
On-line Learning of Rectangles

(Extended

Zhixiang Chen *

Abstract

This paper solves the following

there an algorithm for on-line
d-

angles ~ {Ui,ai + 1, . . .,bi} over

open problem: Is

learning of rect-

a discrete domain
i=l

{l,..., n}d whose error bound is polylogarithmic in the

size nd of the domain (i.e. polynomial in d and log n)?

We give a positive solution by introducing a new design

technique that appears to be of some interest on its own.

The new learning algorithm for rectangles consists of 2d

separate search strategies that search for the parame-

ters al, bl, . . . , ad, bd of the target rectangle. A learning

algorithm with this type of modular design tends to

fail because of the well known “credit assignment prob-
lem”: Which of the 2d local search strategies should be

“blamed” when the global algorithm makes an error?

We overcome this difficulty by employing local search

strategies (“error tolerant binary search”) that are able

to tolerate certain types of wrong credit assignments.

Section 4 contains another application of this design

technique: an algorithm for learning the union of two

rectangles in the plane.

*Department of Computer Science, Boston University, MA
02215, USA. Emaih zchenf%e.bu.edu.

**Institute for Theoretical Computer Science, Technische Uni-

versitaet Graz, Klosterwiesgasse 32, A-801O Graz, Auatri~ and

Department of Mathematics, Statistics, and Computer Science,

University of Illinois at Chicago, Chicago, IL 60680, USA. Email:
maassQigi.tu-graz .ac.at

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

COLT’92-7/92/PA, USA
0 J992 ACM o-89791-498-8192/00071001 6... S1 .50

Abstract)

Wolfgang Maass **

1 Introduction

We consider the concept class

over the domain {~

b.)ai, ..., , l<ai, bi<n

fori=l,..., d

}

1 . . . , n]d.

Our learning model is the standard model for on-
line learning (see [A], [L], [MTc]). A learning process

for a concept class C over a domain X is viewed as

a dialogue between a learner A and the environment.

The goal of the learner A is to “learn” an unknown

target concept CT E C that has been fixed by the en-

vironment. In order to gain information about CT the

learner proposea hypotheses H from a fixed hypothe-

sis space X with C ~ ‘?-f ~ 2X. Whenever H # CT

for the proposed hypothesis H, the environment re-

sponds with some counterezamp/e (CE) g c HACT :=

(CT – H) U (H – CT). g is called a positive coanterez-
ample (PCE) if g c CT — H, and g is called a negative

counterezample (NCE) if g E H — CT. Each new hy-

pothesis Hi+l of the learner (resp. learning algorithm)

A may depend on the earlier hypotheses HI,..., Hi and

the given counterexamplea g~ E HjAcT for j = 1,..., i.

One defines the resulting learning complexity of a
learning algorithm A by

LC(A) := max{i E N I there is some CT E C and

a sequence gl, gi-1

of counterexamples to the

hypotheses H1, Hi-l

of the learner A such

that Hi # CT).

The learning complexity of concept class c with hypoth-

16

esis space ‘H is defined by

LCX(C) := min{LC(A) I A is a learning algo-

rithm for C with hypo-

thesis space ‘H}.

One sets LC(C) := LCC(C) and LC – ARB(C) :=

LC2X (C).

It is known that LC(130X~) > LC –

ARB(BOX#) = @(d log n). The upper bound

O(d log n) for LC – AIU3(BOX~) follows by consid-

ering the HALVING-algorithm (see [A], [L], [MTc]).

The lower bound tl(d log n) is shown by constructing

a decision tree for BOX: in which every leaf has depth

fl(d log n). This is sufficient by a result of Littlestone

[L] (see also [MTc]).

The HALVING-algorithm uses arbitrary subsets of

the domain as hypotheses. With regard to learning al-

gorithms for 130X~ that use computationally feasible

hypotheses there exist two quite different approaches.

Both of these algorithms use hypotheses from BOX;.

There is a learning algorithm B with LC(B) = O(d. n)

that issues as its next hypothesis always the smallest

C ~ BOX: that is consistent with all preceding coun-

terexamplea. This algorithm is frequently considered in

the special case n = 2 where the concepts C c BOX;

correspond to monomials over d boolean variables (see

the algorithm for the complementary class 1-CNF in

[v]).

It is less trivial (even for d = 2) to design a learn-

ing algorithm D for BOX: with computationally fea-

sible hypotheses such that LC(D) = O(f(d) log n) for

some function ~ : N * N. An algorithm D of this type

(which uses hypotheses from BOX:) was exhibited in

[MTa], [MTb]. However this algorithm D learns sepa-

rately each of the 2d corners of the target concept, and

hence LC(D) is exponential in d (i.e. f(d) z 2d).

The question whether the advantageous features of

both learning algorithms B and D can be combined in

a single algorithm S with LC(S) < poly(d, log n) was

first brought to our attention by David Haussler ([H],

see also [MTb]).

A learning algorithm S which achieves this perfor-

mance is exhibited in section 3 of this paper. It proceeds

in a completely different way than the two previously

described learning algorithms for BOX ~. We describe

the main component of the new algorithm in section 2.

The new learning algorithm for rectangles consists

of 2d separate search strategies that search for the pa-

rameters al, bl, ..., ad, bd of the target rectangle. A

learning algorithm with this type of modular design

tends to fail because of the well known “credit assign-

ment problem”: Which of the 2d local search strategies

should be “blamed” when the global algorithm makes

an error? We overcome this difficulty by employing lo-

cal search strategies (“error tolerant binary search”)that

are able to tolerate certain types of wrong credit assign-

ments.

Section 4 contains another application of this design

technique: an algorithm for learning the union of two

rectangles in the plane.

We assume here that the learner knows already that

the top left corner of the domain is contained in one

rectangle, and the bottom right corner in the other.

Nevertheless this learning problem is substantially more

complicated than the preceding one: The obvious lo-

cal search procedures that search for the lengths of the

sides of the two rectangles are likely to get not only false

negative counterexamples (as in the preceding learning

problem), but also false positive counterexamples. This

complication arises from the fact that in general the

learner does not know to which one of the two rectan-

gles of CT a positive counterexample belongs. Never-

theless one can construct for this learning problem an

efficient learning algorithm whose learning complexity is

asymptotically optimal. Again this algorithm consists

of suitable versions of binary search as modules, which

will tolerate certain incorrect credit assignments.

