Proc. of a Workshop on Logic from Computer Science, Y .N. Moschovakis, ed.,
Springer (Berlin, 1991), 359-372.

SPLITTING AND DENSITY FOR THE RECURSIVE SETS
OF A FIXED TIME COMPLEXITY

WOLFGANG MAASS AND THEODORE A. SLAMAN

ApsTRACT. We analyze the fine structure of the time complexity classes
induced by random access machines. Say that A and B have the same time
complexity (A+¢ B) if for all time constructible f A € DTIMEpam(f) <=
B € DTIMERanm(f). The =c-equivalence class of A is called it complex-
ity type. We examine the set theoretic relationships between the sets in an
arbitrary complexity type C. For example, every recursive set X can be
partitioned into two sets A and I such that A =¢ B =¢ X. Additionally,
the ordering of C under C* (inclusion modulo finite sets) is dense.

1. INTRODUCTION

There has been a persistent intuition that the computational complex-
ity of a set A of strings is related to the structure of the distribution of
the elements of A. For example, Mahaney’s [Ma] solution to the Berman-
Hartmanis conjecture or Martin’s [Mar] characterization of the Turing de-
grees of the maximal recursively enumerable sets grew out of the desire to
test this intuition.

Although a large portion of current research in theoretical computer sci-
ence is concerned with the investigation of problems that lie in P, very little
is known about the relationship between the computational complexity and
set theoretic aspects of sets in P. The results of this paper may be viewed as
one step in this direction, since they provide nentrivial information about
sets in P (for example about the structure of the class of sets of quadratic
time complexity). We work in the context of a very fine scale for complex-
ity and study the set theoretic properties among the recursive sets which
are equally complex. Our results are all in the direction that there is a

The first author was partially supported by NSF-Grant CCR 8903398. The second
author was partially supported by NSF-Grant DMS-8601856 and Presidential Young
Investigator Award DMS-8451748 .

359

360 WOLFGANG MAASS AND THEODORE A. SLAMAN

generous set theoretic variety among the sets of any particular time com-
plexity. We show that for every recursive set X there are two sets of the
same time complexity as X which partition the elements of X into disjoint
pieces (Splitting Theorem); that if X and Y have the same complexity,
Y € X and X -Y is infinite then there is an A such that Y ¢ A ¢ X and
both of A —Y and X — A are infinite (Density Theorem); and the count-
able atomless Boolean algebra can be embedded in the structure consisting
of the collection of sets of the same complexity of X ordered by inclusion
modulo the ideal of finite sets. The last result implies that the existential
theory of this partial order is decidable.

In evaluating time complexity, we will use the random access machine
(RAM) with uniform cost criterion (see [CR], [AHU], [MY], [P]) as our
model for computation. This model is frequently adopted in considering
the design of algorithms. It is also very sensitive to time complexity dis-
tinctions and allows sophisticated diagonalization constructions. It does
not matter for the following which of the common versions of the RAM-
model with instructions for ADDITION and SUBTRACTION of integers is
chosen (note that it is common to exclude MULTIPLICATION of integers
from the instruction set in order to ensure that the computation time of the
RAM is polynomially related to time on a Turing machine). In order to be
specific we consider the RAM model as it was defined by Cook and Reck-
how [CR] (we use the common “uniform cost criterion” [AHU]), i.e. I(n) =1
in the notation of [CR]). In this model, a machine consists of a finite pro-
gram, an infinite array Xo, Xy,... of registers (each capable of holding an
arbitrary integer), and separate one-way input- and output-tapes. The pro-
gram consists of instructions for ADDITION and SUBTRACTION of two
register contents, the conditional jump “TRA m if X; > 0" which causes
control to be transferred to line m of the program if the current content of
register X; is positive, instructions for the transfer of register contents with
indirect addressing, instructions for storing a constant, and the instruction
“READ X;” (transfer the content of the next input cell on the input-tape
to register X;) and “PRINT X,” (print the content of register X; on the
next cell of the output-tape).

