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Abstract
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compute exactly the same boolean functions as the corresponding circuits with linear
threshold gates.
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1 Introduction

Research on neural networks has led to the investigation of massively parallel compu-
tational models that consist of analog computational elements. Usually these analog
computational elements are assumed to be smooth threshold gates, i.e.y-gates for some
nondecreasing differentiable function 7 : R — R. A v-gate with weights wy, ..., w,, € R
and threshold ¢ € R is defined to be a gate that computes the function (zq,...,2,) —
(X wiz; — t) from R™ into R. A 7-circuit is defined as a directed acyclic circuit that
consists of y-gates. The most frequently considered special case of a smooth threshold
circuit is the 1sigmoid threshold circuit, which is a o-circuit for ¢ : R — R defined by
14 exp(—a)

Smooth threshold circuits (y-circuits for “smooth” functions 7) have become the stand-
ard model for the investigation of learning on multi-layer artificial neural nets ([K], [HKP],
[RM], [SS1], [SS2], [WK]). In fact, the most common learning algorithm for multi-layer
neural nets, the Backwards-Propagation algorithm, can only be implemented on vy-circuits
for differentiable functions ~.

o(x)

Another motivation for the investigation of smooth threshold circuits is the desire to
explore simple models for the (very complicated) information processing mechanisms in
neural systems of living organisms. In a first approximation one may view the current
firing rate of a neuron as its current output ([S], [RM], [K]). The firing rates of neurons
are known to change between a few and several hundred firings per second. Hence a
smooth threshold gate provides a somewhat better computational model for a neuron
than a digital element that has just two different output signals.

In this paper we examine the power of smooth threshold circuits for computing Boolean
functions. In particular, we compare their power with that of boolean threshold circuits
(i.e. s-circuits for the “heaviside” function s, with s(z) = 1 if x > 0 and s(z) = 0 if
x < 0). In the literature one often refers to such “boolean threshold circuits” as “linear
threshold circuits”, or simply as “threshold circuits”.

The most surprising result of this paper is the existence of a boolean function F;,, that
can be computed by a large class of y-circuits (containing o-circuits) with small weights
in depth 2 and size 5 (Theorem 2.2.), but which cannot be computed with any weight
size by constant size boolean threshold circuits of depth 2 (Theorem 3.1). A witness for
this difference in computational power is the boolean function F;, with

F.(Z,79) := Majority(¥) & Majority(y),

where ¥ and ¢ are n-bit vectors.

The proof of this lower bound result for boolean threshold circuits (Theorem 3.1)
is of independent interest. First, this proof demonstrates that the restriction method is
not only useful in order to prove lower bounds for AC-circuits, but also for threshold
circuits. Secondly, this proof exploits some previously unused potential in a standard
tool for the analysis of threshold circuits: the e-Discriminator Lemma of [HMPST]. It
is essential for our proof that the e-Discriminator Lemma holds not just for the uniform
distribution over the input space (as it is stated in [HMPST]), but for any distribution.



Hence we have the freedom to construct such a distribution in a malicious manner, where
we exploit specific “weak points” of the considered threshold circuit. This extra power
of the (generalized) e-Discriminator Lemma is crucial: in Remark 3.10 we show that its
conventional version is insufficient for the proof of Theorem 3.1.

Subsequent to the preliminary version [MSS] of this paper, DasGupta and Schnitger
[DS] have shown that the boolean function S@Q,, with

n

SQu(T1, . Ty Y1y e Yn2) = ((ZTZ)2 > Zyl)
i—1

=1

leads to a depth-independent separation of boolean threshold circuits and ~-circuits. In
particular, S@Q), is computable by a large class of ~-circuits in constant size, whereas
any boolean threshold circuit requires size Q(logn). However, the gate function 7 has to
satisfy more stringent differentiabilty requirements than are necessary for the constant-
size computation of F,,. For the case of analog input, [DS] also provides a comparison of
the approximation power of various 7y-circuits.

In order to compute a boolean function on an analog computational device one has to
adopt a suitable output convention (similar to the conventions that are used to carry out
digital computations on real-world computers, which consists of non-digital computational
elements such as transistors).

Definition 1.1 A v-circuit C computes a boolean function F : {0,1}" — {0,1} with
separation e if there is some tc € R such that for any input (xq,...,x,) € {0,1}" the
output gate of C outputs a value which is at least tc+¢ if F(xy,...,x,) = 1, and at most
tc — € otherwise.

A computation without separation at the output gate appears to be less interesting,
since then an infinitesimal change in the output of any ~-gate in the circuit may invert
the output bit. Hence we consider in this paper computations on ~-circuits C,, with

1
separation at least ﬁ for some polynomial p (where n is the number of input bits of
p(n
Cy). One nice feature of this convention is that, for Lipschitz bounded gate functions
~v and polynomial size y-circuits C,, of constant depth and with polynomially bounded
weights, it allows a tolerance of m for all v-gates in C,,.

