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1 IntroductionResearch on neural networks has led to the investigation of massively parallel compu-tational models that consist of analog computational elements. Usually these analogcomputational elements are assumed to be smooth threshold gates, i.e.-gates for somenondecreasing di�erentiable function  : R! R. A -gate with weights w1; : : : ; wm 2 Rand threshold t 2 R is de�ned to be a gate that computes the function (x1; : : : ; xm) 7!(Pmi=1 wixi� t) from Rm into R. A -circuit is de�ned as a directed acyclic circuit thatconsists of -gates. The most frequently considered special case of a smooth thresholdcircuit is the sigmoid threshold circuit, which is a �-circuit for � : R ! R de�ned by�(x) = 11 + exp(�x) .Smooth threshold circuits (-circuits for \smooth" functions ) have become the stand-ard model for the investigation of learning on multi-layer arti�cial neural nets ([K], [HKP],[RM], [SS1], [SS2], [WK]). In fact, the most common learning algorithm for multi-layerneural nets, the Backwards-Propagation algorithm, can only be implemented on -circuitsfor di�erentiable functions .Another motivation for the investigation of smooth threshold circuits is the desire toexplore simple models for the (very complicated) information processing mechanisms inneural systems of living organisms. In a �rst approximation one may view the current�ring rate of a neuron as its current output ([S], [RM], [K]). The �ring rates of neuronsare known to change between a few and several hundred �rings per second. Hence asmooth threshold gate provides a somewhat better computational model for a neuronthan a digital element that has just two di�erent output signals.In this paper we examine the power of smooth threshold circuits for computing Booleanfunctions. In particular, we compare their power with that of boolean threshold circuits(i.e. s-circuits for the \heaviside" function s, with s(x) = 1 if x � 0 and s(x) = 0 ifx < 0). In the literature one often refers to such \boolean threshold circuits" as \linearthreshold circuits", or simply as \threshold circuits".The most surprising result of this paper is the existence of a boolean function Fn, thatcan be computed by a large class of -circuits (containing �-circuits) with small weightsin depth 2 and size 5 (Theorem 2.2.), but which cannot be computed with any weightsize by constant size boolean threshold circuits of depth 2 (Theorem 3.1). A witness forthis di�erence in computational power is the boolean function Fn withFn(~x; ~y) := Majority(~x)�Majority(~y);where ~x and ~y are n-bit vectors.The proof of this lower bound result for boolean threshold circuits (Theorem 3.1)is of independent interest. First, this proof demonstrates that the restriction method isnot only useful in order to prove lower bounds for AC0-circuits, but also for thresholdcircuits. Secondly, this proof exploits some previously unused potential in a standardtool for the analysis of threshold circuits: the "-Discriminator Lemma of [HMPST ]. Itis essential for our proof that the "-Discriminator Lemma holds not just for the uniformdistribution over the input space (as it is stated in [HMPST]), but for any distribution.2



Hence we have the freedom to construct such a distribution in a malicious manner, wherewe exploit speci�c \weak points" of the considered threshold circuit. This extra powerof the (generalized) "-Discriminator Lemma is crucial: in Remark 3.10 we show that itsconventional version is insu�cient for the proof of Theorem 3.1.Subsequent to the preliminary version [MSS] of this paper, DasGupta and Schnitger[DS] have shown that the boolean function SQn withSQn(x1; : : : xn; y1; : : : ; yn2) = (( nXi=1 xi)2 � n2Xi=1 yi)leads to a depth-independent separation of boolean threshold circuits and -circuits. Inparticular, SQn is computable by a large class of -circuits in constant size, whereasany boolean threshold circuit requires size 
(logn). However, the gate function  has tosatisfy more stringent di�erentiabilty requirements than are necessary for the constant-size computation of Fn. For the case of analog input, [DS] also provides a comparison ofthe approximation power of various -circuits.In order to compute a boolean function on an analog computational device one has toadopt a suitable output convention (similar to the conventions that are used to carry outdigital computations on real-world computers, which consists of non-digital computationalelements such as transistors).De�nition 1.1 A -circuit C computes a boolean function F : f0; 1gn ! f0; 1g withseparation " if there is some tC 2 R such that for any input (x1; : : : ; xn) 2 f0; 1gn theoutput gate of C outputs a value which is at least tC+" if F (x1; : : : ; xn) = 1, and at mosttC � " otherwise.A computation without separation at the output gate appears to be less interesting,since then an in�nitesimal change in the output of any -gate in the circuit may invertthe output bit. Hence we consider in this paper computations on -circuits Cn withseparation at least 1p(n) for some polynomial p (where n is the number of input bits ofCn). One nice feature of this convention is that, for Lipschitz bounded gate functions and polynomial size -circuits Cn of constant depth and with polynomially boundedweights, it allows a tolerance of 1poly(n) for all -gates in Cn.We will give in Theorem 4.1 a \separation boosting" result, which says that forany constant depth d one may demand for polynomial size -circuits with polynomi-ally bounded weights just as well a separation of size 
(1) without changing the class ofboolean functions that can be computed.An extended abstract of this paper has previously appeared in [MSS]. In this fullversion of the paper we have strengthened the claim of Theorem 4.1 by imposing a lessstringent condition on .