The relationship between computation time on RAM’s and Turing ma-
chines is discussed in [CR] (Theorem 2), [AHU] (section 1.7), and [P] (chap-
ter 3). It is obvious that a multi-tape Turing machine of time complexity
t(n) can be simulated by a RAM of time complexity O(t(n)). With a lit-

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 361

tle bit more work (see [P]) one can construct a simulating RAM of time
complexity O(n + (t(n)/logt(n))) (assuming that the output has length
O(n + (t(n)/ logt(n)))). In addition, Cook and Reckhow demonstrate the
existence of a universal RAM M* such that for any RAM M there is a
constant m such that M* can simulate k steps in the execution of M using
only m - k steps of its own. By a diagonal argument, they conclude a fine
time hierarchy theorem for RAM’s.

Say that a recursive function f is time constructible on a RAM if there is
a RAM which can compute the function 1™ - 1/(") in O(f(n)) many steps.
Let T be the set of recursive functions from N to N that are non-decreasing
and time constructible on a RAM. We adopt T as our scale for measuring
time complexity. Typically, when one calculates either an upper or lower
bound on the running time of a computational procedure that bound is an
element of T.

Suppose that f is in T. Let DTIME(f) be the collection of recursive
sets A C {0,1}" such that A can be computed by a RAM of time complexity

o(f)
Definition. (1) Say that A has the same deterministic time complezity as
B (written A =¢ B) if for all f € T, A is in DTIME(f) if and only if B

is in DTIME(f).
(2) A complezity type is an =c-equivalence class.

We write 0 for DTIME(n), which is the least complexity type. Note,
for every complexity type C and every f in T either C C DTIME(f) or
CNDTIME(f) = 0. We will investigate some basic properties of the partial
order

PO(C)=({X| X €C},C"),
where C is an arbitrary complexity type and C* denotes inclusion modulo
finite sets (i.e. X C*Y if and only if X — Y is finite).

This paper is an expanded version of the expanded abstract [MS1] For a
number of basic results about complexity types (and a list of open research
problems) we refer to [MS2].

2. SPLITTING, DENsSITY AND EMBEDDING THEOREMS

We recall the following definition and results from [MS2], where it is

362 WOLFGANG MAASS AND THEODORE A. SLAMAN

shown that for each recursive set A there is a normal form for the presen-
tation of the running times of the RAM’s which compute A. To fix some
notation, let {f} denote the recursive function whose program on a RAM

is coded by f.

Definition. (t;)ien C N is called a characteristic sequence if f : i — &; is
recursive and
(1) (Vi € N)[{t;} € T and the program t; is a witness for the time-
constructibility of {t;}];
(2) (¥i,n € N)[{tir1} (n) < {t:} (n)].

Definition. Let A be a recursive subset of {0,1}" and let C be a complexity
type. Then, (f;)ien is characteristic for A if (t:)ien is a characteristic

sequence and
(Vf € T)[A € DTIME(f) <= (3i € N) (f(n) = Q({t:} (n)))].

Similarly, (¢;)ien is characteristic for C if (t;)ien is characteristic for some
A € C (or equivalently, for all 4 € C).

In [MS2], it is shown that for every recursive set A there is a sequence
(ti)ien that is characteristic for A and for every characteristic sequence
there is a recursive set for which it is characteristic.

Theorem. (Splitting Theorem) For every recursive set X, there are two
disjoint recursive sets A and B such that AUB =X and A=¢ B =c X.

Proof. Let X be recursive, let C be the complexity type of X and let (ti)ien
be a characteristic sequence for X. We build sets A and B so that the
following conditions hold.

(1) A and B are disjoint and their union is equal to X.

(2) For every i, A and B are both elements of DTIME({t:}).

(3) If g is an element of T and one of A or B is an element of DTIME(g)
then X is an element of DTIM E(g).

The first condition states that A and B split X. The second and third
conditions together imply that both A and B are elements of C.

Condition (1) imposes a simple constraint on the construction: A and B
must be constructed by dividing the elements of X into two disjoint sets.
The further actions we take during the construction operate within this
constraint.

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 363

There are three ingredients to the proof: the strategies to ensure condi-
tions (2) and (3) and the mechanism by which the strategies are combined.
The strategies for (2) and the global organization of the construction are
taken from [MS2], where they were used to show that every characteristic
sequence is characteristic for some recursive set.

