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We investigate the number of membership queries that are needed to
identify polygons (i.e., intersections of halfplanes) over a two dimen-
sional grid {0, ..., n — 1} 2. We exhibit a learning atgorithm that learns
100% correctly, while requiring no random examples and not more
membership queries than previous algorithms needed in addition to
their random examples for probably almost correctly learning (even for
moderate values of €, §). Furthermore, the learning algorithm in this
paper uses only grid points for its membership queries. This appears to
be appropriate in situations where the probing device has only a limited
resolution, and for applications to the set of pixels on a two-dimen-
sional screen. The learning algorithm that is described in this paper
overcomes a fundamental obstacle related to the zigzag borderline that
is generated by a halfplane over a discrete grid. This obstacle had
thwarted previous attempts to show that, in Angluin’s model for on-line
learning with equivalence and membership queries, one can fearn in an
efficient manner even those classes of geometric objects which cannot
be learnt fast by equivalence queries alone (such as rectangles in
general position}. € 1995 Academic Press, Inc.

1. INTRODUCTION

We consider the complexity of learning with membership
queries for three concept classes of geometric objects over
the discrete 2-dimensional grid {0, .., n—1}2 A halfplane
#,(&eZ®—{0}) is the set of points above some line or the
set of points below line, i.e.,

Hy={(xny) e R ax + oy > ay).

A rectangle 4 is an intersection of four halfplanes such that
the four edges formed meet at right angles. Working in the
grid, we consider the class of halfplanes (HALFSPACE?), the
class of polygons, or intersections of & many halfplanes
(k-HaLFPLANES?), and its subclass of rectangles in general
position (GP-Box?2 < 4-HALFSPACE?), where
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HALFSPACE? = {#,n {0, ..,n—1}? | deZ?—{0}},
k-HALFSPACEZ .= {C,n --- nC, | C,, .., C, €
HALFSPACE?},

GP-Box?:={#n{0,..,n—1}? | Risarectangle}.

In this paper we investigate the complexity of learning (i.e.,
identifying) objects from these three classes in Angluin’s
model for on-line learning with equivalence and mem-
bership queries [ Ang88]. A learning process in this model
is viewed as a dialogue between the learner and the environ-
ment. The goal of the learner is to learn an unknown target
concept C € ¥ that has been fixed by the environment (one
assumes that the concept class ¢ and the considered domain
X, with € €2*, are known to both the learner and the
environment ). The learner may probe the environment with
equivalence queries of the form “H = C+?” for some He %.
The environment responds to such a query with the reply
“yes,” or the reply “no” together with some counterexample
ye(Cr~H)u(H—Cq). The learner may also ask mem-
bership queries “x e C;?” for some xe X, to which the
environment responds with the reply “yes” or “no.” The
learning complexity LC-MEMB(.«/) of a learner (more
precisely a learning algorithm) .« is the maximal number of
equivalence and membership queries that &/ needs in some
learning process of this type before it can uniquely identify
the target concept C;. The learning complexity LC-
MEMB(%¥) of the concept class € is defined in this model by
the minimum LC-MEMB(.«/) over all learning algorithms
o/ which learn ¢ using equivalence and membership
queries. We write LC(¥) (resp. MEMB(¥)) for the corre-
sponding learning complexities of ¢ in the two more
restricted models, where the learning algorithm .o/ may only
use equivalence queries (resp. only membership queries).
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It has been shown that LC(HALFSPACEZ)=@O(logn)
[MT89, MT91], whereas LC(2-HALFSPACEZ)=Q(n) and
LC(GP-Box?)=Q(n) [MT90, MT91b]. The latter results
may be interpreted as saying that equivalence queries alone
are insufficient for identifying intersection of halfplanes or rec-
tangles in general position with a feasible number of queries.

Various other important concept classes for which
equivalence queries alone are insufficient (such as DFAs
[ Ang87b, AngR9], k-term DNF [AngB7a, PV8R], read-
once formulas [ AHK89 ], and conjunctions of Horn clauses
[ AFP90]) have been shown to be learnable in an efficient
manner by a learning algorithm that employs both
equivalence and membership queries. Furthermore, Baum
( Bau90a, Bau90c] has recently shown that intersections of
halfspaces become probably almost correctly learnable in
an extended version of the PAC model where the learner
may also ask membership queries, provided that the
distribution and the target concept are chosen in “non-
malicious manner.” We will discuss the performance of
Baum’s algorithm for the learning problem considered here
in Remark 4.4.

However, it has not been possible to show in Angluin’s
model for on-line learning that membership queries
together with equivalence queries allow a faster identifica-
tion of nontrivial geometric figures than equivalence queries
alone. Apparently, this is due to a rather fundamental
obstacle. The intersection of a non-axis-parallel geometric
figure 4 in the Euclidean real plane R? with the underlying
discrete grid {0, ..,n—1}? gives rise, in general, to a set
#nA{0,..,n—1}7 of pixels whose boundary forms rather
complicated zigzag lines. This effect arises even for very
simple geometric objects such as halfplanes. No methods
are available that would allow us to determine, with
altogether O(log n) membership queries, on which side of
the zigzag line every pixel lies (such a zigzag line has length
Q(n) in general).

There is one concept class ¥ for which this on-line
learning model has been able to determine quickly the exact
zigzag borderline of arbitrary, not necessarily axis-parallel
target objects from %: the class HALFsPAcE2 [MTS$9,
MT91a]. In this case, the employed reduction of the
problem to the feasibility problem for convex sets in the
dual space, in combination with powerful tools from com-
binatorial optimization, allow us to determine the exact
zigzag borderline of an arbitrary halfplane with O(log »)
equivalence queries. However, this method cannot be
generalized to the learning of intersections of two or more
halfspaces, since the latter problem has not been reduced to
a tractable problem in the dual space. In fact, it has been
shown that LC(2-HALFSPACE?) = Q2(n) [ MT90, MT91b].
In the model LC-MEMB considered here, the learner may
also use membership queries, but there has been no evidence
so far that membership queries are of any additional use for
determining a zigzag borderline quickly.

In this paper, we show that membership queries are in
fact substantially more powerful than equivalence queries
for on-line learning of nontrivial geometric figures. We solve
the problem of designing fast learning algorithms in the
LC-MEMB model for learning intersections of halfplanes in
the following way. We first revisit the more fundamental
problem of learning a single halfplane. In Section 2, we
prove that MEMB(HALFSPACE?) = @(log n). The algorithm
that we introduce to prove the upper bound of this result is
based on a completely different approach than the one used
by [MT89] to show that LC(HALFSPACE?) = O(log n). We
show that the zigzag line problem is essentially the only
problem in learning the class HALFsPACE?. We do this by
reducing HALFSPACE? to the concept class STRIPy y, the
embodiment of the zigzag line problem. We then present a
recursive learning algorithm for STRiP, ;. The new algo-
rithm has the advantage that it can also be used as a sub-
routine for the learning of more complex geometric figures.

While zigzag lines are not the only problem for learning
the classes k-HALFsPACE2 and GP-Box2, they are a major
part of the problem. In Section 3, we develop methods for
tracing along the edges of a polygon to approximately
locate its vertices. Since the vertices of a polygon occur at
real-valued points, such approximate location, to within a
small convex region, is all we can hope for. Our design of the
edge tracing procedure employs a method which we call
inverse binary search. This search proceeds in up to logn
phases. In each phase it either determines a new border pair
twice as far along the traced edge & as the previous border
pair, or finds evidence that the edge & ends shortly after this
border pair. Inverse binary search can be carried out with
O(log n) membership queries, since each of its phases
requires only two membership queries. This is possible in
spite of the exponentially increasing distance between the
successively determined border pairs for &, since the
remaining uncertainty about the slope of & decreases
exponentially fast from phase to phase.