This positive result for learning the union of two

rectangles provides a contrast to earlier results about

efficiently learnable concept classes C such as halfplanes

over {l,..., n}2, or monomials, for which one has shown

that U–2–C := {Cl UC2 I Cl, C2 E C} is not efficiently

learnable (see [MTb], [PV]).

2 An Algorithm for Binary

Search that Tolerates One-

sided Errors

In this section we consider an extension of the notion

of a “negative counterexample”, and along with it an

extension of the previously described learning model.

Assume CT c C is the target concept and H, is

the current hypothesis of the learner. The environment

may respond in the extended model with a positive
counterexample (“PCE) g ~ CT — H~, with a true

negative counterexample (“true NCE”) g E HS — CT,

or with a false negative count emzample (“false NCE”)

g E H. fl CT. Note that the environment is allowed to
respond with a false NCE even if H. = CT. We extend

17

the notion of a negative counterexample (NCE) so that

it subsumes both true and false NCE’S. The environ-

ment is not required to tell the learner to which of these

categories a counterexample g belongs.

We define a binary search algorithm TBS. (the “T”

stands for error-tolerant) for learning the “head” h of

a halfinterval {1, h} ~ {1, n} in this extended

learning model. The new algorithm S for learning rect-
d

angb Cl’ = ~ {a~, ..., bi} G BOX: (see section 3)
i=l

will consist of 2d separate copies of the here defined

error-tolerant binary search algorithm TBS in each

dimension i it uses separate copies of TBS and its sym-

metric counterpart TBS for learning the “head” bi and

the “tail” ai of the interval {aj, ..., b~}. Although this

learning algorithm S for BOX: will receive only true

counterexamples, the individual binary search proce-

dures may also receive false negative counterexamples.

This is a consequence of our quite radical solution to

the associated “credit assignment problem”, where we

blame each of the 2d subroutines for binary search for

any error of the learning algorithm S. In particular a

true NCE for S’ will result in a true NCE for at least

one subroutine and false NCE’S for up to d – 1 other

subroutines.

In this section we consider the concept class

HEAD. := {{1 ,..., j} I jell,..., n}}

over the domain {1,2, . , .,n}.

At the beginning of each step r of a learning pro-

cess in the extended learning model the learner issues a

hypothesis H, := {1 ,..., hr} C HEAD.. If Hr # C2’,
then the learner will receive at step r the counterexam-

pleg. e {1,..., n}. We set

Pa := max ({1} U {grll<r <sand

g. was a PCE})

n~ := min ({n+l} U {grl lsr~s,g,>p~,

and g, was a (true or false) NCE})
~true

8 := min ({n+l} U {grl l~r <sand

g. was a true NCE}).

Note that in the definition of n, we consider exactly

those earlier NCE’S that are still unrefuted by the end

of step s.

Definition of the binary search algorithm
TJ3S. for learning HEADn in the extended

learning model:

Set hl := 1.

For s z 1 set h,+l := h. if g, is a NCE and g, ~ p,.

Else, we define

I

min({ns – 1} U {hr I 1< r s s and

p. < hr < n.})

h$+l :=
, if g$ is a PCE.

‘s+ [-J > ‘fgs ‘Sa(true
or false) NCE.

The algorithm TBS. issues at step s the hypothesis

{1, . . .,h~}.

Theorem 2.1 Assume that f false NCE’S occur in

a learning process for HEAD. with learning algon”thm

TBS. . Then at most logn true NCE’S and at most

log n + 3f + 1 PCE’S occur in this learning process.

In order to prove Theorem 2.1 we analyze the prop-

erties of algorithm TBSn in three simple Lemmata.

a)

b)

c)

a)

b)

c)

Lemma 2.2

p$+[+J~n~-lfOra’’s~l

p, ~ h,+l ~ n, –l~oralls~l.

If g. is a (true or false) NCE, then hs+l ~ h,.

Proofi

Note that pa < n. by the definition of n..

This follows from part a).

If gs ~ p. then h$+l = ha. Assume that g. > p.

and s > 1. Since hs ~ n~_l– 1 by b), we have ns =

g, s h,. Furthermore h,+l =
‘a’ i-l ‘ns

(see part a)). E

Lemma 2.3 Assume r < s and g,, g. are true

NCE’S. Then
~true

n~–pa< ‘ ~–p’.

Proofi It is obvious that r > 1. Thus n~e =

nr = gr, since P. < g. < h < n.-l – 1 by Lemma 2.2
b). One shows in the same way that n~ue = n8 = g..

Since gr is a NCE one hss hr+l = pr+
lny’2-prJ

Case 1: p, > h,+,
ntrue

Then p. > p. + r ~– Pr I+12pr+n~ue
2 , hence

L J

~true
8 –p.~n~e–p.~n~e

ntrue
- (pr+~pe) =

r z– Pr

Case2: p. < h,+,

Thengj ~h,+l foreveryje {r+l,...,l}suchch
that gj is a PCE. Hence hj+l < h,+l for each such ~ (by

the definition of hj+l). Together with Lemma 2.2 c) this

implies that hj+l ~ h.+l for every j E {r+l, . . . ,s–1}.

In particular we have shown that h. < h,+l. Thus

n~e = g. ~ hf+l. Therefore n~e – ps–~ hr+l – g. <

‘r+ (np~-pr) “s ~’r+(n:u~-pr)-pr=
~true

r ~– Pr

Lemma 2.4 Assume that g, and g~+l are PCE’S.

Then g~+l ~ n. , or g,+l > h, for some r E {l,.. .,s}

with ps ~ hr < n~. In other words: g~+l proves that an

earlier NC’E was a false NCE, or it definitely refutes an

earlier hypothesis {1, h,} which had received a coun-

terexample at step r, but which was at step s consistent

with all currently unrefuted counterexamples.

Proofi By construction one has g,+l > h$+l =

min({n, – 1} U {h. I 1 ~ r ~ s andp, ~ hr < n.}).

9

Proof of Theorem 2.1: Lemma 2.3 implies that

at most log n true NCE’S occur in any learning process

with algorithm TBS.. Hence at most log n + ~ NCE’S

occur in the considered learning process Q. Thus there

exist at most log n + ~ + 1 maximal blocks of succes-

sive PCE’S in this learning process Q. Consider any

such maximal block 1? that consists of k + 1 PCE’S

g*,... , ga+k. Set

k~:=l{j I j~{s+l,..., s+k}andgj~nj_l}l

&:=l{jl jE{s+l ,.. .,s+k]andgj>hr for

some r~{l,l}withth

pj-1 s hr < nj-1}1.

