From: PROCEEDINGS OF THE FOURTH ANNUAL WORKSHOP ON COMPUTATIONAL LEARNING THEORY (COLT'91),
M.K. Warmuth, L.G. Valiant, eds.; Morgan Kaufmann Publishers (San Mateo, 1991), 167 - 175

On-line Learning with an Oblivious
Environment and the Power of Randomization

Wolfgang Maass”

Technische Universitat Graz
Klosterwiesgasse 32
A-8010 Graz, Austria
maass@iicm.tu-graz.ac.at

Abstract

A new model for on-line learning is intro-
duced. In this model the environment is as-
sumed to be oblivious to the learner: it sup-
plies an arbitrary (not necessarily random)
sequence of examples for the target concept
which does not depend on the sequence of
hypotheses of the learner. This model pro-
vides a framework for the design and analysis
of on-line learning algorithms which acquire
information not just from counterexamples,
but also from examples which support their
current hypotheses. It is shown that for vari-
ous concept classes C an arbitrary target con-
cept from C can be learned in this model by
a randomized learning algorithm (which uses
only hypotheses from C) with substantially
fewer prediction errors than in the previously
considered models for on-line learning. In
particular any target-setting of weights and
thresholds in a feed forward neural net can
be learned by a randomiged learning algo-
rithm in this model with an expected number
of prediction errors that is polynomial in the
number of units of the neural net.

We also show that these positive results for
randomized learning algorithms remain valid
if the environment is only weakly oblivious,
i.e. if the environment can let its choice of
examples depend on earlier reactions of the
learner, but is not able to predict future
moves of the learner.

1 INTRODUCTION

Before we describe our model for learning with an
oblivious environment, we first review the common
model for on-line learning. In this model, the environ-
ment plays the role of an adversary ({A2], [L1], [LW],

*Parts of the research for this paper were carried out
at the University of Illinois at Chicago, the Department
of Computer Science of the Universitat des Saarlandes in
Saarbruecken (Germany) and the International Computer
Science Institute in Berkeley.

[GRS], [MT1]). One assumes that the learner proposes
“hypotheses” H from a fixed “concept class” C C 2%
over a finite domain X. The goal of the learner is
to “learn” an unknown “target concept” Cr € C that
has been fixed by the “environment”. Whenever the
learner proposes some hypothesis H with H # Cr,
the environment responds with some “counterexam-
ple” z € HACr := (Cr — H)U(H - Cr). zis called
a “positive counterexample” if z € Cr — H, and = is
called a “negative counterexample” if z € H — Cp. A
learning algorithm for C is any algorithm A4 that pro-
duces new hypotheses

H{il = A(z1,...,Z4; HIA,._,,H.A)

1

in dependence of counterexamples z; € HJ‘-“ACT for

the preceding hypotheses HJ‘-“. One also refers to these

hypotheses as “equivalence queries” [A1].

The “learning complexity” LC(A) of such a learning

algorithm A is defined by

LC(A4) :=
ma.x{i €N | there is some Cr € C and

some choice of counterexamples z; €
HJAACT for j = 1,...,1— 1 such that

HA #£C7 }.

The “learning complexity” LC(C) of a concept class C
is defined by

LC(C) :=
min { LC(4) | 4 is a learning algorithm for C
which only uses hypotheses from ¢ }

One sets
LC-ARB(C) :=
min { LC(4) | A is a learning algorithm for C

which uses arbitrary subsets of the do-
main X as hypotheses }

In the preceding definition of LC(A) one considers
the maximal number of errors of A for any choice of
the target concept Cr € C and any choice of coun-
terexamples. Furthermore the environment is allowed
to choose its counterexamples in full knowledge of

all moves (including future moves) of the learner A.
Hence in this model the environment is not only adap-
tive, but even “predictive”. Furthermore the environ-
ment is seen as a malicious adversary since it is allowed
to choose the “least informative” counterexample to
the hypothesis. It is difficult to find learning situations
(apart from cryptography) where this pessimistic view
of the environment as an adaptive and malicious ad-
versary (which even can predict future moves of the
learner) is justified.

Frequently one can assume that the environment pro-
vides examples for the target concept according to
some fixed time-invariant distribution. In this case
Valiant’s PAC-learning model [V] provides an ade-
quate framework. However there are various learn-
ing situations where the environment is oblivious to
the learner, but does not behave like a time-invariant
stochastic process. For example visual inputs to an
artificial or natural learning system are subject to sys-
tematic changes that result from differences in lighting
(e.g- changes between day and night) or from move-
ments of the system. In other learning systems (for
example systems for speech recognition, concept learn-
ing, or language acquisition) the examples that are
given to the learner are subject to systematic changes
that result from different speakers and different con-
texts.

So far, the only theoretical framework for the in-
vestigation of on-line learning from arbitrary (non-
stochastic) sequences S of examples is provided by
the previously described LC-model. Formally, the LC-
model does not quite fit into this learning situation,
since it expects to receive only counterexamples from
the environment. One has solved this problem by as-
suming that the learner processes the examples in the
sequence S in an on-line manner, and that he throws
away any example in S that supports (i.e. is consistent
with) his current hypothesis H ([L1]).