Once two adjacent vertices are approximately located by
this tracing procedure, we can run the learning algorithm
for STRIP,. y to determine the points on the zigzag border
line of the edge between them. In this way, we develop a fast
learning algorithm for k-HALFSPACE? (under certain restric-
tions). In Section 4, we consider the “natural” subclasses of
k-HALFSPACE? whose angles are bounded away from 0 and
7 by some fixed constant p. The class GP-Box? is one such
class.

2. LEARNING OF A HALFPLANE WITH
MEMBERSHIP QUERIES

In this section we show that for any given halfplane #; <
R? one can determine the precise set #; ~ {0, .., n — 1} % (in
particular its zigzag borderline) with Of{logn) queries
“pe #;? for pe {0, .., n— 1} % The learning algorithm that
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we design provides an essential subroutine for the on-line
learning algorithms for more complex geometrical figures in
Section 3.

THEOREM 2.1.
MEMB(HALFSPACE?) = B(log n).

Furthermore, there is a learning algorithm for HALFSPACE?
that uses at most O(log n) membership queries and, after
polynomially in log n many computation steps, outputs the
coefficients e Z* — {0} of some separating halfplane #,
(ie., #,n{0,..,n—1}2=Cq).

Proof. The lower bound follows from the general fact
that MEMB(%) > log |%] for any concept class 4.

For the proof of the upper bound we assume that
the environment has fixed some target concept Cre
HALFSPACEZ. When necessary, a point will be represented by
its x- and y-components p=<{p,,p,>. Arithmetic opera-
tions and relations on points are always spread com-
ponentwise; i.e., for p=<{p,,p,>,9=<{q,.q,> and re R,

Pra:=<{p.t4q..p,+4,),
p:=Lrp, 10>,
Ipl :=p.ls o1,

P<q<p.<q, and p,<gq,.

Grid points py, ..., p,, are rowwise adjacent if p, and p, , lie
in the same column and adjacent rows fori=1,..,m—1.In
this case we call the point set {p,, .., p,,} rowwise adjacent.
Two grid points p, q are called a rowwise border pair [ p, q]
if peCq, q¢ C, and they are rowwise adjacent. Similar
definitions hold for columnwise border pair. The convex
hull of the points p, ..., p,, is defined as

conv{p, . P} :={Z P | %y ey 2, 20, Y oc,:l}.

i=1 i=1

It is obvious that, unless Cy= {0, ..,n—1}? or C;=¢, at
least one of the corner points of the grid belongs to Cy and
one does not. Hence, one can determine by binary search,
with O(log n) membership queries, the two border pairs
that lie on the perimeter of the grid {0, ..,n—1}% One
might believe that C is uniquely determined by these bor-
der pairs (this error led to the premature statement of the
result of this theorem in [ MT89]). However, it is obvious
that the determination of all border pairs on the perimeter
leaves a set U of up to n—2 grid points inside the grid
unclassified (see Fig. 1).

The determination of U n Cy is a special case of a general
problem that arises whenever one wants to identify non-
axis-parallel geometric figures over a fixed grid. These
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FIG. 1.

The set of unclassified grid points in STRIP y. ;.

appears to be no easy solution to this problem, since the set
U may have a rather complicated geometric structure (see
Fig. 1).

We solve the problem of determining U n C by showing
that, with the help of results from the theory of rational
approximation, one can construct an affine transformation
o/ that maps the points in U into a set &/ [ U] of grid points
in a substantially smaller new grid. The new grid is the skew
grid which is indicated in Fig. 3. Our learning algorithm
will proceed in a recursive fashion, by determining with
O(log n) membership queries the border pairs for &/[Cy]
on the perimeter of o[ U], thereby reducing the problem of
determining U C; to a similar problem over a smaller
grid. Some technical complications arise, since many grid
points in the new grid do not correspond to grid points in
the original grid. Obviously, such points may not be used
for membership queries in our algorithm.

We define a class that contains all the difficulty of the
zigzag line problem for HALFSPACE? i.e., the determination
of U Cy. This class is defined on the grid {0, .., X} x
{0, .., Y}. The class STRIP , contains all halfplanes that
run from the lower-left corner to the upper right corner of
the grid, ie,,

STRIPy 4= {H#: ({0, .., X} x{0,., Y})|&
eZ>—{0}, <0,0) e #,
<0, 1) ¢ A,
X, Y—-1) e,
and (X, Y) ¢ #;}.
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The main statement of Theorem 2.1 follows from the
following two lemmas. We will discuss the computation
time of the algorithm at the end of Section 2.

Lemma 2.2.

MEMB(HALFSPACE?) < 2[log n7] + 4
+ max {MEMB(STrIPy ,)}.

X<n-1
VY<n—-1

Proof. We begin by querying each of the four corners of
the grid: <0,0>,<0,n—1>,(n—1,0>,and {n—1,n—1).
If all four corner points are in C, then C = {0, ., n—1}2,
and we are done. Similarly, if all four corner points are out
of Cy, then C = ¢, and we are done. Thus, we may assume
that at least one corner point is in C and one corner point
is out of C+. From this it follows that we know exactly two
sides of the grid whose endpoints (corner points) differ as to
membership in C;. We wish to find a border pair on both
of those sides.

Given a side of the grid with one end point pe C; and the
other end point q¢ Cy, we can find a border pair on that
side with at most ["log,(# — 1)7 queries, using binary search.
We begin by probing the point t=[1(p+q)7. Ifte C1, we
set p < tand repeat. If t ¢ C., we set q « t and repeat. When
p and q are adjacent, we have found a border pair. Similarly,
we can find a border pair {r, s] on the other grid side.

The only unclassified points in the grid lie between the
border pairs [ p, q] and [r, s] (see Fig. 2). All that remains
is to transform the grid to “look like” an instance of
STRIP; y (see Fig. 1). That is, we want both border pairs
columnwise in the lower-left and upper-right corners of the
grid.

...............

FIG. 2. An instance of STRIP , in the input grid of HALFSPACEZ.

We begin by making the two border pairs [p, q] and
[r,s] either both rowwise adjacent or both columnwise
adjacent, i.e., making p — q =r —s. This is already true if the
border pairs are on opposite sides of the grid, but requires
another step if they are no adjacent sides. We must replace
the point among p, q, r, and s that is furthest from the com-
mon endpoint (corner) of the adjacent sides. For example,
if this point is p, then we replace p with the unique neighbor
of q that is in the interior of the grid (see Fig. 2). In general,
we replace one point of a border pair with the unique inte-
rior neighbor of the other point of the border pair (the
special case when there is no such interior neighbor results
only from a trivial concept that contains or excludes exactly
one grid point). The replacement point is guaranteed to
have the same membership property as the point that it
replaces.

At this point, we have almost compieted the reduction.
We wish to concentrate on the minimal rectangular subgrid
G containing p, q, r, and s. By convexity of halfplanes, the
membership in C for all grid points outside G is known. It
is easy to see that G is isomorphic to an instance of STRIP v
for some X, Y <n—1, by flipping and/or rotating the grid.
More precisely, there is some affine transformation .« of R?
such that /[ G] e StTrip x. v- Running a learning algorithm
for STRIP ;. , on the X x ¥ subgrid .«/[ G ] will determine the
membership in C; for all points in the original grid
{0, ..n—1}2

As a practical matter of implementation, we do not
actually transformm the grid. Rather, we transform the
queries made on the grid. When a membership query
“pe /[ C1]?7" would be made on a grid to which a transfor-
mation ./ has been applied, the algorithm actually makes
the query “</ ~!(p)e C;?” on the original grid. This is
necessary, as the oracle for membership queries can only
answer queries to the original grid.