We will eventually organize our construction as a stage by stage priority
construction. We will assign the strategies a priority ranking. During stage
s, we will decide the values of A(c) and B(g) for each string o of length
s by executing finitely many steps of finitely strategies with input 0. We
adopt the values for A(c) and B(c) that satisfy the constraints imposed by
the strategies of highest priority. If ¢ and 7 are distinct strings of length s,
it is reasonable to think of the values of A(c) and B(c) as being determined

in parallel during stage s.

Time Control Strategies. The time control strategies are used to ensure
that A and B are no more complex than X.

Suppose that f is in T. The time control strategy Cy associated with
f ensures that A and B are in DTIME(f). Cj will have a simulation
constant my, fixed throughout the construction. It takes m; many steps in
the universal RAM to simulate 1 step in the execution of the RAM which
computes f. Cy limits the total number of steps taken in the execution of
strategies of lower priority during stage s to O(f(s))

Cy uses the following mechanism to impose this constraint. For each
string o, Cy divides the execution of the strategies of lower priority into
blocks of size b many steps, where b is less than |o|. Each time that the
construction executes b many steps for the sake of lower priority, Cy requires
the construction to run my-b many steps in the simulation of the evaluation
of of f at |o|. If the computation of f at |o| converges then Cy constrains the
strategies of lower priority to decide the valuesof A and B at o immediately.
Thus, within a constant factor, the attention of the global construction is
equally shared between C; and all of the strategies of lower priority. Since,
for all o, Cy calls a halt to the computations of A(s) and B(o) when it
sees f(|o]) converge, the function mapping |o] to the total number of steps
in the construction devoted to evaluating strategies of priority less than or
equal to Cy on input o is O(f(|e]))

Cy will ensure that A and B are in DTIM E(f) provided that there are
only finitely many strings for which the strategies of higher priority than
Cy choose values for A and B which disagree with those chosen by Cy and

364 WOLFGANG MAASS AND THEODORE A. SLAMAN

the strategies of lower priority.

The Complexity Strategies. The complexity strategies are used to en-
sure that A and B are at least as complex as X.

We describe the strategy Ry to ensure that if the RAM M computes A
with run time function g, where g is in T, then X is in DT, ME(g). The
strategy RP, is similar. Our approach is less direct than the one used in
[MS2), where given (t;)ien we could directly construct a set so that (ti)ien
was characteristic for that set. Here, we are additionally constrained by
the fact that the only strings that we can put into A are those that already
belong to X. Thus, if o is not in X then we cannot diagonalize against a
computation predicting that o is not in A.

Let M and g be a RAM and a function as above. Given an input string
o, R}, acts as follows.

(1) First, Rf, takes |o| many steps to look back and see whether an-
inequality between A and the set computed by M has already been
established. If so then R#, halts its activity and does not impose
any constraint on the values of A(¢) or B(c). If not then R$; goes
to step (2).

(2) R}, simulates the execution of M on input . If M halts then R}y
goes to (3).

(3) If M returns value 1, then R4y constrains the construction from
putting o into A. If in fact 0 € X then the constraint imposed
by Rf, implies that ¢ must be put into B. (In this case, R{y has
diagonalized A against M.)

If M returns value 0, then Ry constrains the construction to
put o into A if ¢ is in X. (In this case, either Ry has diagonalized
A against M or we can infer that o is not in X.)

Suppose that f is a nonlinear element of T, c is a constant and MX is
a RAM that can be used to compute X in time ¢« f. Suppose that we
execute R% within the constraint imposed by Cy. As noted eatlier, there
is a constant ky such that the effect of Cy on Ry, is to limit the execution
of Rf, on input o to ks - f(|o]) many steps.

If A is not equal to the set computed by M, then there is a constant
cfinite such that for all sufficiently long strings o the evaluation of Rf;
takes only cfinite many steps after reading o. Since f is not linear, kg « f
eventually dominates the number of steps it takes for Rpy to look back and
halt. Thus, C; is essentially invisible to Rj, in this case.