This approach for modeling on-line learning from a
non-random sequence S is unsatisfactory for two rea-
sons. First, it is clear that in various practical learning
situations not only counterexamples but also support-
ing examples (i.e. positive reinforcements) are helpful
for the learner. Hence an adequate theoretical frame-
work should support a quantitative analysis of learn-
ing algorithms that learn from both types of examples.
Secondly, on the purely theoretical level, it has turned
out that most results about learning in the LC-model
are negative. For example it has been shown that a
“huge” number of counterexamples is needed for learn-
ing finite automata, DNF-formulas [A2], rectangles in
general position, or intersections of halfplanes [MT2].
Hence there is no theoretical justification for ignoring
supporting examples that are available to the on-line
learner.

In the following we define a model for on-line learn-
ing from arbitrary example sequences that allows us

to investigate randomized on-line learning algorithms
that exploit both counterexamples and supporting ex-

. amples. We assume that the environment provides an

arbitrary sequence S of positive and negative examples
for the target concept independently of the learning
algorithm that is used by the learner. Thus one may
just as well assume that the environment has deter-
mined both this sequence S of examples and the tar-
get concept before the learning process begins. The
learner (more precisely: the learning algorithm) pro-
cesses these examples in an on-line fashion. Analo-
gously as in the classical learning models for percep-
trons ({R], [MP]) and neural networks ([N], [RM]) the
learner is allowed to alter his hypothesis at each step
where the current example provides a counterexample
to his current hypothesis (one calls such an event'a
“prediction error”, or simply an “error”). We refer to
the other examples {z,b) in S (where the given classi-
fication b = Cr(z) agrees with the “prediction” H(z)
of the current hypothesis H) as supporting examples.
In the learning model defined below we assume that
the learner does not change his hypothesis when he en-
counters a supporting example, but he may store any
supporting example that he receives (as well as any
counterexample) for later use.

It is obvious that for the case of a deterministic learn-
ing algorithm A it makes no difference whether the
environment is adaptive or oblivious: the oblivious
environment can predict all later reactions of a deter-
ministic algorithm A, hence it can write down already
at the beginning of the learning process a sequence
S which consists of the “optimal” moves of an adap-
tive adversary in a learning process with this learning
algorithm A. Therefore we consider in the following
definition immediately the case of randomized learn-
ing algorithms.

Whenever we define the learning complexity for a
model where randomized learning algorithms are per-
mitted, we will write “RLC” instead of “LC”. In order
to distinguish the new model with an oblivious envi-
ronment from the LC-model we use for the new model
the suffix “OBL™ (e.g. RLC-OBL(C)). We will al-
ways denote the domain of a concept class C by X,
and we write X< for the set of all finite and infi-
nite sequences of elements of X. For any C € C and
S = (z,,23,...) € X< we write S€ for the associ-
ated sequence { (z1.C(z1)), (22, C(x2)),-..) of labeled
examples for C (each concept C is identified with its
characteristic function x¢ : X — {0,1}).

A deterministic learning algorithm A for a concept
class C processes an arbitrary labeled sequence S®7
(for some target concept Cr € C and some S €
X<%) as indicated above. In particular A com-
putes a new hypothesis H' € C (as a function of
((21, Cr(z1))s-- - - (zt-1, Cr(z1-1)))) at each step t
where A makes a prediction error (i.e. H(z;) # Cr(2:)
for the current hypothesis H € C of A). We write

Errors(4, Cr, S) for the total number of prediction er-
rors of A for the labeled sequence S°T.

Intuitively a randomized learning algorithm B will
carry out some coin tosses (which are not visible to
the environment) whenever he chooses another hy-
pothesis. Formally, one may just as well assume that
the learner carries out all these coin tosses at the be-
ginning of the learning process. Hence one may as-
sume that a randomized learning algorithm B for a
concept class C is a probability distribution Qg(4)
over deterministic learning algorithms A for C. We set
Errors(B, Cr, S) := E4cqp (Errors(4, Cr, S)),

RLC-OBL(B) :=
ma.x{ Errors(B, Cr, S) | CrecC,5e Xt },

RLC-OBL(C) :=

min { RLC-OBL(B) B is a randomized
learning algorithm for C which only uses
hypotheses from C }

It turns out that the positive results of this paper
about the power of randomized on-line learning algo-
rithms remain valid under a much weaker assumption,
where the learner is only assumed to be “weakly obliv-
ious”. We call an environment weakly oblivious if it is
allowed to take into consideration all reactions of the
learner for the preceding examples z,,...,z;_; before
it selects z; (but it has no other information about the
current hypothesis H of the learner, see Remark 2.2).
This model with a weakly oblivious adversary is ade-
quate even for various learning situations in cryptog-
raphy, where the environment has to be viewed as an
adaptive and malicious adversary.