We will give in Theorem 4.1 a “separation boosting” result, which says that for
any constant depth d one may demand for polynomial size 7y-circuits with polynomi-
ally bounded weights just as well a separation of size (1) without changing the class of
boolean functions that can be computed.

An extended abstract of this paper has previously appeared in [MSS]. In this full
version of the paper we have strengthened the claim of Theorem 4.1 by imposing a less
stringent condition on .



2 Sigmoid Threshold Circuits for the XOR of Major-
ities
We write (NL) for the following property of a function v: R — R,

(NL) There is some rational number s so that:

1. v is differentiable on some open interval containing s, and

2. v"(s) exists and is nonzero.

Obviously the function o satisfies (NL).

Observe that property (NL) is basically the requirement that the function be nonlinear;
for instance, if 7" happens to be everywhere defined, then (NL) is precisely equivalent to
~v not being a linear function. The nonlinearity of v is obviously a necessary assumption
for Theorem 2.2, since otherwise a y-circuit can only compute linear functions.

Without loss of generality, we will assume that
7" (s)

= >0
¢ A

for some point s as in the definition. If this value where to be negative, we simply replace
v by —~v in what follows.

Lemma 2.1 Assume that v satisfies (NL). Define the function
O(z) == y(x+s)+y(—x+s).

Then, the function 0 is even, and there exists some € > 0 so that the following property
holds:
O(a+h) —0(a) > ch® forall a,h €0,¢].

Proof. Note that §(—z) = 0(z) directly from the definition, so 6 is even. Moreover, 6
is differentiable on some open interval containing x = 0, because 7 is differentiable in a
neighborhood of s, and evenness implies that 6'(0) = 0. Observe also that 6"(0) exists,
and in fact

6"(0) =29"(s) =8¢ > 0.

By definition of 6”(0) (just write 6'(l) = 6'(0) + 0" (0)l + r(I) with %IHUI # = 0), there is
—

some € > 0 so that 57(0\]

= 4cl (1)

for all each [ € [0,2¢]. Because #'(l) > 4cl > 0 for [ > 0, it follows that 6 is strictly
increasing on [0, 2c]. We are only left to prove that this e is so that the last property
holds.



Pick any a, h € [0,2]. Assume that h # 0, as otherwise there is nothing to prove. As a
and a + h are both in the interval [0, 2¢], and 6 is strictly increasing there, it follows that

B(a+h) —0(a) > 6(a+h)—0(a+ g)

and by the Mean Value Theorem this last expression equals 9’([)% for some [ € (a+ %, a-+
h) .
Since | < a + h < 2e, we may apply inequality (1) to obtain

O(a+h) —60(a) > 2clh .

The result now follows from the fact that [ > a + % > % []

Theorem 2.2 Assume that v : R — R satisfies (NL). Then there ezists for everyn € N

a y-circuit C,, of depth 2 with 5 gates (and rational weights and thresholds of size O(1))
that computes F, with separation Q(1/n?).

Proof. With 6 and ¢ as in Lemma 2.1 one has 6(a) > 6(b) < |a| > |b| for any a,b €
[—&, +¢]|. Hence any two nonzero reals u,v € [—£/2, +¢/2| have different sign if and only
if O(u —v) —O(u+v) >0. Let z,..., 2, y1,...,yn € {0,1} be arbitrary and set

e A1 +...+x,) —2n+1
n

4(y1+...+yn)—2n+1)
4dn ’

£
V= 5(

Then we obtain
O(u—v)—0(u+v) >0 F,(2,9) =1

Furthermore Lemma 2.1 implies that
0(u —v) — 0(u+v)| > de - min{u’, v*} = Q(1/n?).

Hence, we can achieve separation Q(1/n?) by using a y-gate on level two of circuit C,
that checks whether 6(u — v) — 6(u+ v) > 0. Such a y-gate exists: Since 7”(s) # 0, there
is some ¢ with 7/(¢) # 0. Now transform 6(u — v) — f(u + v) into a suitable neighborhood
of t and choose a suitable rational approximation of 6(t) as threshold. B

Corollary 2.3 Assume that v : R — R satisfies (NL) and 7y is monotone. Then there
exists for every n € N a vy-circuit C, of depth 2 and size 5 (with rational weights and
thresholds of size polynomial in n) that computes F,, with separation Q(1).