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2 Sigmoid Threshold Circuits for the XOR of Major-itiesWe write (NL) for the following property of a function  : R! R,(NL) There is some rational number s so that:1.  is di�erentiable on some open interval containing s, and2. 00(s) exists and is nonzero.Obviously the function � satis�es (NL).Observe that property (NL) is basically the requirement that the function be nonlinear;for instance, if 00 happens to be everywhere de�ned, then (NL) is precisely equivalent to not being a linear function. The nonlinearity of  is obviously a necessary assumptionfor Theorem 2.2, since otherwise a -circuit can only compute linear functions.Without loss of generality, we will assume thatc := 00(s)4 > 0for some point s as in the de�nition. If this value where to be negative, we simply replace by � in what follows.Lemma 2.1 Assume that  satis�es (NL). De�ne the function�(x) := (x + s) + (�x + s) :Then, the function � is even, and there exists some " > 0 so that the following propertyholds: �(a+ h)� �(a) � ch2 for all a; h 2 [0; "] :Proof. Note that �(�x) = �(x) directly from the de�nition, so � is even. Moreover, �is di�erentiable on some open interval containing x = 0, because  is di�erentiable in aneighborhood of s, and evenness implies that �0(0) = 0. Observe also that �00(0) exists,and in fact �00(0) = 200(s) = 8c > 0 :By de�nition of �00(0) (just write �0(l) = �0(0)+ �00(0)l+ r(l) with liml!0 r(l)l = 0), there issome " > 0 so that �0(l) � �00(0)l2 = 4cl (1)for all each l 2 [0; 2"]. Because �0(l) � 4cl > 0 for l > 0, it follows that � is strictlyincreasing on [0; 2"]. We are only left to prove that this " is so that the last propertyholds. 4



Pick any a; h 2 [0; "]. Assume that h 6= 0, as otherwise there is nothing to prove. As aand a+ h are both in the interval [0; 2"], and � is strictly increasing there, it follows that�(a+ h)� �(a) > �(a + h)� �(a + h2)and by the Mean Value Theorem this last expression equals �0(l)h2 for some l 2 (a+ h2 ; a+h) .Since l < a+ h � 2", we may apply inequality (1) to obtain�(a+ h)� �(a) > 2clh :The result now follows from the fact that l > a+ h2 � h2 .Theorem 2.2 Assume that  : R! R satis�es (NL). Then there exists for every n 2 Na -circuit Cn of depth 2 with 5 gates (and rational weights and thresholds of size O(1))that computes Fn with separation 
(1=n2).Proof. With � and " as in Lemma 2.1 one has �(a) > �(b) , jaj > jbj for any a; b 2[�";+"]. Hence any two nonzero reals u; v 2 [�"=2;+"=2] have di�erent sign if and onlyif �(u� v)� �(u+ v) > 0. Let x1; : : : ; xn; y1; : : : ; yn 2 f0; 1g be arbitrary and setu := "2(4(x1 + : : :+ xn)� 2n+ 14n );v := "2(4(y1 + : : :+ yn)� 2n+ 14n ):Then we obtain �(u� v)� �(u+ v) > 0, Fn(~x; ~y) = 1:Furthermore Lemma 2.1 implies thatj�(u� v)� �(u+ v)j � 4c �minfu2; v2g = 
(1=n2):Hence, we can achieve separation 
(1=n2) by using a -gate on level two of circuit Cnthat checks whether �(u� v)� �(u+ v) > 0. Such a -gate exists: Since 00(s) 6= 0, thereis some t with 0(t) 6= 0. Now transform �(u� v)� �(u+ v) into a suitable neighborhoodof t and choose a suitable rational approximation of �(t) as threshold.Corollary 2.3 Assume that  : R ! R satis�es (NL) and  is monotone. Then thereexists for every n 2 N a -circuit Cn of depth 2 and size 5 (with rational weights andthresholds of size polynomial in n) that computes Fn with separation 
(1).Proof. Multiply the weights of the -gate on level two of the circuit Cn with n2 andtransform the threshold accordingly. In this way we can ensure that the weighted sumcomputed at the top gate has distance 
(1) from its threshold.5