We will be using affine transformations of the grid exten-
sively in the following proofs. Since affine transformations
preserve linearity, we will always be attempting to learn
some (transformed) halfplane in some (transformed) grid.
Each time a new transformation is applied to the grid, we
compose it with those transformations applied so far. This
allows us to talk rather loosely about making a membership
query in any transformed grid, letting some overseeing
watchdog always apply the inverse of the composed trans-
formations to each point before actually querying.

The only membership queries required by this reduction
are of the four corner points, and those for two binary
searches, a total of at most 2[ log n7] + 4. This completes the
proof of Lemma 2.2. |

LEMMA 2.3.

MEMB(STRIP ;) <4 log X + 33[ log log X 30.
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It immediately follows from Lemmas 2.2 and 2.3 that
MEMB(HALFsSPACE2) < 6[ log n7] + 33 log log n] — 26.

The small constants make this a practical algorithm for
relatively small values of n, when the cost of a query is a
limiting factor of an algorithm. For example, learning an
arbitrary halfplane on a megapixel (1024 x 1024) display
requires querying in the worst case 113 pixels, or about 1 in
every 9000 pixels.

Proof. (of Lemma 2.3). We reduce STRIP, , tO
STRIP - . on a smaller grid. The following lemma gives the
result of that reduction. The result of Lemma 2.3 follows
from the solution to the recurrence implicit in the following
lemma, and a trivial basis case.

LeEmMMA 24,

MEMB(STrIP, y) <[log X7+ 31

+ max

x'<2/%

V<X+2/X

{MEMB(STRIP . ,.)}.

The proof of Lemma 2.4 will follow. We continue with the
proof of Lemma 2.3.

By probing all of the at most X —1 points in the set
of unclassified points U=conv{p, q,r,s} n({0, .., X} x
{0, .., Y}) of STRIP . ;, we have the basis case

MEMB(STRIP; ) < X — 1.

From this, and the result of Lemma 2.4, it is clear that
MEMB(STRIP, ;) can be bounded by a function dependent
only on X, not Y. Let us define a recurrence variable

S(m):= max

o< x<2™ 42

{MEMB(STRIP, ,)}.

Then, by Lemma 2.4, we have

S(m) < S(m— 1) +1og(2?"*?) + 31
= S(m—1)+2"+33.

From the basis case we have

S(1)= max ) {MEMB(STRIP; ,)}

0<X<1
<15

A bound on this recurrence is

S(m)<2m+1+33m—22,

p

FIG. 3. A skew grid within the original grid.

from which it follows that

MEMB(STRIP ;. ) < S([log log 3 X7)
<4log X+
+33loglog i X722
<4log X+
+ 33l log log X7 — 30.

This completes the proof of Lemma 2.3. ||

Proof. (of Lemma 2.4). The concepts we now consider
from StriP, . Thus, the halfplane # and target concept
Cr=#0({0, .., X} x{0, .., Y}) which we consider for
the remainder of this proof will in general be different from
the original halfplane and target concept. f X =0 or Y=0
the problem is trivial, so we may assume that X, ¥ > 0. We
reduce our current problem to a problem on a skew grid,
embedded in the current grid and containing the strip of
unclassified points U (see Fig. 3'). The two sets of parallel
lines defining the skew grid are chosen by their slopes a/b
and ¢/d (a, b, ¢, de Z; a, ¢ 20, b, d > 0) respectively.

In order for the reduction to go through, the new grid
must satisfy two properties. First, the size of the new grid
must decrease significantly in the x-dimension. The first set
of lines of slope a/b will be chosen to satisfy this property.
Second, the grid points (intersections of grid lines) of the
new grid must correspond exactly to the grid points of the
original grid. The second set of lines of slope ¢/d will be
chosen to satisfy this property.

Let p:=<0,0>, q:=<0,1), r:={X,Y—-1) and s:=
(X, Y) asin Fig. 3. If a and b are relatively prime, the lines

! The skew grid in Fig. 3 is not the one constructed by the method in the
text. The skew grids actually constructed tend to be so long and thin as to
be nearly unrecognizable in a diagram.
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of slope a/b that intersect integer valued points are the
lines

1
y=gX+y5 (yeZ).

The lines that intersect conv{p, q, r, s} are exactly those that
intersect the line segment pr plus those that intersect one of
the border pair segments (pq if a/b>(Y—1)/X: 1§
otherwise). The number of such lines is ¥ + 1, where

X=6(Y—1)—aX] +|b|

a Y

-1
=bXb % ‘+b.

To minimizing this, we must simultaneously minimize
both 4 and |a/b— (Y —1)/X|. That is, we must closely
approximate (Y-—1)/X by a fraction with a small
denominator. We use the following lemma from the theory
of rational approximation to accomplish this (see Lov§6,
Hua82).

LemMA 25, Foralloe Rand fe N+ there exista,beZ
such that 1 <b< ff and

a < 1
E"4\bw+1y

Clearly we may also choose a and b so that ged(a, b)=1.
We will assume that a/b>(Y—1)/X; the other case is
handled analogously. Applying Lemma 2.5 with a=
(Y—1)/X and ﬂzL\/)?_] we have

1<b< /X,

1
<'b'TX,

a Y-1

b X

from which it follows that

a Y-—1

S l+b

X=bX %

1
b —= X
< b\/X+\/—
=2./x

Now we choose set the second set of lines of slope ¢/d. In
order that the new grip points correspond exactly to the
original grid points, we must choose ¢/d to be the slope of
a line between two points on adjacent lines in the first set. A
good choice is to choose two “neighbor” points, that is, a
point on some line y = (a/b) x + y(1/b) and some point on
one of the two adjacent lines y=(a/b)x+ (y+8)(1/b)

where (6= t+1). We choose which adjacent line based on
the sign of our error in approximating (Y —1)/X by a/b.
That is, define

a
if —————<0;
' b
—1, otherwise.

From the constraints above, we determine that we would
choose d to be the unique integer such that

ad+5=0 (modb) (1<d<b)

(if =1 let d=1). Such a number d exists since
ged(a, b) = 1. We then set

ad+o

3 e N.

Now, since

ged(be, d) = ged(ad + 8, d)
= ged(9, d)
=1,

it follows that gcd(c, d) = 1. Thus, the lines of the second set
are all lines

._£+l( Z)
)’—'dx Vd VE

that intersect conv{p, g, r, s}. The number of such lines is
Y + 1, where

V=|dY—-1)—cX|+|d|

=\4Y—lyfm;§Xde|
Y-1 a ¢
—dX'T—B—ZEb-%M'I
Y-1 a b))
=X"—__'—_ —
d 1 T "3 +dwad + ||
d Y—-1 a 1
=—(bX|——= —
b< lX b+Ib|)+ded
d. 1
=-X+-X
A"
<X+X
<X+2./%
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-

<3+—X "=

FIG. 4. The skew grid within the original grid for STRIP, .