Proof. Multiply the weights of the y-gate on level two of the circuit C,, with n? and
transform the threshold accordingly. In this way we can ensure that the weighted sum
computed at the top gate has distance (1) from its threshold. B

5



Remark 2.4. For computations with real (rather than Boolean) inputs, there has been
some work dealing with the differences in capabilities between sigmoidal and threshold
devices; in particular [So] studies questions of interpolation and classification related to
learnability (VC dimension).

3 Boolean threshold gates are less powerful

Theorem 3.1 No family (C, | n € N) of constant size boolean threshold circuits of
depth 2 (with unrestricted weights and thresholds) can compute the function F,.

Proof. Assume, by way of contradiction, that there exist such circuits C,,, each with at
most k' gates on level one. We can demand that all weights are integers and that the level
2 gate has weights of absolute value at most 20+ 165 ([Mu],[MT]). Thus we can assume,
after appropriate duplication of level one gates, that the gate on level 2 has only weights
from {—1,1}. Let k£ be an upper bound on the resulting number of gates.

In the next section we use the restriction method to eliminate those gates on level
one of C,, whose weights for the xz; (y;) have drastically different sizes. It turns out that
we cannot achieve this goal for all gates. For example, if all the weights w; (for the x;)
are much larger than the weights u; (for the y;), then we can only limit the variance of
the weights w; (see condition b. in Definition 3.2). Nevertheless, the restriction method
allows us to “regularize” all bottom gates of C,, (see Lemma 3.4). In section 3.2 we
show that the resulting regularized gates behave predictably for certain distributions (see
Lemma 3.7). The argument concludes in section 3.3 with a non-standard application of
the e-Discriminator Lemma.

3.1 The Restriction Method

Our goal will be to fix certain inputs such that all bottom gates of (), will have a normal
form as described in the following definition.

Definition 3.2. Let G be a boolean threshold gate (with inputs T1, ..., Tm, Y1, -+, Ym)

that outputs 1 if and only if szxl + Zulyz > t. Assume that the numbering is such

=1 i=1
that

lwg| < .o < wp| and Juy| < o< gy

We say that G is l-reqular if and only if all w; have the same sign (negative, zero, or
positive) and all u; have the same sign. Additionally, one of the following conditions has

to hold,



a. G is constant.

fl

Vi (Jwi| > ml/s\ui|) and |wp,| < 60[w|.

Vi (Jui] > mBw;|) and |u,| < 60]u,y.

@)

S

Nwm| <3001 4+ 1) |wq| and |um,| < 30(1 + 1)|uq.

First we will transform a single threshold gate to a regular gate.

Lemma 3.3 Let G be an arbitrary threshold gate that outputs 1 if and only if
n n
Z wW;T; + Z U Y; > t.
i=1 i=1

Then there are sets M, C {1,...,n} and M, C {1,...,n} of size & each and an
assignment A : {x; i ¢ My} U{y; i ¢ M,} — {0,1} such that

a. when values are assigned according to A, F, g0 will be obtained as the corresponding
subfunction of F,, and

b. G, when restricted to the remaining free variables, is n'/®-reqular.

Proof. First we determine a set M, C {1,...,n} of size n/3 such that all w; (with
i € My) are either all positive, all negative or all zero. A set M, C {1,...,n} of size n/3
is chosen analogously to enforce the same property for the coefficients u; (with i € Mg'/)

Set m = n/3. After possibly renumbering the indices, we can assume that M; = M, =

{1,...,m}. We can also assume that |w;| < ... < |w,| as well as |u1]| < ... < |u,|. We
define

3 3
R::{l,...,%}, 5::{%“,...,77”} andT::{Tm—i-l,...,m}.

By assigning 1’s to the x;’s with i € R and 0’s to the z;’s with ¢ € T or vice versa,
and by assigning 1’s to the y;’s with ¢ € R and 0’s to the y;’s with ¢ € T or vice versa,
we obtain four partial assignments.

Let us now interpret G as a threshold gate of the remaining variables z; (i € §) and
y; (i € S). By choosing one of the four assignments, we can “move” the threshold of the
resulting gate over a distance d with

d=""|wi| =Y Jwi| + > Jus] =D |uil.
ieT 1ER ieT 1ER

If for none of these four partial assignments the threshold gate G gives constant output,
we have

d <Y Jwil + D |uil.

1€S 1€S



This implies that

S (wil + lul) < >0 (Jwil + uil). (2)

€T 1€ERUS

Set a = Y icrus (Jwi| + ui|)/(3m/4) and b= Yo7 (Jwi| + |u;))/(m/4). Then (2) implies
for these “averages” of |w;| + |u;| over R U S respectively T that b < 3a.