In this paper we will focus on the expected number
of prediction errors that can be achieved by an opti-
mal learning algorithm, and we will ignore questions of
computational efficiency. In section 2 we compare the
error bounds that can be achieved in the RLC-OBL
model with those of other models for on-line learn-
ing. In particular we introduce (in the proof of Theo-
rem 2.1) the randomized learning algorithm GUESS-
ING, which learns arbitrary target concepts from a
concept class C with an expected number of < In|C|
eIrors.

In section 3 we investigate the power of randomization
for learning from an environment that is totally non-
oblivious.

In section 4 we compare the performance of the here
considered prediction algorithms with that of previ-
ously known algorithms. Furthermore, we prove in
Theorem 4.1 a result that suggests that the RLC-OBL-
model may be viewed as an interpolation between the
LC-model and the PAC-model.

2 ERROR-BOUNDS FOR
RANDOMIZED ON-LINE
LEARNING ALGORITHMS
WITH AN OBLIVIOUS
ENVIRONMENT

Theorem 2.1. For any finite concept class C

RLC-OBL(C) < In|C|.

Proof. Let GUESSING¢ be the following randomized
learning algorithm for C: after any prediction error
pick as next hypothesis uniformly random any concept
C € C which is consistent with all preceding examples
(i.e. all previously seen supporting examples and coun-
terexamples).

The power of this simple learning algorithm is demon-
strated by the following observation: Consider a learn-
ing process with GUESSING: for some arbitrary
Cr € C, S = (z1,23,...) € X<, Assume that
GUESSING¢ makes a prediction error for the ¢-th el-
ement z, of S. Define

Ct = {C ECIC(I,):CT(IJ.) for 1 = 1,...,t}.

Consider any linear order < on C; which is consistent
with the order in which these concepts will be elimi-
nated by the subsequent examples

(2641, Cr(ze41))s (Tea2,C1(2Te42)), - -

from S€T. With probability 1/2 the hypothesis H € C;
which is chosen at step t by GUESSING, occursin the
second half of <. If this happens, then at least half of
the other concepts C € C; will have been eliminated
by some example in S by the first step t' > { where
the algorithm makes the next prediction error (thus

t':=min{l > t | H(z;) # Cr(z;)}).
For a precise proof of Theorem 2.1 set

G, := max {RLC-OBL(GUESSING¢) | [C| = n}.
Define T,, by

T1 = 0
T, = n—l+T1+---+T,,_1 forn > 1.
n n
One can easily show ([K]) that
1
T, = - <1 { > 1.
: Z s <Inn or n

1=2
Hence it is sufficient to show by induction on n that
Gn < T, for all n > 1. The case n = 1 is trivial.
For the induction step fix some concept class C over a

domain X with |C| = n, some Cr € C and a sequence
S ={z1,22,.-.) € X £* such that

RLC-OBL(GUESSING¢, Cr, S) = Ga.

Let < be a linear order on C such that
min{i | C(z;) # Cr(z:)} < min{i | C'(z;) # Cr(z.)}
implies that C < C’.

Number the concepts in C in such a way that C, <
Cy < +++ < Cy. Each C; € Cis chosen with probability
1/n as first hypothesis of GUESSING,. For each j €
{1,...,n} set

i; := min{i | C;(z:) # Cr(=:)}
(set i; = oo if there exists no i with Cj(zi) # Cr(zy))-
If C; is chosen as first hypothesis of GUESSING,
and i; < oo, then at least one error will occur. In

this case the remaining class C C C of all concepts
that are comsistent with «y,...,z;; is of the form

C = {Cjt+k+1,---,Cn} for some k > 0 (we may have
k > 0 since z;; may eliminate several concepts). By
induction hypothesis we have that the expected num-
ber of further errors of GUESSING¢ is bounded above
by

RLC-OBL(GUESSINGE) Gr_j—k

<
S Tn—j—k
< Tn_j.

Note that in the case where C, is chosen as first hy-
pothesis we have i; = oc, hence no error will occur in
this case. Thus altogether we have

G, = RLC-OBL(GUESSING)

n-1

1

< (X0 +Tsy))

= Th.

It turns out that T}, is in fact an optimal upper bound
for RLC-OBL(GUESSING() for concept classes C of
size n. For

C, = SINGLETON,, := {{i} |i € {1,...,n}}

one can show by induction on n that

RLC-OBL(GUESSINGe,) = T,. .

Remark 2.2. One can easily see that the upper bound
for GUESSING, in Theorem 2.1, and hence Corol-
laries 2.3 to 2.5, only require that the environment
is weakly oblivious (we refer to this model as RLC-
WOBL). In the model RLC-WOBL the environment
is allowed to be adaptive and malicious, but it cannot
predict future steps of the learner. As before, the envi-
ronment is required to fix some target concept Cr € C
at the beginning of the learning process. However the
environment is now allowed to let each of its examples
(zi,Cr(z:)) depend on all preceding hypotheses of the
learner, and on the predictions of the learner for all
preceding examples. In other words: the only infor-
mation that is not known to the environment when
it generates its i-th example (z;,Cr(z;)) is the pre-
diction H(z;) of the learner’s current hypothesis H

for this example z; (and the future nypotneses o1 tne
learner). However this prediction H(z;) will be made
available to the environment immediately after it has
generated (z;,Cr(z;)). In terms of “private” versus
“public” coin tosses one can characterize the model
RLC-WOBL by specifying that the environment is told
the outcomes of all coin tosses of the learner, except
for the outcomes of those coin tosses that the learner
made for the selection of his current hypothesis H (and
for the selection of future hypotheses). Thus the only
difference between this model RLC-WOBL and the
model RLC (which is discussed in section 3) is the
fact that in the RLC-model the environment knows in
addition the current hypothesis H of the learner (i.e.
it knows H(z) even for those points H for which it has
not yet “tested” H) and it knows all future hypotheses
of the learner.