We then apply the affine transformation
A u, vy {au+b(1—v), cu+d(l-v))

to the skew grid to make it orthogonal, with its lower-left
corner /(q) at the origin. Applying this construction to the
grid in Fig. 4 results in the new grid in Fig. 5. By the pre-
vious computation, the new grid is {0, .., X} x {0, .., ¥}
where ¥<2./X and P<Xx+2 J/X. What remains is to
learn how the halfplane .o/ #% ] intersects this new grid.
Unfortunately, we cannot proceed as in Lemma 2.2 by
searching along the sides of the new grid. The points along
the sides of the new grid do not, in general, correspond to
points within the original grid (see Figs. 4 and 5).
Fortunately, as we have seen before, the only unclassified
grid points are those in &/[U], whch are contained in
fconv{p, q,r,s}]=conv{(p), #Z(q), (r), L(s)}. We
thus search for two border pairs along the “boundaries” of
Z[U]. Since #(p), H(r)eZ[C;] and (q), H(s)¢
&[C+], it 1s enough to search the boundary of /[ U]

Als) A(r)

P EE AN

z Il L
A
Alq)

FIG. 5. The new orthogonal grid resulting from STRriP; .

between /(p) and #/(q), and the boundary of &/[U]
between &/(r) and (s).

These “boundaries” are the zigzag lines £ (resp. 2 )
that run parallel to and above (resp. below) the line segment
A (p) #(q) (resp. «(r) (s)). Since Z(q)=<0,0) and
A(p)=<b, d), the discrete grid points along these zigzag
lines are, respectively,

Z;, ={Cu,v>e{0,.,b} x{0,.,d}|du
<bv<du+(b+d)}

Z,fszz{(/?—u, Y—ov>e{0, ., b} x {0, ... d} | du
Sbv<du+(b+d)}.

The continuous zigzag lines 2 and 2 are formed by
joining nearest neighbors of the corresponding discrete sets
Z; ,and Z .

We want to determine /[ #r]nZ; ,. The problem is
that the siope of the border line of /[ #;] may be close to
the slope of o#(p) +/(q) (see Fig. 6). Hence, this border line
may cut the zigzag line 2 in a rather complicated
fashion, giving rise to many border pairs in Z, . The
following lemma will imply that the intersection of the bor-
der line of &/ #7] with 7  cannot be very complicated,
although it may give rise to several border pairs in Z 7 (as
indicated in Fig. 6).

LemMMa 2.6. Al intersections of the border line of
A[Hr) with Z [ (resp. &) occur within an x-distance of
less than 4 units and a y-distance of less than 6 units from
each other.

Proof. We prove the lemma for & . The case of 2
is analogous. Note that if the slope of the border line of
[ #;] i1s negative, then there is exactly one intersection,
and we are done. Thus, we assume that the slope of the
border line is positive.

Alr)
Yol A
:....-/./..?':\ )
A LT T g
Y o[
e
¥ o SR
v D P9
A) ~
9/ _ ; _

FIG. 6. The new orthogonal grid, with zigzag lines.
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The idea of this proof is as follows. The slope of the bor-
der line of [ #; ] is bounded below by ¥/X, since it passes
beween &/(q)= <0, > and &(r)=<X, ¥>. By definition,
ZJr and therefore 2 are sandwiched between the lines

= ( d/b) x and y = (d/b) x + (1 + d/b), separated by a verti-
cal distance of (1 + d/b) < 2. Since the slope of the border
line of /[ #;], ¥/X, is significantly larger than the slope of
the lines sandwiching %, d/b, the border line cannot
remain between these lines for long.

Let us begin by showing that ¥/X is significantly larger
than d/b. In the computation above, we saw that

Y @h X+ X
X X
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\Y
>R on, ol
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=
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Note that, since d < \/—/\7, this shows that ¥/X> (3/2 d/b),
but we will need the stronger result as stated above.

Now let us consider how long the border line of /[ # ;]
can remain between the lines sandwiching & . Let t,
(resp. t,) be the point of intersection of the borderline with
y=(d/b) x (resp. y=(d/b) x+(1+(d/b))). Let {{,h):=
t, —t,. To prove Lemma 2.6, we need to show that / <4 and
h < 6. 1t is easy to derive the following inequalities from the
above discussion (see Fig. 7):
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Rewriting the above equation, we have
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FIG. 7. The intersection between a zigzag line and the border line of
a halfplane.

Rewriting the equation again, we have

d d
h=gl (1+b>
<I+(141)
<44+{1+1)

=6.

This completes the proof of Lemma 2.6. |

We order the points in Z" according to their order of
occurrence along 2 . Since #(p)e /[ C] and /(q)¢
/[ Cy] we can do a binary search along ' to find some
border pair in Z . By Lemma 2.6, all other border pairs
occur within x-distance 4 and y-distance 6 from this dis-
covered border pair. It is not difficult to see that there are at
most 2.2 -4 —2 = 14 grid points (two per column to the left
and right of the border pair found) in Z) that are left
unclassified. We query these 14 unclassified points.

Let [P, §] be the innermost (i.e., closest to ./(p)) border
pair in Z,, and [f,8] be the innermost (ie., closest to
2 (s)) border pair in Z~, found in a similar manner. We
are now In a situation similar to that in Lemma 2.2. The
only unclassified points in the grid lie between the border
pairs [P, ] and [F, §]. All that remains is to transform the
grid to “look like” an instance of STRIP,. ,.. First, as in
Lemma 2.2, we replace one of p, §, F or § so that both border
pairs are rowwise or both are columnwise. Second, we apply
another affine transformation (if needed) to rotate and/or
flip the grid into the correct orientation.

This completes the reduction of STRIP,. , to STRIPy- 4,
where X’<X<2\/X’ and Y’ < Y<X+2\/)? The only
membership queries used to do this were those for the 2
binary searches and the 14 remaining unclassified points on
the zigzag line, a total of
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2 ogy(b +d) 1+ 14) <2([log 2 /X T+ 14)
=27 Llog X7+30
<[log X7+ 31.

We have reduced the detemination of Ct to the determina-
tion of &[ C1]. This completes the proof of Lemma 24. |

All that remains of the proof of Theorem 2.1 is to discuss
the number of computation steps required by the above
algorithm. All computations performed are on integers that
are bounded by a polynomial in n, so we may use any
standard arithmetic operation as an atomic operation.
There are five areas where it is not trivial to see that the
computation time is polylogarithmic in n: performing
binary search, performing an affine transformation;
choosing a/b; choosing c/d; and computing xe Z> — {0}
such that Cy = #,n {0, .., n— 1}~

The computation involved in binary search for a border
pair is trivial if the search range is a straight line. If the
search range is along a zigzag line (e.g.,, Z ), we relax the
condition for determining the “midpoint” to query at each
stage. Assuming the zigzag line has a slope of less than 1 (as
1s always the case here), we do binary search along the
outermost points on the zigzag line in each column. In the
case of & ; , these are the points

{(w] F])ro<usel.

The pair pe Ct and q ¢ C+ found is not necessarily adjacent,
but there is at most one grid point between them which,
when queried, will yield a border pair.

One can represent the affine transformations by 3 x3
coefficient matrices. When a new transformation is applied,
the current and new transformation matrices are multiplied.

The method for computing a good rational approxima-
tion a/b (with a bounded denominator) to a rational num-
ber is discussed in [ Lov 86]. The basic idea is this. Compute
the continued fraction representation of the original
rational number. Then find the maximal “prefix” of this con-
tinued fraction that represents a rational number with
denominator less than the required bound. That rational
number a/b will satisfy the bounds stated in Lemma 2.5.

The Extended Euclidean Algorithm (see [AHU74]) can
be used to find the value d such that ad+ 1 =0 (mod 5).
Once d is known, the computation of c is trivial.