We subdivide the set S by introducing the sets

3m  2m 3m m 3m
={— - — 1...——— d _ e, — b

Since |w;| + |u;| is a non-decreasing function of i we have for all i € R US (and in
particular for all i € P U Q)

|w;| + |u;] < b < 3a. (3)

Furthermore, we have for all : € P

|wil + [ui| = /10, (4)

since otherwise |w;| + |u;| < a/10 for alli € (RUS) — (P U Q), and we would get

S (wil + us]) = Yoo (wil +fwl)+ Do (wil + |uil)

iERUS i€(RUS)—(PUQ) 1E€EPUQ
3 2 a 2m
Y Sy 24 3e. 2
S Gt g
3 1 2 1
— a 3
mealy 5 18 1)
< 3m-a
4 M)
which is a contradiction to the definition of a.
(3) and (4) jointly imply that
max (Jw;| + Jug]) < 30ig7131619(|wi\ + |u;]). (5)

Case 1: Vi € P(lw;| > m"Bluy| Vv |u;] > m!'/®|wyl).
We can find a subset P’ C P of size m/20 such that

Vie P (Jw;] > m'8lug]) or Vi € P (lug] > m'®|wy).



In the former case, (5) implies that

12161%3<|wi\ < 3052;91'1(‘11)i‘+‘11'i|)

IN

30(1 +m /%) min |w;|
1eP!

IN

60 min |w;/.
iep!

Set M, = M, = P" and fix the remaining variables such that exactly half of the z;’s and
half of the y,;’s are 0.

Analogously, in the latter case we obtain m%x|ui\ < 60 m7ijn|uz~|. M, and M, are
ieP’ eP’

obtained as above.

Case 2: Otherwise.
Then Fig € P (lwi,| < m"®|uiy | A |uiy| < m'/®|wy,]). We have for all i € Q:

wil + Jui] < 30(wiy] + Jui,|) < min{30[wio (1 +m'/*), 30}y, | (1 +m'/*)}.

Thus we have maxX;cq |w;| < 30(1 + m'®) mineq |w;| and max;eq [u;| < 30(1 +
m'/®) minge o |u).

n

Choose M, to be an arbitrary subsets of Q of size &,

variables in the same fashion as before. B

set M, = M, and fix the remaining

If we perform the “regularization process” for all bottom gates of C),, then we obtain

Lemma 3.4 There are sets M,, M, C {1,...,n} of sizem = sor and there is an assign-
ment A {x; i ¢ My} U{y; i ¢ My} — {0,1} such that

a. when values are assigned according to A, F,, will be obtained as the corresponding
subfunction of F,, and

b. all level one gates of C,,, when restricted to the free variables, are n'/®-regular.

Proof. Apply Lemma 3.3 successively to each of the k level one gates of C),. Let M, be
the set of indices of those variables x; which did not receive a value during the processing
of all gates by Lemma 3.3. M, is defined analogously.

A is the union of all partial assignments that have been made in this process. i

We write D,, for the circuit that results from C), by the restriction of Lemma 3.4.
Observe that D,, computes the function F,, (for m = gx).



3.2 The Likely Behavior of a Threshold Gate

In this section we will exploit the result of our regularization process. In particular, in
Lemma 3.7, we will show that, for the input distribution defined below, a weighted sum
with small variance in weight sizes “almost” behaves as if all the weights were identical.

For the integer s, 1 < s < m, set U(s) = {Z € {0,1}" : > z; = s}. X(s) is the

m
random variable which assigns to each & € U(s) the value Y w;z;; all elements of U(s)
i=1

are equally likely. Obviously E(X Z w;.

In the following, we will assume that the w;’s are either all positive or all negative.

Proposition 3.5 Set W = > w; and g = mam{“zf“ :1<i,5<m}. Then
J

i=1

m
W< §g2 -E(X(s))”.

Proof. Set MIN = min{|w;| : 1 <i <m}. We get

1
W < —(m?-g*- MIN?). (6)

m

Also, E(X(s))Qz(%-i )2 Z(mm MIN)2. Thus

m?- MIN? < ()2, B(X(s))2. (7)

s
If we replace m? - MIN? in (6) according to (7), we get
W < ¢> - E(X(s) n

Proposition 3.6 Var(X(s)) <

Proof. We have Var(X(s)) = E(X(s)?) — E(X(s))% Also,

B(X(s)") =

sz x4+ 2 Z Z WW;T,x)

ZeU(s) 1<i<j<m

ie
m
= (m) (sz'Q Z T+ 2 Z wWiw; Z T,%)
S

=1  ZeU(s) 1<i<j<m ZeU(s)



+ m Z w;wsj.