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 365

Now assume that M does compute A. In this case, if we reach (3) for a
string o it must be the case that M has output answer 0 and o is not in X.
Thus, the action of R{; is providing a subset of the complement of X that
is computed in time less than or equal to kg - f. In fact, we show that X
is in DTIME(g). Suppose that o is given. If M(c) converges in less than
ks - f(|o]) many steps and & is an element of X then we could keep o out
of A and diagonalize. Thus, if g(Jo]) is less than ks« f(|o|) then o & X.
On the other hand, if g(|o]) is greater than k- f(|o]) then we can evaluate
X (o) in less than or equal to ¢+ 1/kj - g(|o|) many steps using M*. Thus,
there is a constant factor k such that the value of X(o) can be determined
in k- g(lo]) many steps, using whichever case occurs first.

Hence, if R{} is executed in the time control environment imposed by a
function in the characteristic sequence for C then A will satisfy the associ-

ated complexity requirement.

Compatibility Between Complexity Strategies. We have already shown
that R4, will satisfy its requirement if it is executed in a time control en-
vironment imposed by Cy and X € DTIME(f). In this context, we mnust
show that the eflect of 2§, on the strategies of lower priority is essentially
finite. If M does not agree with A then R4,'s effect is explicitly finite, as
established by the look back in step (1). Otherwise, there may be infinitely
many strings o such that Rf, constrains the construction so that if ¢ € X
then ¢ € A. However, none of these strings can belong to X. Thus, any
constraint imposed by Rf, on o is vacuous. Since any constraint imposed
by a strategy Rfy, or RE. on o will also be vacuous when o ¢ X, these
constraints are compatible. Although the effect of Rf; is not finite it can
only contribute finitely many conflicts with the other strategies appearing

in our construction.

Simultaneous Execution. The time complexity strategies impose a con-
straint on the way that we may distribute the computation steps in our
construction. In particular, C requires that the total number of steps de-
voted to all the strategies of lower priority must be of the same order as
the number of steps devoted to the analysis of f. We adapt a scheme from
[MS2] by which we work within this constraint and still introduce infin-
itely many strategies of lower priority over the course of the construction.
We give the reasoning behind the proof that this scheme works without
reproducing all of the details found in [MS2].

Let M* be a universal RAM. By the Cook-Reckliow theorem, for any

366 WOLFGANG MAASS AND THEODORE A. SLAMAN

strategy Q there is a constant g such that M* can simulate n many steps in
the execution of @ using only ¢-n many of its own steps. Further, by using

distinct parts of memory, given a finite sequence of strategies Qy,...,Qk
and the constants q,. .., qx associated with simulating these strategies and
given numbers n;,...,nx, M* can simulate n; many steps in each Q; using

only ZL, g; - n; many of its own steps.

Consider the following pattern for dividing time resources between the
strategies acting on the same input string o. Let @Q,,...,Qx be strategies
and let qi,...,qx be their simulation constants as above. Let a sweep denote
one implementation of the following recursion, beginning with Step(k) with

3k equal to 1.

Step(i) Execute s; many steps of Q; at o. Note that this takes
qi + 8; many steps for M*.

(a) Ifiis greater than 1 then let s;—; equal g; - s; + 3;
and go to Step(i — 1). s;—; is equal to the total
number of steps that it would take M* to run the
sweep at o through the ezecution of the strategies
Qxy- -+, Qi

(b) Otherwise, end.

There is a fixed number of steps to each sweep, depending only on the
sequence . In particular, the number of steps to a sweep does not depend
on the length of the string which is taken as input for the strategies. Fur-
ther, for each i, the number of steps assigned to Q; during a sweep is exactly
as many steps as are needed to simulate the total activity of all strategies
of lower priority, independently of the number k — i of strategies of lower
priority that occur in the considered sweep. The first property ensures that
for each sequence of strategies Q there is an s such that one sweep through
the sequence Q takes less than s steps to execute. The second property
shows that we can combine strategies in a global construction and respect
the constraints imposed by the time control strategies.