The equations of a border line 5, such that C;=
#,n {0, .., n—1}? can be determined by post-processing a
list of all O(log n) points queried by the algorithm. These
points can be used to produce a set of O(log n) inequalities
in the coefficients & of a line o, x + a,y = a5 that separates
them. There are algorithms for linear programming that will
produce a satisfying @ € @* — {0}, in time polynomial in the

number of points. The computed & € Q* can be normalized
to a satisfying €€ Z°> — {0}.
This completes the proof of Theorem 2.1. |

3. FAST AND EXACT IDENTIFICATION OF POLYGONS
WITH MEMBERSHIP QUERIES

It turns out that the number of membership queries that
are needed to identify polygons does not depend just on n
and the number k of edges; it also depends on the minimum
and maximum angle between any two adjacent edges of the
polygon. To see this, consider for any p > 0 the concept class
%, of triangles over {0, .., n— 1}? whose angles are between
p and 7 — p (see Fig. 8). Furthermore, let &, be the concept
class of pentagons and all angles between n/2 and 7 — p (see
Fig. 9). One can easily show that Q(1/p) membership
queries are needed for identifying arbitrary target concepts
from %,, respectively 9,, since single points such as the
points p in Figs. 8 and 9 can only be found by exhaustive
search over a set of Q(1/p) grid points. Therefore, instead of
k-HALFSPACE? we consider the following concept class.
Assume that ke N* and 0 < p < n/2. Then

k-HALFSPACE],

={C<{0,.., n—1}?| Ihallplanes #, ..., #;, <
R? such that for # := #, N --- N H#, one has
2<[l,n-2)and C=2n{0,..,n—1}7
and the angle a between any two adjacent
edges of the polygon # satisfies p<a<
n — p, and each edge of the polygon # has
length at least 16 -[1/p7}.

The restriction that the polygon is entirely contained within
the grid is really insignificant. A general intersection of k&
halfplanes on an n x n grid can be construed as an at most
{k + 4)-edged polygon contained within an (n+ 2) x (n + 2)
grid. We take the border lines of the original halfplanes, as
well as the sides of the n x »n grid, and add a boundary of new
grid points around the n x n gnd.

FIG. 8. A concept from the class €,,.
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FIG. 9. A concept from the class Z,.

In the case of single halfplanes, we knew that for any
(nonempty) concept C € HALFSPACE? at least one of the
four grid comers was in C;. In the case of polygons
(k-HALFSPACE} or k-HALFSPACE] ), it is no longer easy to
find any single point in Cp. In fact, it is easy to give a
lower bound of Q((np/k)?) for the required number of
membership queries to learn k-HALFSPACE? | without any
given initial point. Hence, we assume in the following that
some point p, € Ct is given initially to the learner.

THEOREM 3.1. There is a learning algorithm to exactly
identify any Crek-HALFSPACE] , from any given point
poe Cy with O(k(1/p +logn)) membership queries. The
number of computation steps of the algorithm is bounded by
a polynomial in k, log n and 1/p.

Proof. As mentioned above, the polygons we consider
are built from halfplanes #, < R?, with de Z*> — {0}, where

A=y e R ax + oy >as).
Associated with any halfplane J#, is its border line £,
Lo={(xy> e R |ax +ay=as).

When three or more halfplanes intersect to form a polygon
P=Hn --- 0 H,, the associated border lines & from
edges,

s=20(0 %),

J#i

We will assume w.l.o.g. that each & has nonzero length, and
that they are numbered consecutively, i.e., &, intersects only
&._, and & ., (modulo k). The line %, is said to be the line
extending &;. The intersection of two edges, or equivalently
lines, is a vertex v of .

Assume some Crek-HALFSPACE, , and Z = .-
~ #, such that Cr=Z% n {0, ..., n — 1} have been fixed by
the environment. Assume for simplicity that 1/peN. A
rough sketch of the learning algorithm is as follows. From
the initial point p, € Cr, we find a small cluster of points in
C+. From this cluster, we search in any direction until we
find several neighboring border pairs on some edge of the
polygon. We trace roughly along this edge until it ends, and
locate the vertex to within a small region. The exact trace of
the edge between the original border pairs and the vertex
region can be learned by the algorithm for STrIPy , from
the previous section. The exact trace of the polygon within
the small vertex region can be learned by exhaustive search.
A few border pairs on the next adjacent edge. After at most
k + 1 repetitions, we will have retraced a known edge and
finished. Knowing the trace of all edges and vertices deter-
mines Ct by convexity.

The algorithm is presented as a series of subroutines, each
corresponding to one sentence in the above paragraph. The
flowchart of Fig. 10 gives the subroutine names and their
calling sequence. For the remainder of this section, we will
present these subroutines in the order indicated by the
flowhchart. Interspersed between the subroutines we will
describe any nontrivial work that must be done by the main
algorithm which calls the subroutines.

FindCluster

{TraceEdge |

lDetermneEdge]
!

[ DetermineCorner‘

FIG. 10. The flowchart of the learning algorithm for k-HALFSPACEi, o
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Along with the written description, a diagram of the
action of each subroutine will be presented. This will be
represented as a typical input configuration and a possible
output configuration resulting from it. In the diagrams, grid
points in C will be represented with an x, and grid points
not in Cy will be represented with an O. The diagrams
cannot represent the general case of the computation of the
subroutine, but are only intended to ease interpretation of
the written description.

Before we begin descriptions of the subroutines, we state
a lemma which will be used in many of the subroutines.
Informally, it states that at a distance d from the intersection
of two lines meeting with angle p, the lines will be separated
by distance Q(dp).

LEMMA 3.2. Let two lines &, and %, intersect at point v
with angle p (0 < p <m/2). Let & be a length I line segment
joining £ and %, If & has a distance d from v (as measured
by the distance between v and any point on &), then
[z (2/7) dp.

Proof. We prove the lemma for the longest distance d,
from which the lemma follows. The longest distance from v
to & will occur along one of the lines &, or %, say ¥
w.l.o.g. We thus wish to find the mimimum value that / can
attain for the given p and d. Since the shortest distance
between a point and a line occurs along a segment per-
pendicular to the line, we will find the minimum value for /
when & is perpendicular to % . The inequality

Izdsinp
follows immediately from these observations. Since the

quantity p/sin p is monotone increasing over (0, (n/2)], it
follows that

P (7/2)
sin p = sin(7n/2)
T
=3

Thus,

from which our result follows. This completes the proof of
Lemma 32. }

We now continue with the presentation of the sub-
routines of the learning algorithm for k-HALFSPACE? .

x
PO
B e
pl p2 p3

FIG. 11. Diagram of subroutine FINDCLUSTER

FINDCLUSTER (py — Py, P2, P3)-

Input: poe Ct.

Output: Three columnwise (resp. rowwise) adjacent
points p,, p2, p; € Cy.

Queries: O(1/p).

(See Fig. 11.)

Let S, be the set of grid points in the square of points at
most d units horizontally and vertically from p, = {x,, yo>;
ie., for any de N, let

S.:={Ku,v>ef{0,...,n—1}?| lv—y,| <d

and |u— x,| < d}.

LEMMA 3.3. There exist three points p,, p,, P, such that

(i} Ppi, P2 P2€Cr,
(i) P, P2, Pa€S2U(Sis4)13—S(s/)s

(i) py, P2, P3 are columnwise adjacent, or py, p,, ps are
rowwise adjacent.