In order to adapt the proof of Theorem 2.1 to the
model RLC-WOBL, one defines the linear order < on
C; slightly differently. Similarly as at the beginning of
the proof of Theorem 2.1, assume that the learner has
made a prediction error for the ¢-th example supplied
by the environment, and that C, is the set of all con-
cepts in C that are consistent with the first ¢t examples.
One now lets

(y1, Cr (1)) (v2, Cr(y2)),---

be the sequence of examples that the environment
would subsequently provide in the case that none of
them would cause a prediction error of the learner (i.e.
if H(y;) = Cp(y;) for i = 1,2,...; where H is the cur-
rent hypothesis of the learner). One then defines < as
a linear order on C; that is consistent with the order
in which these concepts would be eliminated by the
sequence ((yi’CT(yi)))ieN' After the first example y;
in this sequence for which the current hypothesis H
makes a prediction error (i.e. H(y;) # Cr(¥)), the en-
vironment is no longer required to continue with the
rest

(¥i+1, Cr(¥i+1)), (vi+2, Cr(¥i+2))s---

of these examples (this is a difference to the model
RLC-OBL). Rather, the environment may now choose
(after it has been shown the just refuted hypothesis
H of the learner) a completely different sequence of
examples. Hence one defines a new linear order <’ on
the set

Ciy1:= {C €C | C is consistent with all

previously seen examples}

by considering the new sequence ((z;,Cr(z;)));cN of
examples that the environment would provide (after
the refutation of hypothesis H by y;) in case that none
of them would cause another prediction error of the
learner (i.e. if H'(z;) = Cr(z;) for j = 1,2,...; where
H' is the next hypothesis chosen by the learner). One
defines <' as a linear order on C;;; that is consistent

with the order in which the concepts in C;;; are elim-
inated by the new sequence ((z;,Cr(z;))),cN- This
linear order <’ need not be structurally related to <
(unlike the situation in the proof of Theorem 2.1), but
nevertheless one can repeat for <’ the same argument
as for <.

Corollary 2.3. There is a randomized on-line learn-
ing algorithm for arbitrary feedforward nets (= cir-
cuits with “sharp” Boolean threshold gates) that is
expected to make at most polynomially in the size of
the net many prediction errors for an arbitrary obliv-
ious environment:

Let G be an arbitrary directed acyclic graph with ex-
actly one node of outdegree 0 and n nodes of indegree
0 (labeled by 1,...,n). Define the associated concept
class of neural networks with graph G as follows:
CG =
{ C C {0,1}* | there is an assignment of
weights from R to edges in G and an assign-
ment of thresholds from R to nodes of inde-
gree > 0 in G such that the resulting feed-
forward neural net (with “sharp” Boolean
threshold gates) computes C }.

Then RLC-OBL(Cg) = O((number of edges in G)?).

Idea of the proof. A Boolean threshold gate

of indegree d can only compute 20(¢*) different
Boolean functions (even if arbitrary reals are al-
lowed as weights and threshold). Hence log|Cq| =
O((number of edges in G)?).

Note that it is essential for a learning algorithm for a
feedforward neural net G that it only uses hypothe-
ses that belong to the concept class Cg: otherwise its
hypotheses cannot be realized by some intermediate
settings of the weights and thresholds in the neural
net G.]

Corollary 2.4. Let

Ck,ﬂ =
{ € € {0,1}" | C is definable by a monomial
with at most k literals over the Boolean vari-
ables zi,...,za }.
Then RLC-OBL(Cx.n) = O(k -log n). u
Corollary 2.5. For an arbitrary polynomial p(n) set
Copm 1=
{ € C {0,1}" | C is definable by a DNF-

formula of length < p(n) over the Boolean
variables z,...,z,

Then RLC-OBL(Cpn) = O(p(n) - log n).]

The following lower bound result was first observed

by Nick Littlestone {L2]. It improves an earlier result
due to Kurt Mehlhorn and the author, who had shown
that RLC(C) > ; - LC-ARB(C).

Theorem 2.6. (Littlestone [L2]) For any finite con-
cept class C

RLC-OBL(C) > = - LC-ARB(C).

[R

Proof. Consider any randomized learning algorithm
B for ¢ C 2% and a decision tree T for C in which
every leaf has depth > LC-ARB(C) (such T exists by
[L1], see also [MT1]). Construct in T a path S from
the root to a leaf by recursion. If the so far constructed
path S’ ends at an internal node v with label z € X let
p, be the probability that B predicts that Cr(z) = 1
(after B has processed the sequence of labeled exam-
ples which is encoded by S'). Extend S’ by one of the
two edges that leave node v according to the following
rule: choose the edge with label “0” iff p, > 1/2.