The Global Construction. We build A and B by combining the strate-
gies Cye,) for t; in (t;)ien, the characteristic sequence for C; the strate-
gies Ry for M; a RAM, to ensure that if M; computes A in time g; then
X € DTIME(g;); and the symmetric strategies Rf,‘. We give these strate-

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 367

gies the following priority ordering.
Cleays Bty Bhtr Cltas Rty Ry -

We construct A and B by stages. During stage s we decide the values
of A and B on all strings o of length s. Letting o be a string of length s,
the construction operates on o as follows.

We alternate between two activities: executing sweeps through the se-
quence of strategies and updating sequence of active strategies and the
tentative values to A and B at 0.

We let the initial sequence of active strategies be the initial segment of
the priority ordering Qo of length £. We determine £ by executing the first
s steps of the following iteration.

(1) Begin with £ equal to 1 and Q be (C(h})°

(2) Given ¢ and § of length ¢, execute one sweep through Q
at argument g. Go to (3).

(3) Add1to£and let @ be the initial segment of the priority
list of length £. Go to (2).

Let ¢ be the largest value for which the iteration completed a sweep
before the || steps were completed. Given that @ is always taken to be an
initial segment of the priority list, the number of steps needed to complete
a sweep is determined solely by the length of @ and not by the argument 0.
Thus the length of Gy depends only on |o and is a non-decreasing function
of |o} with infinite limit.

Having determined Qo, we execute the following iteration, beginning
with § equal to Qo, A(o) equal to X(o) and B(o) equal to 0.

Given the sequence Q of currently active strategies, we iterate the ex-
ecution of sweeps (continuing our simulations of {¢;}(|o]) and of M;i(0))
through @ until a time control strategy C{¢,)} computes the value of {t;} (lo|)
and calls a halt for the strategies of lower priority. We form the updated
sequence of active strategies by omitting Cye,) and all strategies of lower
priority and retaining the others. If during the iteration of the sweeps, a
strategy Rl’b‘ or Rﬁ’,‘ imposed a constraint on the value of A(o) or B(o)
then we adopt the updated values imposed by the strategy of highest prior-
ity as our tentative values. If i is greater than 1 then we continue as above
with the truncated sequence of active strategies. Otherwise, we end the

368 WOLFGANG MAASS AND THEODORE A. SLAMAN

evaluation of the construction on ¢ when Cyq,) calls a halt, i.e. when our
simulation of the evaluation of {t;} (|o]) converges. We extend the defini-
tions of A and B to o by adopting the values current when Cje,) calls a
halt.

The time expended for the sake of determining A and B at o is either
spent in the initial setting up of Qo, in the constant number of steps spent
in reading off the constraints imposed during the earlier iteration of sweeps
and going to the next iteration or in executing a sweep. The first two
involve only O(|o|) many steps in operational overhead.

By the observation that the length of a sweep does not depend on the
stage when it is executed, we see that for every strategy S there is an s
such that S is in Qg as computed by every string of length greater than or
equal to s. We have already argued that the complexity strategies only act
in a way that is incompatible with the actions of lower priority strategies
finitely often. This finite injury does not effect the ability of the lower pri-
ority strategies to satisfy their requirements. By operating with sweeps and
an additional overhead of size O(|o]) and halting the actions of strategies
of lower priority upon request, we have ensured that except for the finitely
many exceptional strings mentioned above the construction respects every
Ci¢;)- Thus, for all i A and B are in DTIME({t;}). Similarly, for each
complexity strategy R,’;‘,‘ or R,‘\’,‘ and each argument o of sufficient length,
that strategy receives O({t;} (lo]) many steps during the series of sweeps at
argument o. Further, except for finitely many strings, all of its constraints
are respected by the construction, either because it stops issuing constraints
due to having found an inequality or because all of its constraints are vac-
uous. Thus, all of the complexity requirements are also satisfied. O

We can draw some corollaries from the splitting theorem and its proof.

Theorem. For every non-trivial complexity typeC the partial order PO(C)
of sets in C ordered by inclusion mod finite (C*) has neither maximal nor

minimal elements.
Let POg,;(C) be the partial order
({x1XecvxX={01}'vX=0},C").

P0g,1(C) is the result of adjoining a greatest and a least element to PO(C).