Furthermore,

i=1 1<i<j<m
In summary, we obtain
s 2 &, s
Var(X(s)) < (E — W) ;wi < EW |

Lemma 3.7 If max{\%l :1<i j <m} = O(m'/?), then

lw;| *

[EX ),y m*!

ml/4 )= S )

Pr(|X(s) — E(X(s))] =

Proof. By Chebyshev’s inequality, we get for any ¢ (¢ > 0)

Pr(X(s) - B(X () 2 1) < ")
Thus, for ¢t = WS(#), we obtain
S ar S . Tnl/Q

Proposition 3.6 implies

Var(X(s)) - m!/? SEEE W - ml/2
EXEE S m B

and with Proposition 3.5

s- W -m!/? <Moo 12 _ oM
m-FE(X(s)? ~ s s

11



3.3 A Non-standard Application of the Discriminator Lemma

Let G be some boolean threshold gate with weights wy, ..., wy,, uy, ..., u, and threshold

t. Set . .
— M and b = M
m m
With G we can thus associate the two-dimensional threshold function ax + by > t. Simil-
arly, with F,,, we associate the two-dimensional function F : {0,...,m}* — {0,1}, where
F(z,y) =1 if and only if

a .

(x> =NANy<—)V@e<—=Ay>—=).

2 2 2 -2
Let L be the line ax + by = t in R? (where ¢ is the threshold of G). Let 2’ (y') be the
x-coordinate (y-coordinate) of the intersection of L and y = % (z = F). Set 2’ = oo

(y' = o0) if the line L is horizontal (vertical). We define

. m m
D(G) = min{ls’' — 21,1y~ 2}

Proposition 3.8 Let r be an integer with 0 < r < 3 and let U, be the uniform distribu-
tion over V, = {3 —r,...., % +r}. Then

1 DG)+1
Pryuvl(z,y) € V2 |ax+by >t A F(r,y) =1} < §+%
r

Proof. Let X be the area enclosed by the two lines ax + by = t and ax + by = (a +
b) - % (The latter is the line through (%, %)) Intersect X with the set V/? and call the
intersection X,.

Let us assume that D(G) = [2' — F|. Then X, will contain at most D(G) 4+ 1 points
per row of V2. Thus |X,| < (2r +1) - (D(G) +1).

On the other hand, the halfspace ax + by > (a+b) - % contains exactly one half of all
the elements of the set {(x,y) € V? | F(z,y) =1}.1

Let us consider the case that all weights w; are identical and all weights u; are identical.
If D(G) is “small”, then G will not show any significant advantage in predicting F' for
a subcollection of the % + 1 distributions U, mentioned in Proposition 3.8. If on the
other hand D(G) is large (say proportional to m), then we can trivialize G by choosing
a distribution with a small value for r.

Our goal is to carry out a similar argument for arbitrary gates G. Consequently we
introduce a collection @, of distributions over {0, 1} with

0 ;A X - >

Qr (f) = 1 otherwise.

(2r+1).< Z"ZT ) ’

12



Note that the probability of a string only depends on its number of ones. The appropriate
value for the parameter r will be determined later.

Finally we define for the considered threshold gate G with input variables zy, ..., x,,,
Yty -5 Ym,

ADV(G) := Pra,«q,[G(F, §) = 1[Fn(T,§) = 1] — Prq.«q[G(T,§) = 1|Fn(¥, ) = 0].

Assume that the boolean threshold gate G with input variables
reqular, and that n is sufficiently large. Furthermore assume

31/32 2 satisfies

Lemma 3.9. Set m = 7.
L1y Ty Yty - - Yo i85 08
that the natural number r € [m

D(G) <r/(64k) or D(G) > 4r .

Then

ADV,(G)| < =
ADV(G) < 5

Proof.

Case 1: D(G) <

T
= fak
We know that G is n'/®-regular. We proceed by examining the three different cases (see
Definition 3.2.).

Case 1.1: Vi (lw;| > m'/8|u;]) and |w,,| < 60|w].
This implies that |a| > m!/® - |b]. Hence the line L is very “steep”. We have in this case,

max{z € [0,m] : Iy € [0,m] ((z,y) € L)} —min{z € [0,m] : Iy € [0,m] ((z,y) € L)} < m"/5.

Thus, the set {z € [0,m] : 32’,y' € [0,m] (Jz — 2| < m3* A (2',y') € L} is contained
in an interval of length m7/® + 2m3/4 +1 < 3-m"8. This implies that

{@.y) €45 — g +rF s Play)}] < 3m™* om = sm, (8)

where P(z,y) is equivalent to
(ax+by <t) A 3',y) €[0,m)?*( (ax’' +by >t)A(Jz — 2'| <mP*)).
As a first step towards estimating ADV,(G) we consider the set
S={(@y) eU:GZ 1y =1 AN F(Z,9) =1}

where



One shows that S is contained in the following two sets,

Si={@9 €U Y wiri — O m- S wi)/m| > (O > wy)/m**}
i=1 =1 i=1 =1 i1
and Sy = {(Z,7) € U : F,,,(¥,9) =1 N Q(Z,%)}, where Q(Z, ) is equivalent to
an,y_;e{o,l}m(\Zx;——in\§m3/4 A oa-d xi+b-dy Yy > t).
i=1 i=1 i=1 i=1