Remark 2.4. For computations with real (rather than Boolean) inputs, there has beensome work dealing with the di�erences in capabilities between sigmoidal and thresholddevices; in particular [So] studies questions of interpolation and classi�cation related tolearnability (VC dimension).3 Boolean threshold gates are less powerfulTheorem 3.1 No family (Cn j n 2 N) of constant size boolean threshold circuits ofdepth 2 (with unrestricted weights and thresholds) can compute the function Fn.Proof. Assume, by way of contradiction, that there exist such circuits Cn, each with atmost k0 gates on level one. We can demand that all weights are integers and that the level2 gate has weights of absolute value at most 2O(k0 log k0) ([Mu],[MT]). Thus we can assume,after appropriate duplication of level one gates, that the gate on level 2 has only weightsfrom f�1; 1g. Let k be an upper bound on the resulting number of gates.In the next section we use the restriction method to eliminate those gates on levelone of Cn whose weights for the xi (yi) have drastically di�erent sizes. It turns out thatwe cannot achieve this goal for all gates. For example, if all the weights wi (for the xi)are much larger than the weights ui (for the yi), then we can only limit the variance ofthe weights wi (see condition b. in De�nition 3.2). Nevertheless, the restriction methodallows us to \regularize" all bottom gates of Cn (see Lemma 3.4). In section 3.2 weshow that the resulting regularized gates behave predictably for certain distributions (seeLemma 3.7). The argument concludes in section 3.3 with a non-standard application ofthe "-Discriminator Lemma.3.1 The Restriction MethodOur goal will be to �x certain inputs such that all bottom gates of Cn will have a normalform as described in the following de�nition.De�nition 3.2. Let G be a boolean threshold gate (with inputs x1; : : : ; xm; y1; : : : ; ym)that outputs 1 if and only if mXi=1wixi + mXi=1 uiyi � t. Assume that the numbering is suchthat jw1j � : : : � jwmj and ju1j � : : : � jumj:We say that G is l-regular if and only if all wi have the same sign (negative, zero, orpositive) and all ui have the same sign. Additionally, one of the following conditions hasto hold, 6



a. G is constant.b. 8i (jwij � m1=8juij) and jwmj � 60jw1j.c. 8i (juij � m1=8jwij) and jumj � 60ju1j.d. jwmj � 30(1 + l)jw1j and jumj � 30(1 + l)ju1j.First we will transform a single threshold gate to a regular gate.Lemma 3.3 Let G be an arbitrary threshold gate that outputs 1 if and only ifnXi=1wixi + nXi=1 uiyi � t:Then there are sets Mx � f1; : : : ; ng and My � f1; : : : ; ng of size n60 each and anassignment A : fxi : i 62Mxg [ fyi : i 62Myg ! f0; 1g such thata. when values are assigned according to A, Fn=60 will be obtained as the correspondingsubfunction of Fn, andb. G, when restricted to the remaining free variables, is n1=8-regular.Proof. First we determine a set M 0x � f1; : : : ; ng of size n=3 such that all wi (withi 2M 0x) are either all positive, all negative or all zero. A set M 0y � f1; : : : ; ng of size n=3is chosen analogously to enforce the same property for the coe�cients ui (with i 2M 0y).Set m = n=3. After possibly renumbering the indices, we can assume thatM 0x = M 0y =f1; : : : ; mg. We can also assume that jw1j � : : : � jwmj as well as ju1j � : : : � jumj. Wede�ne R := f1; : : : ; m4 g; S := fm4 + 1; : : : ; 3m4 g and T := f3m4 + 1; : : : ; mg:By assigning 1's to the xi's with i 2 R and 0's to the xi's with i 2 T or vice versa,and by assigning 1's to the yi's with i 2 R and 0's to the yi's with i 2 T or vice versa,we obtain four partial assignments.Let us now interpret G as a threshold gate of the remaining variables xi (i 2 S) andyi (i 2 S). By choosing one of the four assignments, we can \move" the threshold of theresulting gate over a distance d withd =Xi2T jwij �Xi2R jwij+Xi2T juij �Xi2R juij:If for none of these four partial assignments the threshold gate G gives constant output,we have d �Xi2S jwij+Xi2S juij:7