By Lemma 2.4 we have k? + k? ~ k.

Each time when gj > nj_l (as in the definition

of k:), then an earlier NCE gets proven false at step

j. This happens at most once for each of the f false

NCE’S.

Each time when gj provides a counterexample to

an earlier hypothesis {1, hr } that wss consistent

with all unrefuted counterexamples at the beginning of

step j (as in the definition of k?), then this hypothesis

{l,... , hr] can never appear to be consistent again at

a later step i! (since p: ~ gj > hr). Furthermore this
event can only occur if the original counterexample gr

to {l,..., hr} was a false NCE. Thus altogether there

are only f hypotheses {1, hr) for which this event

can ever occur.

Thus we have shown that ~{k~ lBis

a maximal block of PCE’S in Q } < f and

~{k~ I B is a maximal block of PCE’S in Q } ~ f.

Altogether we have shown that at most log n + 3f + 1

PCE’S occur in the considered learning process Q. 1

Remark 2.5 One can construct in the same man-

ner a learning algorithm TBS~ for the concept class

TAILn:= {{j, j+l,..., n} I l<j <n}

that satisjies an analogous version of Theorem 2.1.

Remark 2.6 There exist already various algo-

rithms for binary search in the presence of two-sided

errors, see e.g. [KMRS W], [P], [SW]. These algorithms

do not provide sufficiently strong bounds (e.g. on the

number of true NCE’S) to be useful for our application

in section 3.

3 A Learning Algorithm for

BOX: whose Error Bound is

Polynomial in d and log n

Theorem 3.1 LC(BOX~) = 0(d2 log n).

Proof: Consider any target concept

CT = fi{ai,..., bi} G BOX:. The learning algo-
i=l

rithm S for BOX: issues H1 := 0 as its first hy-

pothesis. If HI # C!r then S receives a PCE u = <

Ul, ..., w > E CT. Henceforth the algorithm S splits

the task of learning CT into 2d separate subtasks: The

learning of {ui, ..., bi} G {ui, ..., n} (i.e. of a con-

cept from HEADn-U,+l over the transformed domain

{u~,..., } ~n}) and the learning of {ai, u,

{1 ,. ... ui} (i.e. of a concept from TAILU,) for i =

1,.. .,d. For each i G {1,.. .,d) the algorithm S em-

ploys TBSn _ ~i + 1 for the former and TBS~i for the

latter subtask.

One sets Hs := {u}. Assume that at any step r ~ 2
the learning algorithm S for BOX: has issued a hypoth-

esis Hr := fi{h;,... , hi}. Then the next hypothesis
i=l

Hr+l is determined in the following way by the 2d sub-

rout ines.

Letz=<zl,..., Zd >6 CTAHr be the counterex-

ample to the hypothesis H, of algorithm S. Note that

we use the notion of a counterexample for algorithm S

in the traditional sense (i.e. z is a PCE or a true NCE).

If z is a PCE to hypothesis H,, then for at least one

19

ic {l,..., d} the point Zi is a PCE to the current hy-

pothesis of one of the two subroutines TBSn _ ~i + 1

or TBS&i. For each such i one changes the interval in

the i-th dimension according to the next hypothesis of

the subroutine TBSn _ ~i + 1 resp. TBS~i. For other

ioneh~xi~{h~, . . . , hi}, and one repeats in these
dimensions the same interval {h; ,. . . . hi} in the next

hypothesis H,+l of S.

Assume now that x = < xl,..., zd > is a NCE to

hypothesis Hr. For each i E {1,..., d} with Zi # ui the

point ~i provides a (true or false) NCE to the current

hypothesis {ui, hi} of subroutine T13Sn - Ui + 1,

or to the current hypothesis {h;, ui } of subroutine

TBS;i . One updates the interval in the i-th dimen-

sion of the next hypothesis Hr+l of S’ according to the

next hypothesis of TBSn _ ~i + 1 reap. TBS&i. For

those i with xi = ui one leaves the interval in the i-th

dimension unchanged.

By Theorem 2.1 each subroutine for learning one

of the 2d halfintervals encounters at most log n true

NCE’S. Since each NCE for algorithm S provides a

true NCE for at least one of the 2d subroutines, S gets

altogether at most 2d log n NCE’S. Each of these NCE’S

may generate false NCE’S for up to d -1 subroutines.

Hence the sum of false NCE’S for all 2d subroutines to-

gether is < (d – l)2d log n. Thus by Theorem 2.1 the

sum of all PCE’S that are received by the 2d subrou-

tines is bounded by 2d(log n + 1)+ 3(d – l)2d log n =

(6d2 – 4d) log n + 2d. Since each PCE to algorithm

S (exept for the first one) generates a PCE for at

least one of its 2d subroutines, the total number of

PCE’S that S receives is < (6d2 – 4d) 10JZn + 2d + 1.

Hence LC(S) ~ 2d log n +–(6d2 ‘ -

6d2 log n –2dlogn+2d+l.

4 An Algorithm

–4d)logn+2d+l=

m

for Learning

the Union of Two Boxes in the

Plane

The algorithm in the preceding section was based on

a solution of the credit assignment problem in which

the local search procedures tolerate false negative coun-

terexamples. It was essential for the success of this al-

gorithm that the local search procedures never receive

false positive counterexamples.

In this section we examine a more complex learning

problem, in which the obvious local search procedures

have to tolerate both false negative and false positive

counterexamples. For any m, n G N let Xm,n be the

domain

x m,n := { <ijj> I ie{l,..., rn}

andj E{l,n}}.

Set BOXm,n := { {i,. ... j}x{k, i}l, i}l

l~i, j~rn and

l~k,l~n}.

We write a := < 1, n > for the upper left corner and

b := < m, 1> for the lower right corner of this domain

x m,n. We consider the following concept class over the

domain Xm,n :

TWO – BOXm,. := { RA U RB] RA, RB E BOXm,n,

a E RA and b E RBj.