Intuitively, the set S; consists of all those inputs (that are relevant for @),) on which
our approximation of G by ax + by > t fails. We will show later that this set has small
probability. S, on the other hand is the collection of all relevant inputs on which the
approximation (in a quite liberal sense) succeeds.

m m m
N wiry —a- Y x) < O a])/m!
i=1 i=1 i=1
< m** . al. (9)

We need to find vectors ', y7 according to the definition of set S,.

m m
If @ > 0, we pick some z' such that Zx; = Zrl + m?*. This is possible, since
i=1

i=1
3m/4 m m

UC |J {0,1}". We then have with (9) a-> 2} > w;z;.
i=m/4 i—1 i=1

m m m
If a < 0, we pick some 2/ such that >z} = Y a; — m**. We then have a- Y 2} =
i=1

=1 =1
m

m m
a- Yz —a-mt=a- z;+|al - m¥* >3 wa.
i-1

=1 =1

m m
Furthermore, we pick some vector y’ with b- Z Y > Z u;1; according to the following
i=1 i=1
procedure: if all components of u; are positive or all components are zero, then set

y = (1,...,1). Otherwise all components are negative and we set y = 0,...,0).

This concludes our proof of inclusion, since property Q(Z, ¢) holds for the pair (:L?’, gJ’)
It is obvious that Prg,«g,[S1 | Fn(Z,¥) = 1] < 2- Prg,«o.[S1]- If we apply Lemma 3.7

for s € [2 —r, 2 +r] C [2,32] we obtain Prg,«q,[Si] = O(m /).

In order to give an upper bound on Prg,«,[S2] we observe that Sy C S3U Sy, where

Sy ={(Z,7) : (Fn(Z,9)=1) A (a-ixZA—b-iyi > t)} and

Sy = {7 (Fal@) = 1) A (a- Y m+b-Su <) A RED.

i=1 =1

R(Z, §) is equivalent to
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- - Ui m - ¢
Iy (1Y~ Y a <mt A a2 +0- Yyl > ).
i=1 i=1 =1

=1

It follows from Proposition 3.8 that

1
P E () =1< >+ —~2T2
raueaulSs | Fud, ) =1 < 5 + 5 2

Also, it is obvious that

PTQTXQT [54 | Fm(f’ g) = ]‘] S 2 ) PTQTXQT[S4]'

3. 15/8
Furthermore, by (8), Prg,xq,[S4] < 2 Thus we have
Pro,«q.[9 | Fn(Z,9) =11 < Prq,xq[S1US3U Sy | Fn(Z,9) = 1]
- 1 DG)+1  6mb/E
< O(m 4 -
S Om O+ 5+ 551 Torrie
1 1

<« 14 ~1/16y
< stemt O(m )

We will obtain the same upper bound for the probability of
S'={(#9) eU:GZ 5 =0 A F,(%,7) =1}

Thus, since
PTQTXQT[S | Fm = ]‘] + PTQTXQT[S’ ‘ Fm = ]‘] = 17

we get
[Pro,xq IS | Fu(@§) = 1] = 5| < = + O(m /"),
One shows analogously for T'= {(Z,7) € U : G(Z,7) =1 A E,(Z,7) = 0} that
QrXQr m\, 5= 6ak )

Thus, |ADV,(G)| < 5= + O(m~'/19).

Case 1.2: Vi (|u;] > m'/®|wy|) and |u,,| < 60]u, .

The argument is analogous to Case 1.1.

Case 1.3: |w,,| < 30(1 + n'/%)|w,| and |u,,| < 30(1 + n'/8)|uy .
We first observe that the set S is contained in the union of the sets S| and S, where
S;={(Z,9) e U: P (Z,9)}, and P'(Z,¥) is equivalent to
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szxl—a Zx2|> 1/41Tl Zuzyl—b Zyl|> i 11/41%),

Sy,=A(Z,9) eU:Fp(Z,9) =1 N Q(Z,9)}, and Q'(Z, §) is equivalent to
3ty € {0, 1" (| a — = Y w| <mPt A
i=1 i=1
Dy D wl <mt A a- YAl by > ),
i=1 i=1 i=1 i=1
Lemma 3.7 implies that Prg,«q,[S) |Fm(Z,9) = 1] < 2 Prg,«q,[S] = O(m~'/*). With
an argument analogous to Case 1.1 we get S, C S3 U S} where

St =1{(Z9): (Fu(@7) =1) A (a-ixi+b-§:yi<t) A R'(Z ).

