A éw{; Brec

and B éw{g Arec hold where Brec is defined like Arec . The

relation " éwﬁ " -weakly (3-reducible to- is defined 1like " éﬁ .

A

on the second page but with the sets K 1in the definition restricted

to one element sets {x3} . Since we have that D1 éW(! D2 and
D2 sr; D3 implies D1 sw(g D3 for any sets D1,D2,D3 the _(S-recur-
sive sets Arec R Brec will then be incomparable with respect to 5[3.

We fix as in [5] ﬁ-finite sequences 4SX by < @*> .
If there is a P-cardinal ¢ such that (%= ¢" (i.e. f* is the
next (-cardinal after ¢ ) define

SX = F (Y) A L& where §'> ¥ is minimal such that
L?F Lcard (y) ¢ ¢ 1 '

Otherwise define SX = R (3) a ijk .

Then in both cases the (-cardinality of Sg is less than (%
for every y .

If we write some o < p*-x in the form &= f3*-§+ y we mean
that y < @* and this y is called the stage of step ¢ .

Ay will be the set of elements which have been put into A be-

fore step o .

The following requirements will be satisfied during the con-

struction :

A <€

Re ' s Twp Brec
A . _

T, : K, €A 2 38<x (Ke - Aﬁﬁé' is bounded below (3% )
A ; ,

Se : Ke S K x p*- Arec > T S« )<(Ke - & x@* is bounded

below (%)

B T B S B where the roles of A

and analogous requirements Re s To7 s Sg

and B are interchanged ( Ke is an abbreviation for X(e) where

K 1is some fixed Q3-recursive function from ﬁ onto Lﬁ ). Observe

that if ﬁ* - A 1is unbounded in @*'and all requirements SeA are
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satisfied then A is simple but the converse doesn't hold.

The set M is the set of those requirements which are considered

a

at step o = (" & +y of the construction ( f is a fixed @-recursive
projection of [ into G* ; q 1is a fixed f-recursive cofinal
function from x into (3 ; we write fQ(é)(e)$ if Lq(s)h [ £(e)il ):

A B

M, 1is the set of all Se s S

B A
e ! Te ’ rI‘e

B <g,ReA> R Lg,ReBy such
that 900 (e)y fq(é)(e) <¥ and ge& Sy .
We fix a well-ordering <, of every MU in such a way that the

map o~ <, is (-recursive.

Construction : Step o = ﬁ*'5-+¥ H We will only describe the

A part of the construction, the B part is analogously,

If stage y was cancelled at some step o«'«<ao we do nothing
and proceed to the next step.

If y =0 we first put all y into A such that " <d,y» e A"
was promised at some step ¢' = @*-J'+X' <« ¢ and stage X' was not
cancelled before step ¢ .

The following will be done then at step o (for Yy = 0 and
¥ 0)

We run through the set M according to the well-ordering <, and
make attempts for the elements if possible as it is described in the
following :

Assume thet Q e M, is considered next during this run through
M, . If an attempt was made for Q at some step T = ﬁ*‘g4-¥ < o we
go to the next requirement in M4y . Otherwise the following will be
done : We write A for the set of those elements which have been
put into A wuntil then (i.e. at some step o'< & or during an
attempt at step o for some Q'e My such that Q' < Q) ; B is
analogously defined.

We further define
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f,A

i= {<8',y> | y2y A ((ye X and y was put into A at some
step o' = f*-§'+y' with o'<e ) (y¢ X and it was promised at

some step & = (;*-3+X (1) with F<e to satisfy "¢d',yr e Arec"))

and
PR .= {<3,y>l 5 <« x AdcS,yse f’A(é'sg )3 and
v .- i<3,y>| yagl\((g<<$/\ Yé—Ap*b(é—H))v(Jsgtx A

~ ~ x ‘g ~ . X
(y ¢ A and at some step o = {3 e y with o <o it was promised

to satisfy "<§',y> ¢ A, " for some &'y S MMy .

B B

The sets P, PB, N are defined analogously,

For sets M1,M2 <

= 136162y(51552A<J1,y>eM1A<J2,y>eM2).

x » (3 we say that M,,M, are consistent

Observe that we are using a (.%-finite pairing function < , » :
BXx R* > (3* (with associated projections @, ¥ ) such that for
any sets M,,M, < (3% we have that M, x M, 1is bounded below 3% iff

M, and M, are bounded below 3"

1
We have now fixed the notation at the point of the construction

where we start to consider the requirement Qe M .