Proof. We may assume that no three points in S, satisfy
(1) and (iii), since otherwise we are done. Thus, some edge
&, cuts between py+<0,2), and some edge &_ cuts
between p, and py—<0,2)>. Clearly, &, #6&_. Let &,
(resp. &) be the line extending &, (resp. &_). Then £, and
Y are separated by vertical distance at most 3 at the
column of p,.

Suppose &, and &_ are parallel. Then ¥, and £_ are
separated by vertical distance at most 3 everywhere. Let v be
an endpoint of &, , let & be the edge adjacent to &, at v, and
let 7 be the second endpoint of & By definition of k-
HALFSPACEZ ,, & has length at least 16/p, and meets &, at
an angle of at least p. Applying Lemma 3.2, we see that ¥
must be at least (2/n)-(16/p)- p=(32/7)> 10 units away
from &, . Since &_ is at most 3 units below &, , we know
that ¥ must be below .#_. This is a contradiction, since all
points in % lie on the same side of &_ as py. Thus, &, and
&_ are not parallel.

Thus, we may assume that ¥, and #_ meet on one side
of p, (say the left side w.l.o.g.). Suppose &, and &_ are not
adjacent. Then ¥, and .#_ are separated by a vertical dis-
tance at most 3 everywhere left of p,. The same argument as
above, applied on the left side of p,, gives a contradiction.
Thus, &, and &_ are adjacent, with shared endpoint v.
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Since &, and &_ must meet at an angle of at least p, and
they are separated by a vertical distance of at most 3 at the
column of p,, Lemma 3.2 implies that v is at most 37/2p <
5/p units from p,. Since both £, and £_ have length at least
16/p, they must extend at least 16/p —S/p =11/p units to
the right of p,. Thus, both &, and &_ pass through
(S¢sipya3—Sis,)) at a distance of at least 5/p from v.
Applying Lemma 3.2 once more show that there will be at
least (2/m)-(5/p)-p=10/m>3 columnwise or rowwise
adjacent grid points between &, and &_ when they reach
the boundary of 8 ,,,. This completes the proof of Lemma
33

Since |8, U (S5, 43— S;5/,))| = O(3), FINDCLUSTER can
exhaustively search this region to complete its task.

By assumption, the main algorithm is given a point
po € C+ initially. After running FINDCLUSTER, we have three
columnwise or rowwise adjacent points in Cr. If the points
are rowwise adjacent, rotate the grid with the affine trans-
formation

A u, vy n—1—-v,u)

(see Section 2 for a discussion of grid transformations).
Thus, we may assume that we have three columnwise
adjacent points in Ct to give to FINDEDGE.

FINDEDGE (p,, P2, P3 = P45 Q45 Ps» Qs> Ps G )-

Input: Three columnwise adjacent points p,, p,, ps;
e C;.

Output: Three rowwise (resp. columnwise} border
pairs [ps.q4], [Ps.qs]. and [ps, q¢] in three adjacent
columns {resp. rows) and at most four adjacent rows
{resp. columns).

Queries: O(log n).

(See Fig. 12.)

Let p,=<{x,,y;> (i=1, 2, 3). By definition of k-
HALFSPACE. , the points on the border of the grid do not
belong to ;. In particular, the points q,= (x,, 0> (i=1, 2,
3) are not in Cy. Thus, we can do a binary search between

FIG. 12. Diagram of subroutine FINDEDGE.

p,€ Cy and q,¢ C in each column x, (i = 1, 2, 3). The result
of this binary search is a set of three border pairs [p;. q;]
(=4, 5, 6), one in each column searched. If the border
pairs occur in four adjacent rows, we are finished.

Suppose the border pairs are separated by at least five
rows. Let [p;, q;] be the lowest and let [p,, q;] be the
highest of these. Let p,={x,, y;> and p,= {(x,, ;>. Then it
is easy to see that

<xiv yi>1 <xi’yi+ l>’ <-\'i’,}':+2> GCT
and
<xjsyi>a <X,-.y,~+ 1>, <xj»}"f+2> ¢Cr.

Thus, there are border pairs [ p}, q,1, [ p5, 45 and [ pj, q4]
in rows y;, (y;+1) and {y,+2) respectively. These are
columnwise border pairs, and clearly they lie in 3 <4 adja-
cent columns as well. This satisfies the output requirements
of FINDEDGE. As before, if the border pairs returned by
FINDEDGE are columnwise, we can make them rowwise by
rotating the grid.

In order to proceed with the next step, TRACEEDGE, we
need two border pairs that are cut by the same edge of #,
and far from a vertex in one direction. Ufortunatly, it is
impossible to tell if two arbitrary (even adjacent) border
pairs are cut by the same edge. However, there can be at
most one vertex between three adjacent border pairs such as
those produced by FINDEDGE, since vertices are at least
16/p > 32/ > 10 units apart. Thus, if the leftmost two
border pairs either surround a vertex or are less than 8/p
units from a vertex to the left, then the rightmost two border
pairs will lie on the same edge and at least 16/p —8/p =8/p
units from the vertex to the right.

The algorithm need not determine which two of the three
border pairs lie on the same edge. We run the remainder of
the algorithm on both possibilities, yielding two concepts
C,, C,€k-HALFSPACE? ,, one of which is C1. If C, = C, we
are done. Otherwise they differ on some grid point
pe C,AC,. By quering this one point p, we can determine
which of C, or C, equals C-. It is easy to see that this argu-
ment can be generalized to yield a proof of the following
claim.

Claim 3.4. Assume for concept classes 4, €, ..., 4, that
onehas ¥=%,u --- u%,,. Then

MEMB(%) S( i MEMB(%,-)) +(m—1).

i=1

The above claim provides a useful tool to allow a
membership query algorithm to make a constant number of
“guesses”, without increasing its asymptotic complexity. We
can now supply two border pairs to TRACEEDGE, which it
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FIG. 13. Diagram of subroutine TRACEEDGE.

may assume to be on the same edge of %, and far from the
next vertex.

TRACEEDGE (Ps, 45, Pes 46 — P7- 47, s> o)

Input: Two rowwise border pairs [ps, g5, [Ps, gs] in
adjacent columns, cut by the same edge &, at least 8/p
units from the endpoint v of & which is closer to [ps, q¢]
than [ps, qs].

Output: Rowwise border pair [p,, q;] cut by edge &
and two points g, o ¢ Cr with (g —qs) <5(p; —g5),
veconv{p;, q;, qs, 44}, and the column of qq, q, is at
most (16/p) columns from [p,, q,].

Queries: O(log n).

(See Fig. 13.)

For the remainder of this section we will refer to con-
v{p+, Q7 qs, §o} S a vertex region, since it contains one of
the vertices of # . We will refer to conv{ps, qs, p7, q-} asan
edge region, since it contains that portion of some edge of
;. not contained in vertex regions.

TRACEEDGE is the most complex new part of the k-
HALFSPACE] , algorithm. One difficulty is that it never really
knows the exact location of the edge & or the vertex v.
Furthermore, the discrete set C may be quite complcated.
It need not even consist of points from a continuous set of
rows (resp. Columns). For example, a “spike” of % may
pierce through a column between two adjacent grip points
to hit a grid point several columns later (see Fig. 8). Hence,
it is a nontrivial task to trace an edge if the domain is the
discrete grid.

We begin by performing what we call an inverse binary
search to trace the edge & We know two border pairs
[ps.qs] and [pg, q¢] cut by & that are d columns apart
(initially d =1). Let % be the line extending &, and # be
the associated halfplane of %;.

FIG. 14.