This implies that Xi2T (jwij+ juij) � Xi2R[S (jwij+ juij): (2)Set a = Pi2R[S (jwij+ juij)=(3m=4) and b = Pi2T (jwij+ juij)=(m=4): Then (2) impliesfor these \averages" of jwij+ juij over R[ S respectively T that b � 3a.We subdivide the set S by introducing the setsP = f3m4 � 2m10 + 1; : : : ; 3m4 � m10g and Q = f3m4 � m10 + 1; : : : ; 3m4 g:Since jwij + juij is a non-decreasing function of i we have for all i 2 R [ S (and inparticular for all i 2 P [Q) jwij+ juij � b � 3a: (3)Furthermore, we have for all i 2 P jwij+ juij � a=10; (4)since otherwise jwij+ juij < a=10 for all i 2 (R[ S)� (P [ Q), and we would getXi2R[S (jwij+ juij) = Xi2(R[S)�(P[Q) (jwij+ juij) + Xi2P[Q (jwij+ juij)� (34 � 210)m � a10 + 3a � 2m10= m � a(34 � 110 + 210(3� 110))< 3m � a4 ;which is a contradiction to the de�nition of a.(3) and (4) jointly imply thatmaxi2P[Q(jwij+ juij) � 30 mini2P[Q(jwij+ juij): (5)Case 1: 8 i 2 P(jwij � m1=8juij _ juij � m1=8jwij).We can �nd a subset P 0 � P of size m=20 such that8i 2 P 0 (jwij � m1=8juij) or 8i 2 P 0 (juij � m1=8jwij):8



In the former case, (5) implies thatmaxi2P 0 jwij � 30mini2P 0(jwij+ juij)� 30(1 +m�1=8)mini2P 0 jwij� 60mini2P 0 jwij:Set Mx = My = P 0 and �x the remaining variables such that exactly half of the xi's andhalf of the yi's are 0.Analogously, in the latter case we obtain maxi2P 0 juij � 60mini2P 0 juij. Mx and My areobtained as above.Case 2: Otherwise.Then 9i0 2 P (jwi0j < m1=8jui0j^ jui0j < m1=8jwi0j). We have for all i 2 Q:jwij+ juij � 30(jwi0j+ jui0j) � minf30jwi0j(1 +m1=8); 30jui0j(1 +m1=8)g:Thus we have maxi2Q jwij � 30(1 + m1=8)mini2Q jwij and maxi2Q juij � 30(1 +m1=8)mini2Q juij.Choose Mx to be an arbitrary subsets of Q of size n60 , set My =Mx and �x the remainingvariables in the same fashion as before.If we perform the \regularization process" for all bottom gates of Cn, then we obtainLemma 3.4 There are sets Mx;My � f1; : : : ; ng of size m = n60k and there is an assign-ment A : fxi : i 62Mxg [ fyi : i 62Myg ! f0; 1g such thata. when values are assigned according to A, Fm will be obtained as the correspondingsubfunction of Fn, andb. all level one gates of Cn, when restricted to the free variables, are n1=8-regular.Proof. Apply Lemma 3.3 successively to each of the k level one gates of Cn. Let Mx bethe set of indices of those variables xi which did not receive a value during the processingof all gates by Lemma 3.3. My is de�ned analogously.A is the union of all partial assignments that have been made in this process.We write Dn for the circuit that results from Cn by the restriction of Lemma 3.4.Observe that Dn computes the function Fm (for m = n60k ).
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3.2 The Likely Behavior of a Threshold GateIn this section we will exploit the result of our regularization process. In particular, inLemma 3.7, we will show that, for the input distribution de�ned below, a weighted sumwith small variance in weight sizes \almost" behaves as if all the weights were identical.For the integer s, 1 � s � m, set U(s) = f~x 2 f0; 1gm : mXi=1 xi = sg. X(s) is therandom variable which assigns to each ~x 2 U(s) the value mXi=1wixi; all elements of U(s)are equally likely. Obviously E(X(s)) = sm mXi=1wi.In the following, we will assume that the wi's are either all positive or all negative.Proposition 3.5 Set W = mXi=1w2i and g = maxf jwijjwj j : 1 � i; j � mg. ThenW � ms2 g2 � E(X(s))2:Proof. Set MIN = minfjwij : 1 � i � mg. We getW � 1m(m2 � g2 �MIN2): (6)Also, E(X(s))2 = ( sm � mXi=1wi)2 � ( smm �MIN)2. Thusm2 �MIN2 � (ms )2 � E(X(s))2: (7)If we replace m2 �MIN2 in (6) according to (7), we getW � ms2 � g2 � E(X(s))2:Proposition 3.6 V ar(X(s)) � smW .Proof. We have V ar(X(s)) = E(X(s)2)� E(X(s))2. Also,E(X(s)2) = 1�ms� X~x2U(s)( mXi=1wixi)2= 1�ms�( X~x2U(s) mXi=1wi2xi + 2 X~x2U(s) X1�i<j�mwiwjxixj)= 1�ms�( mXi=1wi2 X~x2U(s) xi + 2 X1�i<j�mwiwj X~x2U(s) xixj)10