The constructed path S has length £ > LC-ARB(C)
and ends at a leaf with some Cr € C as label. By
construction one has Errors(B,Cr, S) > ¢/2. ™

Remark 2.7. The preceding lower bound is opti-
mal insofar as there are concept classes C for which
RLC-OBL(C) = 3 - LC-ARB(C) (for example take
c=2%).

In the following theorem we compare for arbitrary con-
cept classes C the learning complexities LC-ARB(C),
RLC-OBL(C), LC(C). We write 4 < B if VC(A(C) =
O(B(C))) and for some family (Cﬂ)neN of concept
classes B(C.) grows faster than any polynomial in
A(Cy).

Theorem 2.8.
LC-ARB < RLC-OBL < LC

Sketch of the proof. In order to sep-
arate RLC-OBL from LC-ARB we show that
RLC-OBL(SINGLETON_) = ((logn) (it is obvi-
ous that LC-ARB(SINGLETON) = 1). We ap-
ply in this lower bound argument Von Neumann’s
minimax theorem ([Vo), see also {LR], [Y]) to a ma-
trix with rows indexed by arbitrary elements (Cr, S)

from SINGLETON,, x {1,..., 11}5“2 and columns in-
dexed by arbitrary deterministic learning algorithms
A for SINGLETON,, (restricted to example sequences
S of length < n?). The matrix entry for row
(Cr,S) and column 4 is Errors(4, Cr, S). The min-
imax theorem implies that in order to prove that
RLC-OBL(SINGLETON,) = Q(logn), it is sufficient
to show that there exists some distribution P, over
SINGLETON,, x{1,..., n}S": such that for every de-
terministic learning algorithm A for SINGLETON,
one has

E'Pn((Cr.S))(EHOIS(Aa Cr,S)) = Qlogn).

We will show that the following distribution P, has

the desired property. P, is the uniform distribution

over

D, =
{ {r(n)},Ss) | = is a permutation of

{1,...,n} and S, is an associated sequence
(with repetitions) that begins with n copies
of (1), and in which n copies of the sub-
sequence (m(1),...,7(z)) are followed by n
copies of the subsequence (m(1),...,%(: +
1)), i=1,...,n—1}.

- We set P, ((Cr,S)) =0 for (Cr,S) ¢ D,.

Because of the repetitions in the sequence S, one can
associate with any deterministic learning algorithm A
for SINGLETON,, another deterministic learning algo-
rithm A’ for SINGLETON,, with Errors(4,Cr, S) >
Errors(A’, Cr, S) for all (Cr,S) € D, such that A’ is
consistent (i.e. each hypothesis of A is consistent with
all previously seen examples). Hence it is sufficient to
show for an arbitrary consistent deterministic learning
algorithm A that

T4 = Q(logn),

n

where
T} := Ep,((cy,s))(Errors(4,Cr, S)).
This lower bound follows from the observation that

n—1+T{4+...+T,‘f_1.
n n

TA =

n

The other claims of Theorem 2.8 are conse-
quences of Theorem 2.1 and Theorem 2.6 (consider
SINGLETON,, in order to separate RLC-OBL from
LC). |

Remark 2.9.

(a) The preceding argument together with the proof
of Theorem 2.1 shows that GUESSING is an opti-
mal learning algorithm for SINGLETON,, in the
model RLC-OBL.

(b} It is not the case that for all concept
classes C one has RLC-OBL(GUESSING,)
9(RLC-OBL(()). For example for C,
SINGLETON, U {0} one has RLC-OBL(C,)
LC(C,) = 1, but RLC-OBL(GUESSINGc,)
O(logn).

iAo

(c) Apparently there exists a trade-off for on-line
learning with an oblivious environment between
the number of random bits that are used by a
learning algorithm and the “simplicity” of its hy-
potheses. The algorithms GUESSING and the
halving algorithm lie at opposite ends of this spec-
trum.

3 THE POWER OF
RANDOMIZATION FOR
ON-LINE LEARNING WITH AN
ADAPTIVE ENVIRONMENT

It is not clear from the results of the previous sec-
tion how much of the performance of the considered
learning algorithms should be credited to the use of
randomiged algorithms, and how much is due to the as-
sumption that the environment is oblivious. We show
in this section that randomized learning algorithms
can achieve only a substantially smaller improvement
in the error bound (compared with the best determin-
istic learning algorithm) in the case where the environ-
ment is as powerful as in the LC-model (and can see
the outcomes of all coin tosses of the learner). However
even in this model we assume that the environment
determines the target concept at the beginning of the
learning process (this gives a randomized learner some
advantage over a deterministic one).