Whenever we write RA (RB) in the following, we as-
sume that RA E BOXm,. and a E RA (RB G BOXm,n

and b c RB).

v

Figure 1

The learning of arbitrary target concepts RA U RB

from TWO — Boxm,n may be viewed as a combinat-

ion of 4 search procedures that determine the lengths

of the sides of RA and RB. In the same way as in the
preceding section these local search procedures will re-

ceive false negative counterezamples, since it is not clear

which side of RA (RB) has to be shortened in order to

accommodate a NCE g E (RAu RB) —CT. However these

local search procedures will in general also receive fake

positive counterexamples, since it is not clear whether

a PCE should lie in RA, or in RB (or in both). The

following result shows that nevertheless there is an effi-

cient learning algorithm for this learning problem.

Theorem 4.1 LC(TWO – BOXm,n) =

e(/Og(m + n)).

20

Proof: It is obvious that chain(TWO –

130Xm,n) = fl(rn + n), where chain(c) denotes the

length of the longest chain in C under inclusion. Ac-

cording to [MTa], [MTc] one has

LC(TWO – BOXm,n) z

[log(chain(TWO - BOXm,n))j.

In fact, the same lower bound holds for LC –

ARB(TWQ – BOXm,n).

In order to prove the upper bound of Theorem

4.1, we first consider the following subclass of T WO –

BOXm,n :

u m,n := { RA U RB I RA, RB G BOXm,n,

a G RA, b 6 RB, and lRAnRBl = 1}.

We will exhibit in the proof of the main lemma (Lemma

4.3) an efficient learning algorithm K for this concept

class Um,n. This algorithm K will employ as local search

procedures the following binary search algorithm CBS

(“conservative binary search”), which is distinguished

by the property that it never receives two successive

NCE’S. Although CBS will also be used in a nonstan-

dard situation (where there exists no target concept),

it suffices that we analyze it here in the context of the

basic learning model that was defined in section 1.

Definition of the binary search algorithm

CBS for learning HEAD.:

Assume that the environment has fixed some target con-

cept CT e HEAD.. At step r the learner issues the

hypothesis H, := {1,. . . . r} c HEAD.. If Hr # CT,

he receives at step r a counterexample g, c H.ACT.

Let p, be the maximum of 1 and the largest PCE re-

ceived by the end of step s, and let n~ be the minimum

of n + 1 and the smallest NCE received by the end of

step s.

Set hl := 1, and

Lemma 4.2 Consider any learning process for
learning HEADn (in the basic learning model) with

learning algorithm CBS. Then there are never two

successive NCE’s in thislearning process. Furthermore

nt–pt<~j=f or any step t z 1 with Ht # CT.

Proofi The first claim is obvious from the con-

struction of CBS.

In order to prove the second claim we show that

for any s > 1 such that g, is a PCE and H~+l # CT

one has n~+l — p~+l ~ ~. Since g. is a PCE

we have h~+l = PS +
L-1

If g$+l is a NCE we

have ns+l s h,+l ~ p, + ~ and ps+l = p., hence

n~+l –p,+l < ~. If g,+l is a PCE we have p.+l z

1 + h,+l ~ p= + ~ and ns+l = n., hence n.+l –

()p8+12nS– Pa+- =-. m

Lemma 4.3 (Main Lemma)
LcTWO – BOXm,. ~um ~, = O(log(m + ~)).

a)

b)

an

Remark 4.4

One has to use in Lemma 4.3 a larger hypothesis
space than Um,n, since LC(Um,n) = $l(m+n). This

lower bound can be shown with the help of an ad-

versary strategy that gives only negative counterex-

amples from the ‘diagonal line’) between < 1, 1 >

and < m, n > in Xm,n.

The learning algorithm for Um,n that is constructed

in the proof of Lemma 4.3 uses actually only the

hypothesis space {H G TWO – BOXm,n I ~ G

TWO – BOXn,m~, which is a proper subclass of

TWO – BOXm,n .

Proof of Lemma 4.3: In order to design

efficient learning algorithm K for i%,~, we

note that any con;ept RA U RB G Um,n with

a E RA, b G RB and lRAnRBl = 1 can be

uniquely characterized by the single intersection point

w =< i, j > of the rectangles RA and RB. We write &

for this concept RAuRB from Um,n, and RAW, RBW for

its two components RA, RB. The learning algorithm K

for Um,n proceeds in a recursive manner. Assume that it
has already exhibited an m’ x n’ rectangle W G Xm,n

with w c W for the target concept & E Um,n (ini-

tially one has W = Xm,.). Then there is some num-

ber t (which depends on the specific learning process)

s~ch that K produces in t+ 2 further steps a rectangle

W$Wwith we Wand

area(W)
area(fi) ~ ~t,~ _2 .

Hence one may view area(fi) (or rather:l–area (W)) as

a “measure of the progress” for the learning algorithm

K.

Assume that e 6 X~,~ is the “centerpoint” of W.

We first consider the case where e does not lie on the

perimeter of W (i. e. we assume that ml > 2 and

n’ > 2). Then K issues R. as its next hypothesis.

21

Case 1: The learner receives a positive coun-

terexample g =< Pg, qg > G % – &

We can assume w. 1. 0. g. that g c W. If g lies to

the left (right) of W, we may replace it by the point on

the same row in the leftmost (rightmost) column of W.

If g lies above (below) W, we may replace it by a point

in the same column in the highest (lowest) row of W.

Note that we have used here the assumption that e does

not lie on the perimeter of W (i. e. m’ >2 and n’ > 2).

. .
a ‘x

1)

I
I
I

<
u

i

Figure 2

Let S, T ~ W be the rectangles with S n T = {g}

and Rg fl W = S U T, as shown in Figure 2. It is

clear that w c S U T. The algorithm K issues Rg as

its next hypothesis. If Rg # CT itfollows that w E

SU T– (SnT). In order to determine whether w c S or

w c T, the learning algorithm K enters a procedure that

we call a P-phase. When this P-phase terminates after t

steps, the algorithm exhibits a rectangle 1? with ~ ~ S

or ~ G T such that w c ~ and area(l?’) ~ xl.

The P-phase consists of 4 concurrent binary search

procedures that try to determine the values of 4 param-

eters Z, y, u, v (see Figure 2). If w G T, then the values

of z and v give the horizontal reap. vertical distance

of w from g, whereas the parameters y and u are un-

defined. If w c S, then the values of u and y give the
horizontal rmp. vertical dist ante of w from g, whereas

the parameters x and u are undefined. The hypothesis

of algorithm K is at each step of the P-phase of the

form RA U RB with a G RA, S ~ RA, b c RB, and

T ~ RB. The exact lengths of the sides of RA(RB)

are determined by the current hypotheses of the binary

search procedures for z and v (u and g).