Corollary. For every complexity type C there is an embedding E from the
countable atomless Boolean algebra (CBA), regarded as a partial order,

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 369

into POy,1(C). Further, this embedding associates the Boolean operations
in CBA to the usual set theoretic ones.

Proof. This corollary does not follow directly from the splitting theorem
but rather from a modestly stronger version, which has almost the same
proof. We first describe how to obtain the embedding E. Then, we read
off the needed strong splitting theorem. Finally, we indicate how to alter
the proof of the original splitting theorem to prove the stronger form.

There is a standard scheme to embed CBA into a partial order that
satisfies the splitting theorem. We start with by an intermediate element of
CBA and Xy an element of C. We set E(bg) equal to Xo. Then we extend
E to the Boolean closure of {0y} by mapping -bp to the complement of X,
0to @ and 1 to {0,1}".

During the recursion step of our construction, we start with an isomor-
phism E between two finite Boolean algebras B contained in CBA and
E(B) contained in POg,1(C). Given a new element b of CBA, let B, be
the finite subalgebra of CBA generated by B and {b}. Let {a),...,ax} be
the atoms of B. The non-zero elements in By of the form bA a; or =b A a;
generate By under join. Thus, it is enough to extend E to these elements
and let the union operation determine E’s extension to all of B,. Naively,
for each i such that bA a; # a; and b A a; # 0, we could find images for
bAa; and ~bAa; by splitting E(a;) in POy,1(C) into two sets A; 0 and 4;,.
However, to generate E by taking unions we need to ensure that these sets
have a stronger splitting property: that all finite unions of the 4;; belong
to C.

This conclusion will follow once we know the following. Every set X in
C can be split into two sets Xy and X, such that for every f in T, if there
is a set U in DTIME(f) with either XNU = Xp or XNU = X, then X
is in DTIME(f). Symbolically, X, and X, satisfy the condition

, (3U € DTIME()) (XU = XoV XNU = X,)
S GT)[—> X € DTIME(f) }

Now suppose that for each i such that bAa; # a; and bAa; # 0, we produce
sets A; o and 4;; to split E(a;) and satisfy (x) for X = E(a;), Xo = Asp
and X; = A;,3. If U is a finite union of the A;; and U is not a element
of E(B) then there must be an i* and a j* such that UN E(a;) = A;. j-.
Applying (#), for all f € T if U € DTIME(f) then E(a;) € DTIME(f).

370 WOLFGANG MAASS AND THEODORE A. SLAMAN

Thus, E(a;) <c U. Trivially, U is no more complex than E(a;) since U is
a finite union of sets from C. Consequently, U is in C.

Thus, we have reduced the proof of the corollary to proving the strong
splitting theorem. This form of the splitting theorem is proven using a
slightly different version of the complexity strategies Rff and Rfj . Instead
of simulating the output of M and attempting to diagonalize, we simulate
the computation of U and attempt to differentiate X NU from X, and X;.
Consider the case for Xo. If we are unable to complete the simulation
evaluating U(c) then U is at least as complex as X at o. If we see 0 € U,
we issue the constraint that ¢ is not in Xg and diagonalize between Xy and
U. (This is analogous to step (3) in 2, in step 3-case 1, when we ensured
that M did not compute A.) When we see o € U we issue the constraint
that o € Xp if o € X and ensure that if Xo(¢) = U(o) then U is at least as
complicated as X at o. (This is analogous to step 3-case 2 in Rf,, when we
ensured that either M did not compute A or we could compute X in order
of the running time of M many steps.) If X is produced by a construction
that implements this strategy within a time constraint strategy Cy and U
is equal to Xp then, there is are constants ¢, and c; such that for every o
either the simulation of U(c) takes longer than c; - f(J¢]) many steps or we
can compute that ¢ is not an element of X in cz times the running time to
evaluate U(c). But then U is not a counter example to the strong splitting
of X by Xg and X,.

These strong splitting strategies can be combined with the time control
strategies as in the proof of the splitting theorem. 0O

Suppose that X and Y are subsets of {0,1}°. Let Y C X denote the
condition that Y is a subset of X and that X —Y is inﬁnﬁ.’e.