For any deterministic learning algorithm A for a con-
cept class C and any target concept Cr € C let
Errors(A4, Cr) be the maximal length of a learning pro-
cess of algorithm A if Cy is the target concept (assum-
ing that the counterexamples to hypotheses of A are
chosen by an adaptive adversary as in the LC-model).
Thus Errors(A,Cr) = max{Errors(4,Cr,S) | S €
X<}, Let B be a randomized learning algorithm
for C, i.e. B is a distribution Q g(A) over deterministic
learning algorithm A for C. For any Cr € C we set
Errors(B,Cr) := E4coy (Errors(4, Cr)),

RLC(B) :=
ma.x{ Errors(B, Cr) | CrecC },

RLC(C) :=
min { RLC(B) | B is a randomized learning

algorithm for C that only uses hypothe-
ses from C }

It is obvious that LC(C) > RLC(C) > RLC-OBL(()
for any concept class (. We show in Theorems 3.1
and 3.2 that LC(C) > RLC(C) for certain concept
classes €. Theorem 3.3 provides a general lower
bound for RLC(C) which implies for many concept
classes C that RLC(C) is not much smaller than
LC(C). In particular for C = SINGLETON,, this lower
bound implies that RLC(C) is exponentially larger
than RLC-OBL(C).

Theorem 3.1. For ¢ = 2{1-m},

RLC(C) = RLC-OBL(C) = % Lo(e) = 3.

Proof. It is obvious that LC(C) = LC-ARB(C) = n.
Hence by Theorem 2.6 one has RLC-OBL(C) > n/2.

In order to prove the upper bound for RLC(C) we

consider a probabilistic learning algorithm B whose
first hypothesis H is a randomly chosen subset of
{1,...,n}. Subsequently B changes its hypothesis
only on those points where it has made an error on
one of the previously seen examples.

If H is the initial hypothesis of B, then B makes
|HACT| errors in the worst case. Obviously the ex-
pected size of HACT is n/2.]

Theorem 3.2.

RLC(SINGLETON,,) _12; . LC(SINGLETON,,)

n—1
5

Proof. In order to show that RLC(SINGLETON,) >
(n—1)/2 one applies Von Neumann’s minimax theorem
[Vo] to the uniform distribution over C.

For the upper bound one considers a probabilistic
learning algorithm B that chooses uniformly randomly
any permutation 7 of {1,...,n}, and then issues hy-
potheses in the order {m(1)}, {r(2)}, ... (unless it gets
a positive counterexample). For any fixed Cr €
SINGLETON,, the expected number of errors of B is

(n-1)/2. .

Theorem 3.3. For any finite concept class C with
lct > 1,

LC(C)
RLC(C) > TMealCTl"

Idea of the proof. We first observe that it is suf-
ficient to consider in the definition of RLC(C) only
randomized learning algorithms B with the property
that Qp(A) > 0 only if A is a consistent deterministic
learning algorithm for C (A4 is called consistent if it al-
ways outputs hypotheses that are consistent with the
preceding counterexamples). There are only finitely
many such algorithms A, and hence we can apply Von
Neumann’s minimax theorem [Vo] (again we only need
its “easy” inequality). However we apply it here for
a different matrix than in the proof of Theorem 2.8.
Here the columns are labeled by consistent determin-
istic learning algorithms for C and the rows are la-
beled by the concepts C € C. The matrix entry for
column A and row C is Errors(4,C). The minimax
theorem implies that for any distribution P over C
there is a deterministic learning algorithm Ap for €
such that Ep(c)(Errors(4p,C)) < RLC(C). We ex-
ploit this fact for distributions P;, i € {1, ..., [log|Cl}}
over C which are defined as follows. Each P; is uni-
form on some subclass C; C C and identically zero on
C —C;. Set C; := C. Let Ciy; be the class of all
C € C; such that Errors(4p,,C) > 2 - RLC(C). The

definitions of P; and Ap, imply that |Ciyi| < I_C2_I
The desired deterministic learning algorithm A with
LC(A) < [log|C[] - 2 - RLC(C) executes in alterna-

tion one step in each of the algorithms Ap. 1 =

1,...,[logIC|]. A succeeds for any target concept
Cr € C after < Jlog|C|] - 2 - RLC(C) steps since one
of the algorithms Ap, identifies Cp after < 2-RLC(C)
steps. []

4 COMPARISONS WITH OTHER
PREDICTION MODELS AND
ALGORITHMS

The LC-model differs in three essential aspects from
the prediction model of [HKLW], [HLWI1] with a
stochastic environment, which is closely related to
Valiant’s model for PAC-learning [V] (we refer to the
prediction model of [KHLW], [HLW1] in the following
as “PAC prediction model”):

(a) the environment is represented in the LC-model
by a worst case adaptive adversary, whereas it
is represented in the PAC prediction model by
a worst case probability distribution over the do-
main (in both models one considers the worst case
choice of a target concept Cr € C)

(b) in the LC-model one measures the performance of
a learning algorithm in terms of its total number
of errors, whereas in the PAC prediction model
one is interested in the expected number of errors
for the first m examples

(c) in the LC-model the current hypothesis of the
learning algorithm is always required to be from
the same concept class C as the target concept,
whereas the hypothesis in the PAC prediction
model need not be from C.