The difficulty of the P-phase is caused by the need

to carry out the concurrent binary search procedures

for the parameters z, y, u, u without knowing whether

w E S or w c T, and hence without knowing which

ones of x, y, u, v are actually undefined. Thus we have

to combine two “real” binary search procedures with

two “dummy” binary search procedures, without know-

ing which are the real ones. The danger is that we

may spend many learning steps exclusively for the ben-

efit of those search procedures that later turn out to be

“dummy” (i. e. they search for the values of parame-

ters that are actually undefined). Consider for example

the two search procedures for the parameters z and y.

We know that exactly one of those two parameters is

undefined. If one receives a PCE q c & – (RA U RB)

in the region above T (see Figure 2), then this provides

a PCE for both of the two binary search procedures for

z and for g (in particular also for the “real” one among

the two). However a NCE q E (RA U RB) – &j in

the region above T may provide a NCE only for one

of these two binary search procedures. If one has bad

luck, it provides a NCE only for the one that later turns

out to be “dummy”, and no progress has been made at

this learning step for the “real” binary search procedure

among the two.

This difficulty is handled by using for the local bi-

nary search procedures the algorithm CBS that was

analyzed in Lemma 4.2. It may still occur then,

that a NCE provides progress only for the “dummy”

one among two binary search procedures CBS. How-

ever since no binary search procedure CBS (even

the”dummy” ones) may receive two NCE’S in a row,

this event can occur on average at most at every second

step.

An exception may occur at a step where a binary

search procedure that searches for an undefined param-

eter receives a NCE g. < pa (and hence possibly two

NCE’S in a row). However such step (which reveals to

the learner which ones of the parameters are undefined)

automatically terminates the current P-phase.

We now describe in detail how the algorithm K

proceeds during the considered P-phase. One carries

out 4 concurrent binary searches with algorithm CBS.

The first one of these is a copy of CBS that searches

for the value of parameter x, in case that z ia de-

fined. More precisely: CBS searches for the concept

{O, 1,..., =) c HEADfi for some & s n (for techni-
cal reasons we take here {O,. . . . ii - 1} as domain for

HEADfi, instead of {1 ,. ... h}). The second binary

search procedure is a copy of CBS that searches for the

value of y, in case that y is defined. Analogously one

usea copies of CBS to search for u resp. v. Assume that

so far none of these 4 copies of CBS has encountered

a contradiction among its counterexamples, and that

h=, hy, h., hv are the endpoints of the current hypothe-

ses {0,h=}. {O,..., hv], {O, h”}, {O,,,h”}.., h”} in
the respective copies of CBS. Then the algorithm

22

K issues as its next hypothesis the following concept

H G TWO – BOXm,n :

H := {l,.. .tPg+hZ} x{qg —hV, ...,}’}

u {pg–hu,..., r}x{l,l, qg+hu}+hu}.

Let h E HA RW be a counterexample to this hypothesis.

We will first consider the case where h c W. If h is a

PCE and if h lies above T, then one processes the two

coordinates of h as PCE’S for the two copies of CBS

that search for the parameters z and y,

If h c W is a PCE that lies to the left of T, one

processes the two coordinates of h as PCE’S for the two

copies of CBS that search for the parameters u and v.

Ifhe Wisa NCEwithh@SUT andh lies above

2’, then the two coordinates of h provide a NCE for at

least one of the two copies of CBS that search for z and

y. (Since h cannot be guaranteed to provide a NCE for

both copies of CBS, itmay potentially only provide a

NCE for the “dummy” copy of CBS). If h G W is a

NCE with h @ S U T and h lies to the left of T, then

the two coordinate of h provide a NCE for at least one

of the two copies of CBS that search for u and v.

If h E W is a NCE with h E SUT then it terminates

the current P-phrwe. If h G T, then it is proven that

w E T, and that the parameters y and u are undefined.

The current P-phsse also ends if in any of the preceding

cases at least one of the 4 copies of CBS receives a

CE that contradicts another CE that it had received

at an earlier step. Assume for example that the copy

of CBS that searches for z receives a PCE (NCE) that

contradicts an earlier NCE (PCE). This implies that the

parameter z is undefined. Hence one has w c S, which

implies that the parameter v is also undefined.

Finally we consider the case where the counterex-

ample h 6 H A & does not lie in W. If h is a PCE

to the right of W, then it implies that w E S. Hence

this counterexample terminates the current P-phase. If

his a NCE to the right of W, itprovides a NCE for the

binary search for y (but no CE for the binary search for

z). The cases where h lies above, below, or left of W

are handled analogously.

It remains to be shown that in each possible case

where the current P-phase is terminated, one can not

only decide whether w c S or w G ~, but one can also

exhibit an axis-parallel rectangle W with W ~ S or

~ ~ T, w G ~, and area(~) ~ %, where t is

the number of counterexamples that have been received
during the current P-phase.

Each PCE h that is received before the end of the

P-phase provides a PCE for both of the binary search

procedures for z and y, or for both of the binary search

procedures for u and v. Each NCE provides a NCE for

at least one of the binary search procedures for z and

y, or for at least one of the binary search procedures

for u and v. Since none of these 4 copies of procedure

CBS (not even those that search for undefined param-

eters) can receive two successive NCE’S (except at the

last step of this P-phase), at least t’:= ~ – 3 of the t

counterexamples of this P-phase provide CE’S for one
of the two copies of CBS which search for parameters

that are actually defined. By Lemma 4.2 at least 1$]

of them reduce one of the two dimensions of W by at

least 50 %, starting with S resp. T. Since area(S),

area(T) ~ -, one has

area(W) area(W)
area(~) ~

21+[*(t/2 -3)J ~ 2tf4-2 “

Finally we observe that any P-phase terminates at the

latest after O(log(tn + n)) step, since each single one of
the 4 procedures CBS can receive at most 2 log(rn + n)

counterexamples without running into a contradiction.

Case 2: The learner receives a negative coun-

terexarnple g =< pg, qg >6 R. - &.

W. 1. 0. g. g c W (since otherwise g immediately

reduces the possible location for w to some rectangle

W ~ W with area(fi) < -).