R'(#,4) is equivalent to

m

m
33?’,;5’ (|Zx2 — Z:}:H < m?* A
i=1

i=1

m m m m
N = Yyl <m®t A a- > a4+ b D>y > ).
=1 =1 =1 =1

We have already shown that

1 D(G)+1
P Sy | Fp(@,9) =1 < =+ ———.
@%@, [S3 | Fun(Z, ) }—2—’_ 2r+1
Furthermore, it is obvious that
4-m-m?/4

P S (2, 7)) =1 < ——————

The remaining argument is now analogous to Case 1.1.

Case 2: D > 4r.

The analysis is now far simpler. The probability of the set S; (resp. S}) is computed as
before. As for S5 we now get

Pro,«q.[9 | Fm(Z,9) = 1] € {0, 1},

For S, we obtain
PTQTXQT[S4 ‘ Fm(fJ 17) = ]‘] = 0

The same applies to S). This follows, since the set U will be entirely contained in one of
the halfspaces of {(Z,9) :a- X" 2, +b->" y; =t} B
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In order to prove Theorem 3.1 we observe that for sufficiently large n we can find r
such that for each of the at most k gates GG on level one of D,,:

D(G) < & or D(G) > 4r.
(A value for r can be found whenever k is bounded from above by the number of possible
“r-intervals”. This is the case, provided k < ¢ -log,(m) for a suitably small constant c.

This in turn is satisfied for k < d - lolgoign for a suitably small constant d.)

The e-Discriminator Lemma of [HMPST] can be generalized to hold for any distribu-
tion over the input space. We apply it here to the distribution ), x @, over the input
space {0,1}*™ of the circuit D,, (which computes the function F},).

Since the weights of the gate on level two of D,, are from {—1,1}, we get |[ADV,(G)| >
% for some gate G on level one of D,,. But this contradicts Lemma 3.5. B

Thus we get a lower bound of Q(log’ﬁ)gn) for the size of depth 2 threshold circuits (with

weights from {—1,1} for the top gate) computing F,,. For unrestricted threshold circuits

our lower bound will be Q(Flg‘)lgﬁog—n) ([M],[MT]).

Remark 3.10 It is not possible to prove Theorem 3.1 with the customary version of
the e-Discriminator Lemma, where one considers the uniform distribution over the input
space. Consider for example the threshold gate G' defined by

G, Ty Y1, Yp) =1 1= > yi > c-/n.
i=1

i=1

For appropriate ¢ one has ADV(G) = Q(1) (where ADV (G) is defined like ADV,(G),
but with regard to the uniform distribution over {0, 1}2"). This happens, because a
“large discrepancy” in z-sum and y-sum is more likely if we assume 7%, z; > 7 and
im1 yi < 5 than if we assume (say) Yii; 2; > § and YiL, y; > 5. This phenomenon has

been independently observed by Bultman [B].

Corollary 3.7The class of boolean functions computable by constant size boolean
threshold circuits of depth 2 with integer weights of polynomaial size is properly contained
in the class of boolean functions computable by constant size o-circuits of depth 2 with
polynomial size rational weights (even with common polynomial size demominator) and

: 1
separation oly

The same statement holds if one considers arbitrary real weights for both types of
circuits (still with separation ﬁ)
Proof. It is quite easy to simulate boolean threshold circuits of size s and constant depth
d by sigmoid threshold circuits of the same size and depth. The containment is proper as

a consequence of Theorems 3.1 and 2.2. R
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4  Simulation Results and Separation Boosting

TCY () is the class of those families (g, | n € IN) of boolean functions that are computable,
with separation Q(Wl(n))’ by polynomial size, depth d ~y-circuits whose weights are reals
of absolute value at most poly(n). TCY ([HMPST]) is the corresponding class of families
of boolean functions computable by polynomial size, depth d boolean threshold circuits

whose weights are polynomial size integers.

Theorem 4.1 Let v : R — [0,1] be a nondecreasing function that is Lipschitz-bounded
and converges fast to 0 (resp. 1) in the following sense:

1 1
E|5>0E!:1:0>0Vx2x0<’y(—:r)§—/\1—7(:r)§—>.
axc @t

Then the following holds.
(a) For every d € N, TCY = TCY(~).
(b) The class TCY(vy) does not change if we demand separation Q(1).

Observe, that the above class of functions also includes the standard sigmoid o.