Definition. We say that X is at least as complez as Y if for all f in T,
X € DTIME(f) implies that Y € DTIME(f). In this case, we write
Y <¢c X.

Theorem. (Density Theorem) Assume that Y C X and Y <¢ X. Then
©0
there is a set A such that A=¢ X andY C AC X.
o0 ©o

Proof. Most of the ingredients in the proof of the density theorem are the
same as in the splitting theorem, so we abbreviate our discussion.

For the sake of Y C A C X, we must put very element of Y into A and
restrict the elements o;f AT@ come from X. Thus we cannot use strategies
which issue constraints of the form ¢ ¢ A. For these, we must substitute

SPLITTING AND DENSITY FOR ... FIXED TIME COMPLEXITY 371

ogdY => o ¢ A We analyze the resulting complexity strategy R
in its outcome when M computes A. Given a string o, there are three
cases: we infer that ¢ € Y (and hence in X) from M(s) = 1; we infer
o ¢ X from M(o) = 0; or we compute X in less time than it takes to
evaluate M(o) using the RAM associated with the time control strategy
that caused Rf, to halt. Consequently, we can design an algorithm to
compute X that converges at least as fast as the one associated with the
time control strategies of higher priority. O

Corollary. For every complexity class C, POy (C) is dense.

It is easy to see that POy, (C) is isomorphic to the countable atomless
Boolean algebra if C is equal to 0. Furthermore, for every complexity
type, CBA can be embedded in POy 1 (C). However, the following corollary
suggests that the structure of PO(C) is substantially more complicated than
CBA when C is non-trivial.

Obviously, every complexity type is closed under complementation and
so not closed under union or intersection. However, it could still be the
case that any two sets A and B with an upper bound in PO(C) have a least
upper bound in PO(C). This is ruled out by the following result.

Corollary. Suppose that C is not equal to 0 and A and B belong to C.
Then, A and B have a least upper bound in PO(C) if and only if AUB € C.

Proof. Assume that AUB ¢ C and that D is an upper bound both A and
B in PO(C). Then AUB C D and AUB <¢ D. By the density theorem
there is a set D* such tha‘t’oAUB C D* C D and D* =¢ D. Thus, D is
not a least upper bound for AUB.OOD *

A Question. We are left with an intriguing situation. Whether the union of
two elements A and B from C is an element of C is a first order property of
A and B in PO(C). Thus, not all pairs from C are alike in PO(C). Can this
inhomogeneity in PO(C) be used to show that the structure is complicated.
In particular, is the first order theory of PO(C) non-recursive?

ACKNOWLEDGMENT

We would like to thank Joel Berman for his acute and helpful comments.

372 WOLFGANG MAASS AND THEODORE A, SLAMAN

REFERENCES

[AHU] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, 1974.

[CR} S.A. Cook and R.A. Reckhow, Time-bounded random access machines, J. Comp.
Syst. Sc. 7 (1973), 354-375.

[MY] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms,
North-Holland, Amsterdam, 1978.

[Ma] S. Mahaney, Sparse complete sets for NP: solution of a conjecture of Berman and
Hartmanis, J. Comp. Syst. Sc. 25 (1982), 130-143.

|[Mar} D. A. Martin, Classes of recursively enumerable sets and degrees of unsolvability,
Z. Math. Logik Grundlag. Math. 12 (1966).

[MS1] W. Maass and T. A. Slaman, Eztensional properties of sets of time bounded com-
plezity (extended abstract), Proc. of the 7th Int. Conference on Fundamentals of
Computation Theory, Lecture Notes in Computer Science, vol. 380, Springer, Berlin,
1989, pp. 318-326.

{MS2] , The complezity types of computable sets (extended abstract), Proc. of the
Structure in Complexity Theory Conference, 1989.

[P] W.J. Paul, Komplezitaetstheorie, Teubner, Stuttgart, 1978.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE; UNIVERSITY OF
[LLINOIS AT CHICAGO; CHICAGO, IL 60680

DEPARTMENT OF MATHEMATICS; THE UNIVERSITY OF CHICAGO; CHICAGO, IL 60637