TX7

Figure 3

It is then clear that w c S U T for the rectangles

S, T that are defined by g as indicated in Figure 3. In

order to determine whether w E S or w E T the algo-

rithm then enters an N-phase. An N-phase consists of 4

concurrent binary searches that determine the values of
4 parameters z, y, u, v. If w ~ T, then the value of z is

the horizontal distance of w from the rightmost column

of W, the value of v is the vertical distance of w from the

top row of W, and the parameters y and u are undefined.

If w E S, then the value of y is the vertical distance of w

23

from the bottom row of W, u is the horizontal distance

of w from the leftmost column of W, and the parame-

ters x and v are undefined. Each hypothesis during the
N-phase is the union of two rectangles RA and RB. RA

is contained in {l,pl}l} x {q~+l, n}. and the

lengths of its sides are determined by the binary search

procedures for u and v. Analogously RB is contained

in {pg+ 1,. ... m} x {l,qg – 1}, and the lengths of
its sides are determined by the binary search procedures

for z and y. In order to verify Remark 4.4 b) we note

that RA U RB G TWO – BOXn,m since no row and no

column contains points from both RA and RB.

In contrast to the situation in a P-phase, a PCE h

to hypothesis RA uRB may yield a PCE only for one of

the search procedures for u and v (if h lies above S), or

only for one of the search procedures for z and y (if h lies

below T). On the other hand, a NCE to hypothesis RAu

RB provides a NCE either for both search procedures

for u and v , or for bo~h search procedures for x and

y. Hence one uses here as binary search procedures for

X, Y, u, v a dual version CBS1 of CBS, for which no two
successive PCE’S can occur.

Note that any PCE h G {l,..., pg} x {l,..., qg}u

{P9)- ... rnlx{9g, .-., n} reveals whether w E S or

w E T, and it will automatically terminate this N-phase.

Similarly a NCE outside of W decides whether w c S

or w E T, and it also terminates this N-phase. Apart

from these cases, the N-phase is also terminated by any

counterexample that provides a contradiction to an ear-

lier counterexample for any of the 4 copies of the binary

search procedure CBS). The rest of the analysis of the

N-phase is analogous to that of the P-phase.

Finally we have to comment on the case where the

algorithm K cannot continue its recursion with a P-

phase or an N-phase, because it has already narrowed

down the location of w to an m’ x n’ rectangle W ~

Xm,n with rnt 5 2 or nf s 2. Assume for example that
m’ = 2. Then the algorithm K carries out for both

columns in W a straightforward binary search for w.

This is possible, because for the binary search in the

“correct” column it can interpret each counterexample

without ambiguity.

This completes the proof of Lemma 4.3. E

With the help of the preceding main lemma we are

now able to prove Theorem 4.1. Besides the corner-

points a =< 1, n > and b =< m, 1 > we will also

distinguish the other two cornerpoints c =< 1,1 >

and d =< m, n > of the domain X~An. For many

C E TWO – BOX.,. the complement C := X~,. – C

, _BOXn,m ormay be viewed as element of BOXm.,

TWO – BOXn,m. In order to consider C as element

of TWO – BOXn,m one “turns the domain by 90°”,

i. e. one identifies Xm,n with Xn,m, a with C, and

b with d (see Figure 4). This duality is frequently

exploited in the following in order to discuss subrou-
tines that aim at learning VT instead of CT. This

makes sense for those cases where UT has a simpler

structure than CT. Note however that one’ haa to be

careful when one exploits this duality, since there are

C E TWO – BOX.,. for which ~ can not be inter-

preted as a union of one or two rectangles (e. g. con-

sider C={l,l}x{n}n} U{2,m}x {l}).

The learning algorithm L for TWO – BOXm,n pro-

ceeds in 4 phases. The first hypothesis of the first

phase is the set Xm,.. If Xm,n # CT, then one re-

ceives a NCE. It is then clear that c @ CT or d ~ CT.

In order to eliminate the case where {c, d} fl CT # 0,

one uses as a subroutine some learning algorithm A for

BOXm,n that is guaranteed to find any C c BOXm,n

in O(log(m + n)) steps, using hypotheses from BOXm,n

(see section 3, or [MTb]). One first executes this learn-

ing algorithm A in order to find cl’ under the assump-

tion that c c CT and d G CT (hence CT c BOXm,n)

by inverting the “sign” of each example and by replac-

ing each hypothesis H of A by its complement ~ (note

that ~ c TWO — BOXm,n for any H G BOXm,n with

c c H). In this way one finds CT in O(log(rn+ n)) steps

if c G CT and d c CT. If this attempt is not success-

ful, one executes A again in order to find CT, but this

time under the assumption that d GET and c c CT. If

this attempt is also not successful, one has proven that

cE~TanddE~T.

During its second phase the algorithm L checks

whether CT E U.,m. For this purpose it executes

the algorithm K form the proof of Lemma 4.3 for

O(log(m + n)) steps over the domain X.,m in order to

learn the complement of CT. Hence the sign of each ex-

ample is inverted, and each hypothesis H of algorithm

K is replaced by its complement ~. Note that accord-

ing to Remark 4.4 b) this algorithm K for Zin,~ uses

only hypotheses H such that ~ E TWO - BOXm,n.

Hence ~ is a permissible hypothesis for algorithm L. If

this simulation of K fails to identify UT within its al-

loted time, we know that CT @Un,m. Furthermore the

sample S that has been assembled by this time has the
property that no C E TWO – BOXm,n with ~ E Un,~

is consistent with S. (We refer to a set of positive and/or

negative example$ for CT ~ a sample for CT.)

During its third phase the learning algorithm L

checks whether C’T is of the form RA U RB with

RAn RB # 0. One uses here the following simple struc-

tural resuit.

Lemma 4.5 Assume that S

consistent with some C = RAU RB

is a sample that is

G TWO – BOXrn,n

24

such that c, d @ C and RA fl RB # 0. Furi?hermore

assume that S is not consistent with any C E TWO –

BOX~,~ such that C ~ L/n,m.

Then there do not exist among those concepts that

are consistent with S for i = 1,2 concepts C’i = RAi U

RBi with RAi (1 RBi # g and ~i of the form RCi U RDi

with RCi, RDi G BOXm,n, c G RCi, d G RDi, such that

g E RC~ (l RD2 for some negative example g in S.