Inverse binary search along an edge.

Let r:=2ps—qs and s:=2q,—ps (sece Fig. 14). The
points r and s lie in the column 2d from [ ps, q95]. We know
that s ¢ #, since otherwise the point q, ¢ # would lie on a
line between the two points ps € # and s € #, a contradic-
tion to the convexity of halfplanes. Similarly, we know that
re . Assume & continues to the column of r and s. Then
there is a border pair cut by & between r and s. By quering
the four adjacent points between r and s, i.e., those points in

S= {2P6-QSa2P6—P5~2%_‘I5, 2‘]6‘})5},

we will find this border pair. In fact, we can get by with two
queries, since we know that se 5, and the others can be
found by binary search. We replace [ p¢, q¢] with this new
border pair and repeat the above steps. At each iteration, we
double the traced horizontal length of & with 2 queries.
Thus, after at most 2 lognr queries, we will have traced
beyond the vertex v.

We continue with the inverse binary search until all four
points in S are found to be not in Cy. In particular, this
means that the point r ¢ C;, and so some edge of % must
cut between r and pg € Cy (see Fig. 15). Since r and pg lie on
the same side of .#, it is the next edge & (which meets &
at v).

As in the proof of Lemma 2.4, we perform a binary search
along the zigzag line between pg and r just owutside of
conv{ps, q¢, I, s}. This search reveals a border pair {, §]
that is cut by &.

FIG. 15. A new edge cuts between r and p,.
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Let % (resp. Z) be the line extending & (resp. &). The
portion of % that runs between the columns of j and §
lies in conv{pg, g, I, s}. Somewhere between those two
columns, there are points on .# and .2 that are separated by
vertical distance at most 5, since conv{pe, ¢, I, s} has verti-
cal height at most 3 and zigzag lines have height at most 2.
Applying Lemma 3.2, we see that v lies within distance at
most 5n/2p < 8/p to the left or right of [§, §]. By the condi-
tions of TRACEEDGE, v is also at least 8/p units from
[ps. gs].

We set [p;, q-] to be the border pair in the column 8/p
units from P in the direction of [ ps, q5], or the column 8/p
units from [ ps, qs ] in the direction of p, whichever is closest
to p. Thus, edge & cuts both [ps, qs] and [p;, q;]. We set
g, (resp. qg) to be the point on the line between q; and p,
(resp. ps and q5), in the column 8/p units from § in the direc-
tion away from [ ps, q5]. Thus, line & also cuts between qg
and q,, but only after vertex v. Since the distance between p,
and q; (resp. g, and q,) is at most twice the distance between
p, and qs (resp. q; and ps) we know that the distance
between q, and g; is at most 5 units. We have therefore
satisfied the conditions required of TRACEEDGE.

DETERMINEEDGE (ps, qs, p7.4-—E,,E_)

Input: Two rowwise border pairs [ps, qs], [p7.947] on
the same edge &.

Output: Two sets E, = Cynconv{ps, qs, P, 97}, E_
c Cynconv{ps, qs, pr,q;; with [E, UE _|=0O(logn),
such that any line separating E, from E_ will
correctly separate C;conv{ps,qs,p,,q;} from Cin
conv{ps, qs. P7- 47}

Queries: O(log n).

{See Fig. 16.)

It is clear that, after rotating and/or flipping the grid, this
is a valid input configuration for the learning algorithm
for STRIP, , presented in Section 2. We simply run that
algorithm as a subroutine, nd keep track of the results of the
O(log n) points queried.

DETERMINEVERTEX (P, 97,93, qo— V., V_).
Input: Four points p,, q7, s, qs With [p; —q,[ =<0, 1),

FIG. 16. Diagram of subroutine DETERMINEEDGE.

T0eR006® v

e,

FIG. 17. Diagram of subroutine DETERMINEVERTEX.

199 —q51 <<0,5) and
ceN.

Output: Two sets V, =Crnconv{p;, q;, qs. 45} and
V_=Crnconv{p;,q;, s, G}

Queries: O(1/p).

(See Fig. 17.)

This is done by exhaustive search of all grid points
within conv{p,, q;, gg, go}. The number of such points is

O(1/p).

NEXTEDGE (P, 47, 4s, 45 — Bs, s, P, do).
Input: Rowwise border pair [p,, q;] cut by edge &

and two points qg, 4o ¢ C1 with (g —qs) <5(p;—q5),
with one endpoint v of & in conv{p,, q,, qs, 4}, Where
the column of qg,q, is at most 16/p columns from

[ps, q7].

19z — 4] <<{16/p,c> for some

FIG. 18, Diagram of subroutine NEXTEDGE
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Output: Two columnwise (resp. rowwise) border pairs
[Ps, Gs1, [Ps. Gs] in adjacent rows (resp. columns) both
cut by the edge £ adjacent to & at v.

Queries: O(1).

(See Fig. 18.)

Let # be the line extending &. Some edge & of %
cuts between p, € C; and g4 ¢ C1. Since both p, and q, lie
on the same side of ¥, £ #&. We do a binary search
along the zigzag line between p, and gq, just outside
conv{p,, q;, qs, 9} The result of this search is a border
pair [ p, §]. In fact, we can use the border pair [ p. §] found
by TrRACEEDGE, which is 8/p columns from q; and g4 by
definition. Since [$,d4] is at most 8/p columns from
[p-. q-], the edge & must be adjacent to & at v. The edge &
must extend at least 16/p —8/p=8/p units beyond
conv{ S p7, 4+, qs, 9o}

We wish to show that within 1 unit of [, §] there will be
twio border pairs satisfying the output requirements of
NEXTEDGE. Assume that §=p+<0,1> and [, ] lies
above conv{p,, q;, qs, qo}; all other cases are handled
similarly. Query the points F:=p+(—1,1) and §:=
i+ (1, ). If e Cy and §¢ Cy then there is a border pair
between them. We set [, §¢] to be this new border pair,
and [Ps, §s] to be [P, §]. If not, then either f,§e Cy or
f, §¢ Cq, since it cannot be that ¢ C and §e C.

If , §e C, then we set set [ s, §s] tobe [§+ <0, 1), ],
and [Pe, §s] to be [§,§—<0,1>]. If ¥, §¢Cy, then we
set [Ps,ds] to be [E—<0,1>,F], and [P, o] to be
[P, p+ <0, 1>]. Since all of these border pairs are less than
16/p units from v, they are cut by &. This completes the
output requirements for NEXTEDGE.

After the main algorithm finishes with NexTEDGE, it
loops back to TRACEEDGE. In order for TRACEEDGE to be
successful, it needs to be given two adjacent border pairs on
the same edge, at least 8/p units from the next vertex in the
direction to be traced. We have seen that [{s, 5] and
[Pe. §ic] are on the same edge &, and that & extends at least
8/p units beyond conv{p,, q;, qs, qo}-

After at most k + 1 such iterations, we will have retraced
the full length of the first edge, found by FINDEDGE. At that
point we will have learned the membership of all points in
a continuous, connected region, composed of at most & edge
and vertex regions, that entirely contains the edges and
vertices of %. This completes the learning algorithm for
k-HaLFsPACE] , and the proof of Theorem 3.1. ||

4. LEARNING BOXES AND OTHER “NATURAL”
CLASSES OF POLYGONS

Although k-HALFSPACE, , & k-HALFSPACE;, all “natural”
polygons belong to k-HALFsPACE, , for some 7. Two com-
mon operations on a grid of pixels are increasing the resolu-
tion and “zooming in” on C. By increasing the resolution

we mean leaving the geometric target object fixed while
decreasing the distance between grid points. By “zooming
in” on C; we mean scaling up the geometric target object’s
dimensions while leaving the grid fixed. With either of these
operations we increase the number of pixels (grid points) on
each edge, while leaving the angles fixed. When each edge
finally has at least 16 [1/p7] points on it, the figure can be
recognized by the learning algorithm presented in the
previous section.