= sm � mXi=1wi2 + 2s(s� 1)m(m� 1) X1�i<j�mwiwj:Furthermore, E(X(s))2 = ( 1�ms � X~x2U(s) mXi=1wixi)2= ( 1�ms � mXi=1wi X~x2U(s) xi)2= ( sm mXi=1wi)2= s2m2 mXi=1wi2 + 2s2m2 X1�i<j�mwiwj:In summary, we obtainV ar(X(s)) � ( sm � s2m2 ) mXi=1wi2 � smW:Lemma 3.7 If maxf jwijjwjj : 1 � i; j � mg = O(m1=8), thenPr(jX(s)� E(X(s))j � jE(X(s))jm1=4 ) = O(m3=4s ):Proof. By Chebyshev's inequality, we get for any t (t > 0)Pr(jX(s)� E(X(s))j � t) � V ar(X(s)t2 :Thus, for t = jE(X(s))jm1=4 ), we obtainPr(jX(s)� E(X(s))j � jE(X(s))jm1=4 ) � V ar(X(s)) �m1=2E(X(s))2 :Proposition 3.6 implies V ar(X(s)) �m1=2E(X(s))2 � s �W �m1=2m � E(X(s))2 ;and with Proposition 3.5s �W �m1=2m � E(X(s))2 � ms g2m�1=2 = O(ms m�1=4):
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3.3 A Non-standard Application of the Discriminator LemmaLet G be some boolean threshold gate with weights w1; : : : ; wm, u1; : : : ; um and thresholdt. Set a := Pmi=1 wim and b := Pmi=1 uim :With G we can thus associate the two-dimensional threshold function ax+ by � t. Simil-arly, with Fm we associate the two-dimensional function F : f0; : : : ; mg2 ! f0; 1g, whereF (x; y) = 1 if and only if(x � m2 ^ y < m2 ) _ (x < m2 ^ y � m2 ):Let L be the line ax + by = t in R2 (where t is the threshold of G). Let x0 (y0) be thex-coordinate (y-coordinate) of the intersection of L and y = m2 (x = m2 ). Set x0 = 1(y0 =1) if the line L is horizontal (vertical). We de�neD(G) := minfjx0 � m2 j; jy0 � m2 jg:Proposition 3.8 Let r be an integer with 0 � r � m2 and let Ur be the uniform distribu-tion over Vr = fm2 � r; : : : ; m2 + rg. ThenPrUr�Ur [(x; y) 2 V 2r j ax + by � t ^ F (x; y) = 1g � 12 + D(G) + 12r + 1 :Proof. Let X be the area enclosed by the two lines ax + by = t and ax + by = (a +b) � m2 . (The latter is the line through (m2 ; m2 ).) Intersect X with the set V 2r and call theintersection Xr.Let us assume that D(G) = jx0 � m2 j. Then Xr will contain at most D(G) + 1 pointsper row of V 2r . Thus jXrj � (2r + 1) � (D(G) + 1).On the other hand, the halfspace ax+ by � (a+ b) � m2 contains exactly one half of allthe elements of the set f(x; y) 2 V 2r j F (x; y) = 1g:Let us consider the case that all weights wi are identical and all weights ui are identical.If D(G) is \small", then G will not show any signi�cant advantage in predicting F fora subcollection of the m2 + 1 distributions Ur mentioned in Proposition 3.8. If on theother hand D(G) is large (say proportional to m), then we can trivialize G by choosinga distribution with a small value for r.Our goal is to carry out a similar argument for arbitrary gates G. Consequently weintroduce a collection Qr of distributions over f0; 1gm withQr(~x) = 8>>>>><>>>>>: 0 ; if jPmi=1 xi � m2 j > r1(2r + 1)�� mPmi=1 xi � ; otherwise.12



Note that the probability of a string only depends on its number of ones. The appropriatevalue for the parameter r will be determined later.Finally we de�ne for the considered threshold gate G with input variables x1; : : : ; xm,y1; : : : ; ym,ADVr(G) := PrQr�Qr [G(~x; ~y) = 1jFm(~x; ~y) = 1] � PrQr�Qr [G(~x; ~y) = 1jFm(~x; ~y) = 0]:Lemma 3.9. Set m = n60k . Assume that the boolean threshold gate G with input variablesx1; : : : ; xm; y1; : : : ym is n1=8-regular, and that n is su�ciently large. Furthermore assumethat the natural number r 2 [m31=32; m4 ] satis�esD(G) � r=(64k) or D(G) � 4r :Then jADVr(G)j � 12k :Proof.Case 1: D(G) � r64�k .We know that G is n1=8-regular. We proceed by examining the three di�erent cases (seeDe�nition 3.2.).Case 1.1: 8i (jwij � m1=8juij) and jwmj � 60jw1j:This implies that jaj � m1=8 � jbj. Hence the line L is very \steep". We have in this case,maxfx 2 [0; m] : 9y 2 [0; m] ((x; y) 2 L)g �minfx 2 [0; m] : 9y 2 [0; m] ((x; y) 2 L)g � m7=8:Thus, the set fx 2 [0; m] : 9x0; y0 2 [0; m] (jx� x0j � m3=4 ^ (x0; y0) 2 Lg is containedin an interval of length m7=8 + 2m3=4 + 1 � 3 �m7=8. This implies thatjf(x; y) 2 fm2 � r; : : : ; m2 + rg2 : P (x; y)gj � 3m7=8 �m = 3m15=8; (8)where P (x; y) is equivalent to(ax+ by < t) ^ 9(x0; y0) 2 [0; m]2( (ax0 + by0 � t) ^ (jx� x0j � m3=4) ):As a �rst step towards estimating ADVr(G) we consider the setS = f(~x; ~y) 2 U : G(~x; ~y) = 1 ^ Fm(~x; ~y) = 1gwhere U := f(~x; ~y) 2 f0; 1g2m : m2 � r � mXi=1 xi; mXi=1 yi � m2 + rg:13



One shows that S is contained in the following two sets,S1 = f(~x; ~y) 2 U : j mXi=1wixi � ( mXi=1 xi � mXi=1wi)=mj � ( mXi=1 xi � mXi=1wi)=m5=4gand S2 = f(~x; ~y) 2 U : Fm(~x; ~y) = 1 ^ Q(~x; ~y)g, where Q(~x; ~y) is equivalent to9~x0; ~y0 2 f0; 1gm (j mXi=1 x0i �� mXi=1 xij � m3=4 ^ a � mXi=1 x0i + b � mXi=1 y0i � t):Intuitively, the set S1 consists of all those inputs (that are relevant for Qr) on whichour approximation of G by ax + by � t fails. We will show later that this set has smallprobability. S2 on the other hand is the collection of all relevant inputs on which theapproximation (in a quite liberal sense) succeeds.j mXi=1wixi � a � mXi=1 xij � ( mXi=1 xi � jaj)=m1=4� m3=4 � jaj: (9)We need to �nd vectors ~x0; ~y0 according to the de�nition of set S2.If a � 0, we pick some ~x0 such that mXi=1 x0i = mXi=1 xi + m3=4. This is possible, sinceU � 3m=4[i=m=4f0; 1gi. We then have with (9) a � mXi=1 x0i � mXi=1wixi.If a < 0, we pick some ~x0 such that mXi=1 x0i = mXi=1 xi � m3=4. We then have a � mXi=1 x0i =a � mXi=1 xi � a �m3=4 = a � mXi=1 xi + jaj �m3=4 � mXi=1wixi.Furthermore, we pick some vector ~y0 with b � mXi=1 y0i � mXi=1 uiyi according to the followingprocedure: if all components of ui are positive or all components are zero, then set~y0 = (1; : : : ; 1). Otherwise all components are negative and we set ~y0 = (0; : : : ; 0).This concludes our proof of inclusion, since property Q(~x; ~y) holds for the pair (~x0; ~y0).It is obvious that PrQr�Qr [S1 j Fm(~x; ~y) = 1] � 2 � PrQr�Qr [S1]: If we apply Lemma 3.7for s 2 [m2 � r; m2 + r] � [m4 ; 3m4 ], we obtain PrQr�Qr [S1] = O(m�1=4).In order to give an upper bound on PrQr�Qr [S2] we observe that S2 � S3 [ S4, whereS3 = f(~x; ~y) : (Fm(~x; ~y) = 1) ^ (a � mXi=1 xi + b � mXi=1 yi � t)g andS4 = f(~x; ~y) : (Fm(~x; ~y) = 1) ^ (a � mXi=1 xi + b � mXi=1 yi < t) ^ R(~x; ~y)g:R(~x; ~y) is equivalent to 14



9~x0; ~y0 (j mXi=1 xi � mXi=1 x0ij � m3=4 ^ a � mXi=1 x0i + b � mXi=1 y0i � t):It follows from Proposition 3.8 thatPrQr�Qr [S3 j Fm(~x; ~y) = 1] � 12 + D(G) + 12r + 1 :Also, it is obvious thatPrQr�Qr [S4 j Fm(~x; ~y) = 1] � 2 � PrQr�Qr [S4]:Furthermore, by (8), PrQr�Qr [S4] � 3 �m15=8(2r + 1)2 : Thus we havePrQr�Qr [S j Fm(~x; ~y) = 1] � PrQr�Qr [S1 [ S3 [ S4 j Fm(~x; ~y) = 1]� O(m�1=4) + 12 + D(G) + 12r + 1 + 6m15=8(2r + 1)2� 12 + 164k +O(m�1=16):We will obtain the same upper bound for the probability ofS 0 = f(~x; ~y) 2 U : G(~x; ~y) = 0 ^ Fm(~x; ~y) = 1g:Thus, since PrQr�Qr [S j Fm = 1] + PrQr�Qr [S 0 j Fm = 1] = 1;we get jPrQr�Qr [S j Fm(~x; ~y) = 1]� 12 j � 164k +O(m�1=16):One shows analogously for T = f(~x; ~y) 2 U : G(~x; ~y) = 1 ^ Fm(~x; ~y) = 0g thatjPrQr�Qr [T j Fm(~x; ~y) = 0]� 12 j � 164k +O(m�1=16):Thus, jADVr(G)j � 132k +O(m�1=16).Case 1.2: 8i (juij � m1=8jwij) and jumj � 60ju1j.The argument is analogous to Case 1.1.Case 1.3: jwmj � 30(1 + n1=8)jw1j and jumj � 30(1 + n1=8)ju1j.We �rst observe that the set S is contained in the union of the sets S 01 and S 02, whereS 01 = f(~x; ~y) 2 U : P 0(~x; ~y)g; and P 0(~x; ~y) is equivalent to15