Proof. Assume that (g,/n € N) is a family of boolean functions in TCY(y). Thus
(gn|n € N) can be computed with separation ﬁ by some family (C,|n € N) of -
circuits of depth d with the number of gates and the size of weights bounded by ¢(n) (for
some polynomials p and ¢). Since 7 is Lipschitz-bounded, and since the depth d of C,, is
a constant, there exists a polynomial r(n) with the following property:

If the gate function of each gate G in C), is replaced by some arbitrary function
7¢ : R — R (where the functions 75 may be different for different gates G)

such that .

Ve € R(|y(z) — va(x)| < m)a

then for each input xzy,...,x, of C, the value of the output gate of the new
circuit differs from the value of the output gate of C,, by at most f(n).

In order to construct a boolean threshold circuit C® that computes g,, one replaces in
C, each internal v-gate that outputs v(X72, ajy; — 0) for inputs yy, ..., ym € [0, 1] (with
reals aq, ..., a,, 0 of polynomial size in n) by a weighted sum

S(y) = ]; 2rtn)Hk(y1’”"ym)

of [ := 2r(n) boolean threshold gates Hy, ..., H; (which use the same weights «y, ..., a;,
as G). The function S is chosen to be a step function which approximates « such that for
all yr,...,ym € 10,1],

(S ey 6) ~ S <

18



In a second step, one replaces each of the boolean threshold gates Hy by a boolean
threshold gate H; whose weights and thresholds are integers of polynomial size. We set

l

yl:"'aym)-

The threshold gates Hj, are chosen such that

Vo1, ym € [0,1](1S(9) = S'(P)] <

o)

Let C], be the circuit that results from C), by replacing in the described manner each
internal y-gate in C,, by an array of boolean threshold gates H;. For every input, the
value of the output gates of C,, and C), differ by at most 2P+(n)- Hence we can replace
the output gate of C! by a boolean threshold gate with integer weights and threshold of
polynomial size such that the resulting boolean threshold circuit C? computes g,. This
shows that (g,|n € N) € TCY.

In order to prove the other inclusion assume that (g,|n € N) € TCY is computed by
a family (B,|n € N) of boolean threshold circuits of depth d, where B,, has at most p(n)
gates and its weights and thresholds are integers of absolute value at most ¢(n) (for some
polynomials p and ¢ with p(n) - ¢(n) > 2 for all n € N). Without loss of generality, we
assume that for each circuit input the weighted sum at each gate in B,, has distance at
least 1 from its threshold (if this is not the case, first multiply all weights and thresholds
of gates in B,, by 2, and then lower each threshold by 1). In addition we assume for
simplicity that zo = 1 in the assumption about +.

By the assumption about 7 there exists some [ € N such that

1 1
Vo> 1(y(-2') < = and 1 —7(a') < =),
X X

Let B! be a boolean threshold circuit that results from B, by multiplying first all weights
and thresholds of gates in B, by 2[2p(n)q(n)]'. It is obvious that B! also computes the
boolean function g,. In addition, for each circuit input the weighted sum at each gate in
B! has distance at least 2[2p(n)q(n)]" from its threshold.

Let C, be the y-circuit that results if we replace each boolean threshold gate in B},
by a y-gate with the same weights and threshold. Then one shows by induction on the
depth of a gate G in C,, that

for every boolean circuit input, the output of G differs by at most d,, from the output
of the corresponding gate in B!, where §,, := S —
PONCHIE & " " 2p(n)g(n)

In the induction step one exploits that

p(n) -q(n)-2-[2p(n)g(n)]' - 6, = [2p(n)q(n)]"

This implies that a change of at most d,, in each of the at most p(n) inputs of G' causes
a change of at most [2p(n)g(n)]' in the value of the weighted sum that reaches G, and so
this weighted sum has distance at least

212p(n)q(n)]' = 2p(n)q(n)]" = 2p(n)q(n)]’
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from the threshold. Therefore the output value of the y-gate G differs by at most

max {1~ 5(2p(n)a(n)]). (- Rpln)an)])] € s =,

from the output of the corresponding boolean threshold gate in B,.

The preceding argument implies that for any n > 2 the 7-circuit C, with outer
threshold % computes the boolean function g, with separation i. [ |

Remark 4.2 One can also simulate polynomial size o-circuits with weights of absolute
value at most 2P°(™) by polynomial size boolean threshold circuits with 0-1 weights;
however in this case the circuit depth increases by a constant factor. This simulation can
be extended to the case of real-valued inputs, where we assume that polynomially many
bits of each real input are given as inputs to the simulating boolean threshold circuit.

Remark 4.3 More recently it has been shown (see the paper by Maass in this volume,
or the extended abstract [M]) that for neural nets with arbitrary piecewise polynomial
activation functions 7 (with polynomially many polynomial pieces of bounded degree) and
arbitrary real weights, the class of boolean functions that can be computed in constant
depth and polynomial size (with arbitrarily small separation) is contained in T'CY.
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