The following result shows that the new model
RLC-OBL for on-line learning with an oblivious en-
vironment may be viewed as an interpolation between
the LC-model and the PAC prediction model: it is
equivalent to a learning model which agrees in point
(a) with the PAC prediction model and in points (b)
and (c) with the LC-model. In order to make this
equivalence precise we introduce the following nota-
tion.

Consider an arbitrary concept class C over a domain
X (i.e. € C 2%) and an arbitrary distribution D over
X. For § € X*® we write S € D™ to indicate that
S results from independent random drawings from X
according to D. For any deterministic learning algo-
rithm A for € and any Cr € C we define:

Errors(4,Cr, D) := Es¢p~(Errors(4, Dr, S)),
and for any randomized learning algorithm B
Errors(B,Cr, D) := E4cqp(Errors(4, Cr, D)).
Finally we define
RLC-PAC(B) :=
max{ Emrors(B, Cr, D) | CrecCand Disa
distribution over X },

RLC-PAC(C) :=

min { RLC-PAC(B) L B is a randomized
learning algorithm for C which uses
only hypotheses from C }

We have added the suffix “PAC” in “RLC-PAC” to
indicate that with regard to the assumption about the
environment (point (a) in the preceding discussion)
this model agrees with the PAC prediction meodel.
Note however that with regard to points (b) and (c)
RLC-PAC agrees with the LC-model (and with RLC-
OBL).

The following theorem shows that in the here con-
sidered context the assumption of an arbitrary worst
case oblivious environment is equivalent to that of a
stochastic environment with a worst case distribution.

Theorem 4.1. For every concept class C:
RLC-OBL(C) = RLC-PAC(C).

Idea of the proof. “>” is trivial. In order to
prove “<” one associates with any sequence § =
(z1,T3,...) of elements (without repetitions) a suit-
able distribution Dg over X such that for arbitrary

random drawings S according to Dg the first occur-
rence of elements of X in S is likely to be in the
same order as in S (i.e. Ds(z;) > Ds(z2) > ...).
Let B be any randomized learning algorithm with
RLC-PAC(B) = RLC-PAC(C). One defines for any
§ > 0 a learning algorithm Bj; with RLC-OBL(B;) <
(1 +6)-RLC-PAC(B) which generates (internally) for
the prediction for the t-th element z; of any given se-
quence S = (z,23,...) € X% the associated distri-
bution Dz, . .,). Bs predicts “z, € Cp” with prob-
ability p;, where p, is defined as the probability that
B predicts “z; € Cr” for the first occurrence of z; in
arbitrary sequences S that result from random draw-
ings according to Dz, . z,) (note that Bs might give

different responses for the first occurrence of z; in S in
dependence on the number of repetitions of preceding
elements in S). ™

In the following we will compare the prediction per-
formance of the very simple randomized algorithm
GUESSING (which was introduced in the proof of
Theorem 2.1) with the performance of other predic-
tion algorithms (we view in this context the notions
“learning algorithms” and “prediction algorithms” as
being equivalent). Since RLC-OBL(GUESSING¢) =
O(log|C|), GUESSING¢ will make for all C with
log |C| < LC(C) substantially fewer errors in a learn-
ing situation with an oblivious environment than the
best known prediction algorithm with hypotheses from
C in the LC-model.

The expected number of errors of GUESSING. is
bounded above by the same parameter O(log|C|) as
the worst case number of error of the well-known halv-

ing algorithm (see {A1], [L1], [MT1)). The latter al-
gorithm performs well even against an adaptive en-
vironment and it requires no random bits, but it uses
hypotheses which do not belong to C (which are in gen-
eral difficult to compute). Haussler, Littlestone and
Warmuth [HLW2] introduced the “l-inclusion graph
prediction algorithm” which also uses hypotheses that
do not belong to C, and which is expected to make at
most O(VC-dim(C)-log m) prediction errors for m ex-
amples (but it requires that the examples result from
independent random drawings). This bound is smaller
than log |C| for certain C and certain values of m. A
similar bound has been achieved for a probabilistic en-
vironment by Schapire [S] for any PAC-learnable C
with a computationally feasible prediction algorithm
(this algorithm also uses hypotheses which do not be-
long to C). Other prediction algorithms which use hy-
potheses that do not belong to C result from the work
by Littlestone and Warmuth [LW] on the weighted ma-
jority algorithm (typically these algorithms use “nicer”
hypotheses outside of C than the halving algorithm,
but they may make more errors than the halving al-
gorithm).

In the full version of [LW] one can also find a discussion
of a randomized version of the weighted majority al-
gorithm which uses only hypotheses from € and which
works well even in the case of an adaptive environment,
but which requires to change the hypothesis after each
example (not only after prediction errors).