(j mXi=1wixi � a � mXi=1 xij � jaj �Pmi=1 xim1=4 ) _ (j mXi=1 uiyi � b � mXi=1 yij � jbj �Pmi=1 yim1=4 );S 02 = f(~x; ~y) 2 U : Fm(~x; ~y) = 1 ^ Q0(~x; ~y)g, and Q0(~x; ~y) is equivalent to9~x0; ~y0 2 f0; 1gm (j mXi=1 x0i �� mXi=1 xij � m3=4 ^j mXi=1 y0i � mXi=1 yij � m3=4 ^ a � mXi=1 x0i + b � mXi=1 y0i � t):Lemma 3.7 implies that PrQr�Qr [S 01 jFm(~x; ~y) = 1] � 2 � PrQr�Qr [S 01] = O(m�1=4): Withan argument analogous to Case 1.1 we get S 02 � S3 [ S 04 whereS 04 = f(~x; ~y) : (Fm(~x; ~y) = 1) ^ (a � mXi=1 xi + b � mXi=1 yi < t) ^ R0(~x; ~y)g:R0(~x; ~y) is equivalent to 9~x0; ~y0 (j mXi=1 xi � mXi=1 x0ij � m3=4 ^j mXi=1 yi � mXi=1 y0ij � m3=4 ^ a � mXi=1 x0i + b � mXi=1 y0i � t):We have already shown thatPrQr�Qr [S3 j Fm(~x; ~y) = 1] � 12 + D(G) + 12r + 1 :Furthermore, it is obvious thatPrQr�Qr [S 04 j Fm(~x; ~y) = 1] � 4 �m �m3=4(2r + 1)2 :The remaining argument is now analogous to Case 1.1.Case 2: D � 4r.The analysis is now far simpler. The probability of the set S1 (resp. S 01) is computed asbefore. As for S3 we now getPrQr�Qr [S3 j Fm(~x; ~y) = 1] 2 f0; 1g:For S4 we obtain PrQr�Qr [S4 j Fm(~x; ~y) = 1] = 0:The same applies to S 04. This follows, since the set U will be entirely contained in one ofthe halfspaces of f(~x; ~y) : a �Pmi=1 xi + b �Pmi=1 yi = tg.16



In order to prove Theorem 3.1 we observe that for su�ciently large n we can �nd rsuch that for each of the at most k gates G on level one of Dn:D(G) � r64k or D(G) � 4r:(A value for r can be found whenever k is bounded from above by the number of possible\r-intervals". This is the case, provided k � c � logk(m) for a suitably small constant c.This in turn is satis�ed for k � d � log nlog log n for a suitably small constant d.)The "-Discriminator Lemma of [HMPST] can be generalized to hold for any distribu-tion over the input space. We apply it here to the distribution Qr � Qr over the inputspace f0; 1g2m of the circuit Dn (which computes the function Fm).Since the weights of the gate on level two of Dn are from f�1; 1g, we get jADVr(G)j �1k for some gate G on level one of Dn. But this contradicts Lemma 3.5.Thus we get a lower bound of 
( log nlog log n) for the size of depth 2 threshold circuits (withweights from f�1; 1g for the top gate) computing Fn. For unrestricted threshold circuitsour lower bound will be 
( log log nlog log log n) ([M],[MT]).Remark 3.10 It is not possible to prove Theorem 3.1 with the customary version ofthe "-Discriminator Lemma, where one considers the uniform distribution over the inputspace. Consider for example the threshold gate G de�ned byG(x1; : : : xn; y1; : : : yn) = 1, nXi=1 xi � nXi=1 yi � c � pn:For appropriate c one has ADV (G) = 
(1) (where ADV (G) is de�ned like ADVr(G),but with regard to the uniform distribution over f0; 1g2n). This happens, because a\large discrepancy" in x-sum and y-sum is more likely if we assume Pni=1 xi � n2 andPni=1 yi � n2 than if we assume (say) Pni=1 xi � n2 and Pni=1 yi � n2 . This phenomenon hasbeen independently observed by Bultman [B].Corollary 3.7The class of boolean functions computable by constant size booleanthreshold circuits of depth 2 with integer weights of polynomial size is properly containedin the class of boolean functions computable by constant size �-circuits of depth 2 withpolynomial size rational weights (even with common polynomial size denominator) andseparation 1poly .The same statement holds if one considers arbitrary real weights for both types ofcircuits (still with separation 1poly ).Proof. It is quite easy to simulate boolean threshold circuits of size s and constant depthd by sigmoid threshold circuits of the same size and depth. The containment is proper asa consequence of Theorems 3.1 and 2.2.