If Q = <g,R A> we look then whether a tripel <x,K,H> exists
e

such that x > y A LK1n g+1 =¢ A o LHI Ny = ¢4 x¢ & a
yAwp ¥ 1 r g

B

XK,H e LB*A XK,H ¢ xxp"' A PTuv K, NB\/ H are consistent {<5,x>} B

A

N are consistent 4 3 H, H, e Lq(d) (( Lq(&) E

C<txd B Hy,1>e W 1 )a Hog PPu KugaHye NuHu(xxy - g)).
If such a tripel doesn't exist we go to the next requirement in

M, . Otherwise we choose the existing tripel < x,K,H> minimal with

respect to 4(3 and meke an attempt for <g,Re'A> at step o with

< x,K,Hy . We put then immediately x into A and every y such

that <&,y>e K into B, For <&',y> e XK with §'> & we further

promise to satisfy " <§',¥y» e Brec" . For <&',y»e H with «'3§
we promise to satisfy " <&',y>¢ B,.." -
Ifr @ = 7% or Q@ = SeA we do nothing if Kq(é)(e) 4

e
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A
e

that y e Kq(6)(e) Ay e Xa PA, H consistent with H := x xtiy} |,

A
e

Otherwise if Q = T we look whether some y 2y exists such

If such a y exists we make an attempt for T and take the least

such y and promise to satisfy " <§',y> ¢ Arec" for all &§'24 .

For Q = SeA we look whether y >y -exists such that

<&',y» € Kq(é)(e) for some &' § and 1<4,y>F, ¥ are con-

sistent. If such a y exists we make an attempt for SeA and put the
least such y into A .
. 5 B B B
The cases where Q 1is a requirement <g,Re > Te N Se are

treated analogously.

In any case if we make an attempt for Q at step ¢ and put

)n

, ) ! .
some y into A ( B ) or promise to satisfy " <«&',y> € Arec (Broc

" ] " T
or <85> ¢ Ao, (Brec) we simultaneously cancel every stage

X'> ¥ with y 2> y' .

If all requirements Q « M_ have been considered in the described

way we go to the next step.

End of construction.

It is not difficult to see that the comnstruction is @E-recursive:
By using the definition of x one can define by recursion a (-
recursive function F : x = LB such that TF(§) = fg 1is for every
é < a p-finite function from 3% into L{B* where f (X) de-
scribes what happens at step »*‘J+»X of the construction for every
¥ < (* . One can see that every f& is a @E-finite function by using
the fact that B*' is a regular (3-cardinal. It follows immediately
from these considerations that A, B are {3-r.e. and that A

rec ’

Brec are P-recurs1ve sets.



354

The construction is a variation of Friedman's construction [5]
and in order to show that this construction works as it is supposed

to do a fixpoint argument is applied. These kind of arguments do not

occur in ORT and are an ingredient from set theory. The difference to
ORT will become clear in the last Lemma where one uses not an induction
on the priority. Fixpoint arguments are used as well in more advanced
parts of w«-recursion theory (e.g. Density Theorem (111 , existence of

minimal pairs [12] , existence of high degrees [7] ).

Here we consider fixpoints of 21 skolem hulls :
For the parameter q e Lp of the preceding construction and the more

. ; - ’ + i
interesting case where Q3 is a successor f-cardinal g define

Foi= dyp<pfl y=(( X, skolem hull of y vg+1 viad in I,)

a ) .
Then F is unbounded in (3 since
ye = (( %, skolem hull of §vg+1l vigl) A p*)

is an element of F for every ¢ « ﬁ* .

The effective version <Sg.l y < fp*> of QO ' is used in order
to overcome the difficulty that we don't have in strongly inadmissible

f that for every y < @* a step vx < ﬁ*-x exists such that

Any = Ay . Therefore one tries to satisfy the requirements ReA,

B
Re

for every y a small set SX of guesses g and SX is defined in

for every '"guess" g concerning A ay and B ay . O gives

such a way that A"X csb, and B ay GSX for every gef
(this is shown by considering the transitive collapse of a suitable

2, skolem hull) .

1
In the construction here we use ' in order to guess not only
which elements will finally be put into A respectively B but as

well when these elements will be put into A respectively B, i.e.
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we guess at Arec'\x and Brec ny -

Observe that during the construction one doesn't know which y
are elements of F . Thus one treats every ¥ < ﬁ* as if it would be

an element of F .

Lemma i) : Let M be the set of those y < p* such that
a) stage ¥ 1s never cancelled and
b) X <y A xx Yy <y and

c) A, ny e Sy A Buggn § € SJ ‘
Then M is unbounded in ﬁ*.

Proof:

Case 1 : ﬁ*z g+

(i.e. ¢ and (3* are successive (3-cardinals)
It is easy to check that F - (¢ +1) 1is a subset of M .
Case 2 : (3" is a limit 3-cardinal
For this less serious case one constructs for any given ¥o with

K <y < ﬁ* a continuous increasing sequence < ¥e i v < x> as follows

Ye4+q > 8% is minimal such that at steps o= % &+ y with

Yy < ¥« and & < v only stages } < Yoyuq Bare cancelled and such that

K x vy € Yett °

L
Since ¢1cf G(B*) = A* holds [51 we have that y:= lim o is an
T< K

ordinal less than ﬁ* and it is easy to see that y e M .