So far we have examined in this paper only the ex-
pected total number of errors for randomized pre-
diction algorithms in our new model with an arbi-
trary oblivious environment. The preceding discussion
showed that with regard to this measure GUESSING¢
is not surpassed by other known prediction algorithms
that use only hypotheses from C. It turns out that with
regard to another measure, the expected number of er-
rors for the first m examples for any oblivious sequence
S of examples, one can design for certain concept
classes C a variation of GUESSING, which performs
better than GUESSING.. However this is only possi-
ble for concept classes € with LC-ARB(C) < log|C],
since even if the environment is oblivious one can
construct for any randomized learning algorithm B
a target concept Cr € C and an oblivious sequence
S of examples such that B is likely to make for any
m < LC-ARB(C) at least m/2 prediction errors for
the first m examples in S (use the construction in the
proof of Theorem 2.6).

A typical concept class ¢ with LC-ARB(C) < log |C|
is SINGLETON,,. The following result shows that for
this concept class C one can in fact design another ran-
domized prediction algorithm with hypotheses from
C which is expected to make fewer prediction errors
than GUESSINGc for the first m examples (for any
m < nlogn and any oblivious sequence S of exam-

ples).

[HKLW)

[HLW1]

Theorem 4.2. There is a randomized prediction algo-
rithm for SINGLETON,, which only uses hypotheses
from SINGLETON, and which is expected to make
at most O(min(m/n,logn)) prediction errors for the
first m examples of any given (oblivious) sequence
Se{l,...,n}s>.

Idea of the proof. The algorithm GUESSING (see
the proof of Theorem 2.1) does not achieve this error
bound since for many sequences S of m = n examples
it is expected to make logn errors. Therefore we com-
bine GUESSING with another randomized prediction
algorithm BLIND-GUESSING, which chooses after
each error uniformly random any C € SINGLETON,
as next hypotheses (C need not be consistent with
all previous examples). The claimed relative error
bound is achieved by the randomized prediction al-
gorithm B that calls after the k-th prediction error
the algorithm GUESSINGsinGgLETON, if k is even, and
BLIND-GUESSINGSlNGLBTON“ if k is odd. a

Acknowledgements

We would like to thank David Haussler, Nick Little-
stone, Michael Luby, Kurt Mehlhorn, Robert H. Sloan,
Manfred Warmuth and an anonymous referee for help-
ful comments. Written under partial support by NSF-
Grant CCR 89033398.

References

[Al) D. Angluin, Queries and concept learning, Ma-
chine Learning, 2, 1988, 319-342.

[A2] D. Angluin, Negative results for equivalence
queries, Machine Learning, 5, 1990, 121-150.

S. A. Goldman, R. L. Rivest, R. E. Schapire,
Learning binary relations and total orders, Proc.
of the 30th IEEE Symposium on Foundations of
Computer Science 1989, 46-51.

D. Haussler, M. Kearns, N. Littlestone, M. K.
Warmuth, Equivalence of models for polynomial
learnability, to appear in Information and Com-
putation (see the Proc. of COLT 1988 for an ex-
tended abstract).

D. Haussler, N. Littlestone, M. Warmuth, Ex-
pected mistake bounds for on-line learning alge-
rithms, unpublished manuscript (April 1987).

[GRS)

[HLW2] D. Haussler, N. Littlestone, M. Warmuth, Predict-

ing {0, 1}-functions on randomly drawn points,
Proc. of COLT 1988, 280-296.

(K] D.E. Knuth, The Art of Computer Programming,
vol. 1, Addison-Wesley (Reading, 1973).

[L1] N. Littlestone, Learning quickly when irrelevant
attributes abound: a new linear threshold learning
algorithm, Machine Learning, 2, 1987, 285-318.

[L2] N. Littlestone, private communication.

[LW] N. Littlestone, M. Warmuth, The weighted ma-
jority algorithm, Proc. of the 30th IEEE Sympo-
sium on Foundations of Computer Science 1989,
256-261.

[LR] R. D. Luce, H. Raiffa, Games and Decisions, John
Wiley & Sons (New York, 1957).

[MT1] W. Maass, G. Turan, On the complexity of learn-

ing from counterexamples, Proc. of the 30th IEEE
Symposium on Foundations of Computer Science
1989, 262-267.

[MT2] W. Maass, G. Turan, Algorithms and lower

bounds for on-line learning of geometrical con-
cepts, 1991, submitted for publication.

[MP] M. Minsky, S. Papert, Perceptrons: An Introduc-
tion to Computational Geometry, Expanded edi-
tion, MIT Press, 1988.

[N] N. Nilsson, Learning Machines, McGraw-Hill
(New York, 1965).

[R] F. Rosenblatt, Principles of Neurodynamics,
Spartan Books (New York, 1962).

[RM] D. E. Rumelhart, J. L. McClelland, Parallel
Distributed Processing, MIT Press (Cambridge,
1986).

[S] R. E. Schapire, The strength of weak learnability,
preprint (Oct. 1989).

L. G. Valiant, A theory of the learnable, Comm.
of the ACM, vol. 27, 1984, 1134-1142.

J. Von Neumann, Zur Theorie der Gesellschafts-
spiele, Math. Annalen, 100, 1928, 295-320.

A. C. Yao, Probabilistic computations: towards a
unified measure of complexity, Proc. of the 18th
IEEE Symposium on Foundations of Computer
Science, 1977, 222-227.

(V]
(Vo]

[Y)