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4 Simulation Results and Separation BoostingTC0d() is the class of those families (gn j n 2 N) of boolean functions that are computable,with separation 
( 1poly(n)), by polynomial size, depth d -circuits whose weights are realsof absolute value at most poly(n). TC0d ([HMPST]) is the corresponding class of familiesof boolean functions computable by polynomial size, depth d boolean threshold circuitswhose weights are polynomial size integers.Theorem 4.1 Let  : R! [0; 1] be a nondecreasing function that is Lipschitz-boundedand converges fast to 0 (resp. 1) in the following sense:9 " > 0 9 x0 > 0 8 x � x0 �(�x) � 1x" ^ 1� (x) � 1x"� :Then the following holds.(a) For every d 2 N, TC0d = TC0d().(b) The class TC0d() does not change if we demand separation 
(1).Observe, that the above class of functions also includes the standard sigmoid �.Proof. Assume that (gnjn 2 N) is a family of boolean functions in TC0d(). Thus(gnjn 2 N) can be computed with separation 1p(n) by some family (Cnjn 2 N) of -circuits of depth d with the number of gates and the size of weights bounded by q(n) (forsome polynomials p and q). Since  is Lipschitz-bounded, and since the depth d of Cn isa constant, there exists a polynomial r(n) with the following property:If the gate function of each gate G in Cn is replaced by some arbitrary functionG : R ! R (where the functions G may be di�erent for di�erent gates G)such that 8x 2 R(j(x)� G(x)j � 1r(n));then for each input x1; : : : ; xn of Cn the value of the output gate of the newcircuit di�ers from the value of the output gate of Cn by at most 12p(n) .In order to construct a boolean threshold circuit Cbn that computes gn, one replaces inCn each internal -gate that outputs (Pmj=1 �jyj � �) for inputs y1; : : : ; ym 2 [0; 1] (withreals �1; : : : ; �m; � of polynomial size in n) by a weighted sumS(~y) := lXk=1 12r(n)Hk(y1; : : : ; ym)of l := 2r(n) boolean threshold gates H1; : : : ; Hl (which use the same weights �1; : : : ; �mas G). The function S is chosen to be a step function which approximates  such that forall y1; : : : ; ym 2 [0; 1], j( mXj=1�jyj � �)� S(~y)j � 12r(n) :18



In a second step, one replaces each of the boolean threshold gates Hk by a booleanthreshold gate H 0k whose weights and thresholds are integers of polynomial size. We setS 0(~y) := lXk=1 12r(n)H 0k(y1; : : : ; ym):The threshold gates H 0k are chosen such that8y1; : : : ; ym 2 [0; 1](jS(~y)� S 0(~y)j � 12r(n)):Let C 0n be the circuit that results from Cn by replacing in the described manner eachinternal -gate in Cn by an array of boolean threshold gates H 0k. For every input, thevalue of the output gates of Cn and C 0n di�er by at most 12p(n) . Hence we can replacethe output gate of C 0n by a boolean threshold gate with integer weights and threshold ofpolynomial size such that the resulting boolean threshold circuit Cbn computes gn. Thisshows that (gnjn 2 N) 2 TC0d .In order to prove the other inclusion assume that (gnjn 2 N) 2 TC0d is computed bya family (Bnjn 2 N) of boolean threshold circuits of depth d, where Bn has at most p(n)gates and its weights and thresholds are integers of absolute value at most q(n) (for somepolynomials p and q with p(n) � q(n) � 2 for all n 2 N). Without loss of generality, weassume that for each circuit input the weighted sum at each gate in Bn has distance atleast 1 from its threshold (if this is not the case, �rst multiply all weights and thresholdsof gates in Bn by 2, and then lower each threshold by 1). In addition we assume forsimplicity that x0 = 1 in the assumption about .By the assumption about  there exists some l 2 N such that8 x � 1((�xl) � 1x and 1� (xl) � 1x):Let B0n be a boolean threshold circuit that results from Bn by multiplying �rst all weightsand thresholds of gates in Bn by 2[2p(n)q(n)]l. It is obvious that B0n also computes theboolean function gn. In addition, for each circuit input the weighted sum at each gate inB0n has distance at least 2[2p(n)q(n)]l from its threshold.Let Cn be the -circuit that results if we replace each boolean threshold gate in B0nby a -gate with the same weights and threshold. Then one shows by induction on thedepth of a gate G in Cn thatfor every boolean circuit input, the output of G di�ers by at most �n from the outputof the corresponding gate in B0n, where �n := 12p(n)q(n) .In the induction step one exploits thatp(n) � q(n) � 2 � [2p(n)q(n)]l � �n = [2p(n)q(n)]l:This implies that a change of at most �n in each of the at most p(n) inputs of G causesa change of at most [2p(n)q(n)]l in the value of the weighted sum that reaches G, and sothis weighted sum has distance at least2[2p(n)q(n)]l � [2p(n)q(n)]l = [2p(n)q(n)]l19



from the threshold. Therefore the output value of the -gate G di�ers by at mostmaxn1� ([2p(n)q(n)]l); (�[2p(n)q(n)]l)o � 12p(n)q(n) = �nfrom the output of the corresponding boolean threshold gate in B0n.The preceding argument implies that for any n � 2 the -circuit Cn with outerthreshold 12 computes the boolean function gn with separation 14 .Remark 4.2 One can also simulate polynomial size �-circuits with weights of absolutevalue at most 2poly(n) by polynomial size boolean threshold circuits with 0-1 weights;however in this case the circuit depth increases by a constant factor. This simulation canbe extended to the case of real-valued inputs, where we assume that polynomially manybits of each real input are given as inputs to the simulating boolean threshold circuit.Remark 4.3 More recently it has been shown (see the paper by Maass in this volume,or the extended abstract [M]) that for neural nets with arbitrary piecewise polynomialactivation functions  (with polynomially many polynomial pieces of bounded degree) andarbitrary real weights, the class of boolean functions that can be computed in constantdepth and polynomial size (with arbitrarily small separation) is contained in TC0.
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