Lemma ii) :  Assume that at some step o = Bt6+-y with
¥ € M of the construction it is promised at an attempt for some re-

quirement Q e M, to satisfy <§',y> € A, OT <§'y> ¢ Arec .
Then we have in fact that <§',y> € Arec respectively <5"y"¢Arec‘

(analoguously for Brec)'
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Proof : The case " <é6',y>» € Arec" is trivial. For the case

B A

<g,R," > (the case Q = Ty is

" <8,y ¢ Arec" assume that Q
treated similarly) and that K, PA, NA are the sets which are defined
immediately before the attempt with tripel < x,K,H>» is made for

this Q € M, . We have then y»y , v ¢ T , §'2 6 and <&',y> € H,

Since PA v K, H are consistent it can't be that y is put

into A because of this attempt for Q .

Further the cancelling of stages during the construction makes

sure that <§',y2 € Are can only happen because of an attempt which

c

is made for a requirement @ after the attempt for Q at some step
. A A

¢ = (3*-6 +y with the same stage y and § < &' . One has then

A where ﬁA is the set NA which is defined immediately

A
<d',y> € N
before this attempt for 6 . Therefore at step & y is neither put
into A at once nor is a promise made to satisfy <4'',y> € Arec for

some &''¢ &' Dbecause of the consistency condition for this attempt.

Lemma iii) :

a) p*- A and @*- B are unbounded in ﬁ*

bP) Ke A =2 3IJ§<«x{(K-4 is bounded below (%)

B¥e s
( analogous for B )
¢) X = xx(i”-Arec > 3&<;<(K-Jx(3* is bounded below 3*)

( analogous for B )

d) 74 gwp Brec and =B 5W(-} Aoe .

Proof : The proof of a) is trivial since M € (¥- 4 and
Mep*-3B.

We need b) and c) only in order to make the proof of d) possible
and b), c¢) are proved similarly as d).

In order to prove d) assume for s contradiction that A'éapBrec .
By Lemma i) there exists yo € M such that f(e) < Yo - We have then
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that gg i= Brec" ¥o € S We want to show that an attempt for

¥ °
< go,ReA> will be made at some step o =p%&+y, .
Take some y,€ M such that y, > ¥, and some x € 3*- A such

that x » y; . Choose ‘50 e x such that ( use b) and ¢) ) :

A H, B AH, e xa3%¥ -B

1 rec 2 = rec

A ( ttr[H1] - B{;r, 50 and H, - & x B* are bounded below (3*.

If there exists no § < 60 such that an attempt is made for
LgO,ReA> at step (3'°-<S +¥o then an attempt for <gO,ReA> will be

made at step an := B S tyn o
0 ! 0t %

The tripel <x,K,H»> with K := B, ., n % x ( anH1'J -

(B(i*-c"ou yo)) and H :=H, - ( 6Ox(3* VI XO) has all the

properties (except perhaps minimality) which are required in order to
make an attempt for <g0,ReA> at step % with <x,K,H» . In par-
ticular K is f-finite (since w . [H1] - BB”'({O is bounded below

* and = ) and we have that PB v K, NB v H are consistent
$1,0

since otherwise we would get a contradiction to K ¢ Brec A

Hex x(3* - B by using Lemma ii).
rec

Thus we can be sure that an attempt is made for <g0,ReA> at

some step o=(3%.¢§ +¥0 with a tripel <x,K,H» . It follows then from

Lemma ii) +that

)

e Cx A%
3 Hy Hy (<{x3,H ,Hy,1>e W n H e B aH €xxp¥-B

rec
and since x is put into A at step ¢ we have got a counterexample
e
to A i'wrg Brec .

This finishes the proof of the Theorem.
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Remarks :

1) The constructed sets A , B have the same properties as in
[5]1 : They are weakly tame r.e. (i.e. b) of Lemma iii) holds) and
incomparable with respect to l'éWG LI

2) Before the Theorem we mentioned already the argument for the
strongly inadmissible case in Lemma 12,p.93 in [1] , which is one step
in the proof of the Uniformization Theorem. This simple combinatorial

argument was in fact the key to our proof of the preceding Theorem

and it can be isolated as follows

Assume that (3 is strongly inadmissible and gq : olcff = G
is a cofinal p-recursive function. Further assume that the set

A e L@k- is defined by the 21 formula W over L{? and define the

set A, . € Igsx by <§,x> e Aneo <=) Lq(&) P V() .
Then we have A sﬁ* Arec and the set Arec is p-recursive.
The proof of this fact is trivial : One just observes that for

XK e LGk such that K £ A we have that Arec n ovlcf3 = K e ijk' .

The fact holds as well for structures Pz« Lﬁ ,B» (B regular

g
over Lr3 ) with ?1,3 instead of ﬁ* )

Besides the application of this fact in the proof of the Uni-
formization Theorem one can use it in order to show that for every
strongly inadmissible (3 and weakly tame r.e. A € L(3* (see [51)
we have that A sp‘Arec 8

There is another application in «a-recursion theory which gives
a rather unexpected result

L ]

Assume that o¢2cfa <o2pa = & (e.g. & = M Then there

is a AZ L, set of degree O0'' .

(See [71 for other results about A2 L, degrees .)
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