A “natural” class of polygons is the set of polygons whose
angles are bounded away from 0 and = by some arbitrary,
but fixed, constant p. For such polygons, the algorithm of
the previous section gives the following resuit.

COROLLARY 4.1. Assume thatke N* and p(0 < p < n/2)
are constants. Then any Cye k-HALFSPACE; , can be iden-
tified from some given p,e Cy with O(logn) membership
queries and O(log®") n) computation steps. Furthermore, one
can augment the learning algorithm so that after O(log™"Y n)
computation steps it outputs the coordinates of the at most k
vertices of some polygon # with Cr=2n{0, ..,n—1}2

Proof. The first statement follows immediately from
Theorem 3.1. The second statement follows from a
reduction to linear programming. By definition of k-
HALFSPACE] ,, there is some polygon Z; such that Cr=
#0010, .., n~—1}% Let v be some vertex of 24, with inci-
dent edges &, and &,. Let J# (resp. #5) be the halfplane
associated with & (resp. &). Each of the points in the vertex
region for v (as in DETERMINEVERTEX) belongs to exactly
one of the sets J#, N #;, A, — A, H — H, or K, H. By
labeling each of the points in every vertex region with one of
the four sets associated with the vertex, we obtain a com-
plete classification of the points in vertex regions with
respect to all of the halfplanes #, ..., #, . Since the total
number of points in all vertex regions is O(k/p)= O(1)},
there are at most 4°%/#) = O(1) classifications.

For each such classification, we try to find k lines which
separate the grid points in vertex regions according to the
classification, and are also consistent with the information
received from the queries in each edge region. We can do
this by solving for each classification k systems of linear
inequalities in the unknown coeflicients of the separating
lines. If each of these systems has a solution for the same
classification, we have found a valid polygon £ such that
Ci=2n{0,..,n—1}2 Since the systems will at least all
have a solution for the “correct” classification induced by
2., we will find some valid £ after solving O(1) linear
programs. From 2 we can easily compute the vertices. [

The second extension of Theorem 3.1 deals with the spe-
cial case of rectangles in general position in the grid. As an
immediate corollary of Theorem 3.1 we can recognize, given
Po € C+, any rectangle whose edges are at least 16 units long,
using O(log n) membership queries. The following theorem
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improves the minimal required edge length to an optimal 1
unit. Note that, with this improvement, the algorithm below
can recognize “lines” as well as boxes. A line appearing on
a monitor is typically a rectangle with a width of 1 pixel,
centered on the line segment it represents. The proof is
intentionally presented in a way that makes extensive use of
Claim 3.4, to illustrate the power of that tool.

THEOREM 4.2.  Assume that Cre GP-Box? has minimal
edge length at least 1, and that some py € Cr is given. Then C+
can be identified with O(log n) membership queries.

Remark 43. We note that both assumptions of
Theorem 4.2 are necessary. A 1x 1 rectangle can exactly
contain any single point in the grid. Thus Q(n?) membership
queries are required if no initial point is given. Assume that
the point {2, 2> is in Cr, and one edge length is aliowed to
be less than 1. Then it is easy to see that C; can consist of
any of the (n—4)=8(n) concepts {(2,2), {i,3)} for
2<i<n—3. Also note that, as in Corollary 4.1 we can
compute the vertices of some valid rectangle # such that
Cr=#n{0,..,n—1}2

Proof (of Theorem 4.2). We will make use of Claim 3.4
to learn C with O(log n) membership queries. If both edge
lengths are at least 16, then Cy e 4-HALFSPACE] , ,, and we
can use the algorithm of Section 3. If both edge lengths are
at most 32, then all points in C are within 32 ﬂ units from
pPo- We can exhaustively search all such points with O(1)
membership queries, and thus learn C;. The remaining
case, with edge lengts /, and /, with [ </, <16<32</,,
will be handled below. Since all rectangles with minimum
edge length at least 1 fall into at least one of these three
cases, we are done, by Claim 3.4.

We now consider learning the long, thin rectangles of
edge lengths /, and /, with 1 </, <16 <32 </,. Since both
edge lengths are at least 1, every row and every column has
at least one point in Cy. Since one edge length is at least 32,
there are at least 32/\/§>22 points in adjacent columns
(resp. rows) including p, that are in C. We can find these
points by exhaustive search of O(1) points around p,. We
assume w.l.o.g. that they are in adjacent columns.

Since all points in the bottom row of the grid are not in
C;, we can find a border pair below each of the 22 points,
as in FINDEDGE. Since the short edges of the rectangle have
length Jess than 16, at least two of the 22 border pairs
must be on the same long edge. We again use Claim 3.4 to
“guess” which two, as in Section 3. We trace this edge as
in TRACEEDGE. When a vertex is roughly located, we
immediately retrace the long edge back in the opposite
direction. Once both vertices on this edge are roughly
known, we apply the learning algorithm for STRIP, , to
learn the exact portion of the edge between the vertex
regions,
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The remaining vertices are located within less than 16
units from the two known vertices. Thus, with O(1) mem-
bership queries we can learn how C intersection not only
the two known vertex regions, but also the two unknown
vertex regions and the two short edges. One final use of the
learning algorithm for STrIP, , completes the learning on
the remaining long edge. This completes the proof of
Theorem 4.2. |

Remark 44. Other learning algorithms for intersec-
tions of halfspaces were previously proposed by Baum
[ Bau90b, Bau90c, Bau90a]). He considers in [ Bau90c and
Bau90a] a learning model that agrees with the usual PAC-
learning model except for the following two features: the
learner may in addition make membership queries, and one
assumes that the target concept is chosen in a “non-
malicious” manner. Baum’s learning algorithm works for
arbitrary dimensions. If one applies it to the case of two
dimensions, it achieves within time O(log®" n) (this is the
time which the algorithm of Corollary 4.1 needs for a 100%
correct determination of the target concept C) with high
probability an approximation of C by a hypothesis H with
error ¢ =1/0(log?!" »). If one assumes, for example, that
the underlying distribution over the domain is the uniform
distribution over the grid points pe {0, .,n—1}2 this
implies that #°/O(log”"’ n) grid points may lie in the dif-
ference of H and C;. The same error bound holds for the
learning algorithm of [ Bau90b ]. This algorithm requires no
membership queries, but a substantially larger hypothesis
space.

If one focuses only on the number of membership queries
that the algorithm of [Bau90c, Bau90a] uses, one can
derive from the estimates for the parameter b in [ Bau90a]
that it needs Q((log(n*/F))?) membership queries in order
to achieve (with high probability that [(H—Cp)u
(Cr—H)n{0,..,n—1}? < E (consider the uniform dis-
tribution over {0, ., n—1}?). Hence, with O(log n) mem-
bership queries (and substantially more than O(log?" n)
random examples) it achieves at best an approximation
with error E=n2~(Vvloem,

Another difference between the algorithm of Theorem 3.1
and the algorithm of [ Bau90c, Bau90a] is the fact that
Baum’s algorithm would have to use other points pe R?
besides the grid points pe {0, ..., n — 1} for its membership
queries (if one applied it to the learning problem considered
here).
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