In other words: the assignment of negative exam-

ples in S to the two rectangles of~ is unique (for con-

cepts C = RAu RB with RAfl RB # O,c, d$ C).

Proof of Lemma 4.5: Assume for a contra-

diction that there exist such concepts Cl, C2 and such

negative example g E RC1 U RD2 in S. Then there are

two different rows (resp. columns) rl, rz in the domain

Xm,n such that rl ~ Cl, r2 ~ C2, and g lies strictly

between rl and r2. W. 1. 0. g. we assume that rl, rz

are rows with rl above r2 (see Figure 4).

a “XJ

9 \

‘1~--&@

I
t I 7-2

;RC2’
\

c o lx ~

Figure ~

Let B be the smallest axis parallel rectangle that

contains all negative examples in S which lie between

rl and r2. Note that g c B. Since Cl is consistent

with S, all negative examples in S that lie above rl

are contained in RD1, hence they lie to the right of the

rightmost column of B. Since Cz is consistent with S,

all negative examples in S that lie below r2 are con-

tained in RC2, hence they lie to the left of the leftmost

column of B. In particular all negative examples in S

are contained in B U RC1 U RD2.

Since B ~ RC1 n RD2 we can define rectangles
R-C ~ RC1-and R-D-S RDz with c E R-C and d E R-D

such that RC and RD intersect exactly at the top right

corner of B. Hence R-C U R-D E Un~m. By construction

we have B U RC1 U RD2 ~ R-CURD, hence R-C U R-D

contains all negative examples in S. Furthermore R-C U

R-D does not contain any positive examples in S, since

RC1 UIRD2 does not contain any positive example in S

and RC U R-D ~ RC1 U RD2. Hence the complement

of R-C U R-D is a concept C 6 TWO – BOXP,n that is

consistent with S and which satisfies ~ = RC U R-D G

Z./, . However such concept C’ does not exist by the

a.&;mption of Lemma 4.5. n

Remark 4.6 We would like to point out that the

unique partition of negative examples in S (that ezists

by Lemma 4.5) can be computed in an eficient manner.

One can assume w, 1. 0. g. that RC and RD are

‘spanned” by c (resp. d) and the negative examples in

S that are assigned to them. Hence it sufices to cycle

through all pairs pl, p2 of negative examples in S and

check whether the rectangle that is spanned by {c, P1, PZ}

is a feasible solution for RC.

The strategy of L during its third phase is the fol-

lowing. It employs 4 concurrent copies of the dual ver-

sion TBS1 of the error tolerant binary search procedure

TBS from section 2. TBS’ “tolerates” false PCE’S (in

a sense analogous to Theorem 2.1), as long aa it receives

only true NCE’S. If CT = RA U RB with RA n RB # 0

then these 4 copies of TBS1 will find the lengths x, y, u, v

of the sides of the rectangles RA, RB (see Figure 5).

IY
z

!v
Figure 5

Let ~ be any extension of the so far collectecJ set S

of examples by further examples for C2’. Then S satis-

fies the assumptions of Lemma 4.5 (provided that CT is

of the form RA U RB with RA n RB # 0). Hence one

can uniquely (and efficiently) assign any negative ex-
ample in S to one of the rectangles RC, RD < BOXm,n

with RC U RD = CT, c c RC, d G RD. Obviously any

negative example that has been assigned to RC (RD)

provides true negative examples for the binary search

procedures for u and y (z and u). This is the reason

25

why false NCE’S can be avoided in the 4 concurrent

binary searches ofthis phase. Thehypothesisflof L

during this phase will always be of the form

H := {l,..., Il=}x{n -hy+l,...,n} IJ

{rn-hu+ l,..., nz}x{l, hv}, hv},

where hs, hv, h”, h. are the endpoints of the hypothe-

ses for the associated binary search procedures TBS1.

Whenever one receives a NCE g e H – CT, one deter-

mines the unique assignment of g to RC or RD (among

all C E TWO – BOXm,n that are consistent with all ex-
amples received so far, and which satisfy CT = RAu RB

with RA n RB # 0). Hence the coordinates of g pro-

vide true NCE’S for one or two copies of TBS1 (and no

false NCE for any copy of TBS’). On the other hand

the coordinates of a PCE g c CT – H are interpreted

as positive examples for all copies of TBS’. Hence g

provides a true PCE for at least one copy of TBS’, and

false PCE’S for up to 3 copies of TBS’.

An analogous version of Theorem 2.1 for TBS1 im-

plies that all 4 copies of TBS’ together can receive
at most 4 log(rn + n) true PCE’S. Hence at most

12 log(m + n) false PCE’S, and consequently at most

1 +37 log(m + n) NCE’S can be received altogether by

the 4 copies of TBS’ that are employed by L during

this third phase. If in fact CT = RA U RB with

RA fl RB # 0, then L will identify CT during this

phase. Of course we terminate this phase if it has not

lead to the identification of CT within its alloted time,

or if it runs into some contradiction (which can only

arise if CT is not of the conjectured form).

If the third phase of L has not suceeded in identi-

fying CT, one may conclude that the set S of examples

that has been collected up to this point is not consistent

with any C = RA U RB ~ TWO – BOXm,n such that

RA (1 RB # 0. Hence we can apply the following simple

structural result.

The analogous result holds for concepts whose com-

ponents are separated by vertical lines.

Proof of Lemma 4.7: Assume for a contradic-

tion that there exist such concepts Cl = RA1 URB1 and

C2 = RA2 U RBz (whose components are separated by

two horizontal lines) and some positive example g in S

with g c RA2 fl RB1. Then RA2 U RB1 is a concept in

TWO – BOX.,. that is consistent with S, and whose

components RA2, RB1 have a nonempty intersection.

However such concept does not exist by the assumption

of Lemma 4.7. I

During its fourth phsse the algorithm L first checks

whether CT = RA U RB for rectangles RA, RB that are

separated by some horizontal line. In the same way as

in phase 3 it employs 4 concurrent binary search pro-

cedures that search for the lengths x, y, u, v of the sides

of RA, RB (see Figure 4). Each hypothesis H of L is

constructed from the current hypotheses of the 4 bi-

nary search procedures in the same way as in phase 3.

However during this phase we use for these procedures

instead of TBS’ the original error tolerant binary search

procedure TBS from section 2 (which “tolerates” false

NCE’S but no false PCE’S).

Whenever a PCE g c CT – H is given to L, it can

decide with the help of Lemma 4.7 whether g c RA or

g E RB (provided that CT = RA U RB for rectangles

RA, RB that are separated by a horizontal line). Hence

it can give the coordinates of g as true positive examples

to those copies of TBS that search for s and y (if g E

RA), resp. to those copies of TBS that search for u and
v (if g c RB). Since g @ H, itwill provide a true PCE

for at lesst one of these 4 copies of TBS (but no false

PCE for any of them).

Any NCE g c H – CT for the hypothesis H of L

provides a true NCE for at least one of the 4 copies of

TBS (and false NCE’S for up to three copies of TBS).

Lemma 4.7 Assume that S is a sample that is If CT consists in fact of two rectangles that are sep-
consistent with some C G TWO - BOXm,n. Further- arated by some horizontal line, L will identify CT dur-
more assume that S is not consistent with any C = ing this phase in at most 1 + 37 log(rn + n) steps (by
RA U RB C TWO – BOXm,n with RA n RB # 0, Theorem 2.1).

Then there do not exist two concepts Cl, C2 e

TWO – BOX.,. that are both consistent with S, and

where Ci = RAi U RBi, a c RAi Yb c RBi) and the rect-

angles RAi and RBi are separated by horizontal lines

for i = 1,2, such that g 6 RA2 n RB1 for some positive

example g in S.

In other words: the assignment of positive examples

in S to RA, RB is unique among all consistent concepts

C = RA U RB whose components RA, RB are separated

by horizontal lines.

If L does not identify CT in this way, we know that

the components RA, RB of CT are separated by a verti-

cal line. Hence it suffices to repeat the preceding process

for the case of vertical separations.

Each phase of L takes at most O(log(m + n)) steps.

Hence the proof of Theorem 4.1 is now complete. ~

Remark 4.8 With regard to the general structure

of the proof of Theorem ~. 1 we would like to point out

26

that ii is necessary to apply the main lemma (Lemma positive result with a slightly larger hypothesis space;

4.3) to the complements of the concepts C E TWO – see Remark 4.9).

BOXm,n 1 rather than to the concepts themselves. This
amusesfrom a rather subtle aspect of the third phase of

the algorithm. This third phase relies on the structural

result of Lemma 4.5, which does not have an appropriate 6 Acknowledgement
“dual version” (with C and ~ interchanged). A source

of this asymmetry is the fact that the two rectangles

RC, RD which form the complement of some C = RAu
We would like to thank David Haussler for drawing our
attention to the problem of efficient on-line learning

RB E TWO — BOX~,n with RA n RB # a have no
common row or column. However the two components

of rectangles in arbitrary dimensions.

RA, RB of some C = RA u RB E TWO – B-OXm,n

with RA II RB = 0 may very well have a common row

or column.

Remark 4.9 one can use the algorithm L from

Theorem ~. 1 as a subroutine in order to get an eficient

learning algorithm for the concept class U–2–BOX; :=

{Cl U C2 I Cl, C2 e BOX;}. One starts each learning

process by executing a learning algorithm for BOX:,

until one has collected a sample S that is not consis-

tent with any C G BOX:. It is easy to show that any

such sample S contains two positive examples a, b and

a negative example q s.t. q lies in the rectangle R that

is spanned by a and b. It is then clear that a and b

lie in diflerent components of CT E U – 2 – BOX;.

This implies that CT n R G TWO – BOXti,fi for

x-m,ii := R. Hence one can apply the learning algo-

rt”thm L from Theorem 4.1 over the domain R in or-

der to learn CT n R, and separate learning algorithms

for BOX (resp. TWO – BOX) for other parts of the

domain. At each step the hypothesis of the resulting
learning algorithm for U – 2 – BOX; is the union of

the hypotheses that result from the subroutines for vari-

ous parts of the domain. One gets in this way a learning

algon”thm that is guaranteed to find CT in O(log n) step,

but whose hypotheses consist of more than 2 rectangles.

5 Open Problems

One challenging open problem is posed by the gap be-

tween the upper bound 0(d2 log n) and the lower bound

Q(dlog n) for LC(BOXf).

Furthermore most questions concerning the on-line

learning complexity of the concept class

are still open. In particular, it is open whether LC(U –

k – BOX:) = O(poly(log n, d)) for constant k ~ 2.Even

for the special case k = d = 2 it is not known whether

LC(U – 2 – BOX:) = O(log n) (although there is a

27

References

[A]

[H]

[KMRSWl

[L]

[MTa]

[MTb]

[MTc]

[P]

[Pv]

[Swl

[v]

D. Angluin, “Queries and concept learn-

ing”, Machine Learning, 2, 1988, 319-

342.

D. Hauaaler, personal communication,

1989.

D.J. Kleitman, A.R. Meyer, R.L. Rkat,

J. Spencer, K. Winklman, “Coping with

errors in binary search procedures”, J.

Comp. Syst. Sci., 1980,396-404.

N. Littleatone, “Learning quickly when ir-

relevant attributes abound: a new linear

threshold algorithm”, Machine Learning,

2, 1987,285-318.

W. Maasa, G. Turifin, “On the complex-

ity of learning from counterexamplea (ex-

tended abstract)”, Proc of the t.?OthAn-

nual I. E.E. E. Symposium on Foundations

of Computer Science, 1989, 262-267.

W. Maasa, G. Turiin, ‘Algorithms and

Lower Bounds for On-line Learning of G*

ometrical Concepts”, Report 316 (Ott.

1991), IIG-Report Series, Technische

Universitaet Gra~ to appear in Machine

Learning.

W. Maasa, G. Tur6n, “Lower bound

methods and separation results for

on-line learning models”, Report 322

(Nov.1991), IIG-Report Series, Tech-

nische Universitaet Graq to appear in

Machine Learning (1992)

A. Pelt, “Searching with known error

probability”, Theoretical Comp. Sci.,

1989, 185-202.

L. Pitt, L. G. Valiant, “Computational
limitations on learning from examples”,

J. of the ACM, 35, 1988,965-984.

J. Spencer, P. Winkler, “Three thresholds

for a liar”, DIMACS Tech. Report 91-72

(Oct. 1991).

L.G. Valiant, “A theory of the learnable”,

Comm. of the ACM, 27, 1984, 1134-

1142.

28

