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SPLITTING AND DENSITY FOR THE RECURSIVE SETS

OF A FIXED TIME COMPLEXITY

WoLpcnt'¡c Mnnss AND THDoDonE A' S¡'nvn¡¡

l. It¡tRonucr¡oN

There ha.s 5ee¡r a persisterrl, iut,uitio¡r Ùhaü tt¡e coutputstioual cotnplex-

ityofasetAofstringsisrelatedtothestrucüureofthedistributio¡¡of
the elements of A. For exanlple, Mahaney's [Mal solution to tl¡e Bern¡an'

Hartmanis conjecture or Martin's [Marl characterization of the T\rring de-

greesofbhemaximalrecursivelyenu¡nerablesetsgrewouüofthedesireto
test this intuition.

Althoughalargeportionofcurrenüresearchintheoreticalcomputersci.
enceisconcernedwiththeirrvestigaüionofproblemsthatlieinP,verylittle
isknownabouttherelationshipbeüweenthecomputationalcomplexityand
set theoretic aspects of sets in P. The results of this Psper m8y be viewed as

onestepinthisdirection,sincetheyprovidenontrivialinformationabouü
sets in P (for example about the strucüure of the class of seüs of quadratic

time complexity). we work in the context of a very fine scale for complex-

ityandstudythesettheoreticpropertiesamongtherecursivesetswhich
areequallycomplex.ourresultsareallinthedirecüionthatthereisa
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generous set theoreüic variety emong the sets of any particular time com-
plexity. We show that for every recursive set X there are two sets of the
same time complexity as X which partition the elements of X into disjoint
pieces (Splitting Theorem); that if X and l' have the same complexity,
Y C X and X- Y is infinite then there is a¡r.Á such that Y C AC X and
both of A -Y and X - A are infinite (Density Theorem); and the count-
able atomless Boolean algebra can be embedded in the structure consisting
of the collection of sets of the same complexity of X ordered by inclusion
modulo the ideal of finite sets. The last result implies that the existential
theory of this partial order is decidable.

In evaluating time complexity we will use the random access machine
(RAlvI) with uniform cost criterion (see [CR], IAHUI, [MY], [PJ) as our
model for computation. This model is frequently adopted in considering
the design of algorithms. It is also very sensitive to time complexity dis-
tinctions and allows sophisticated diagonalization constructions. It does

not matter for the following which of the common versions of the RAM-
model with instructions for ADDITION and SUBTRACTION of integers is

chosen (note that it is common to exclude MULjTIPLICATION of integers
from the instruction set in order to ensure ühat the computation time of the
RANI is polynomially related to time on a T\rring machine). In order to be
specific we consider ühe RAM model as it was defined by Cook and Reck-
how [CR] (we use the common "uniform cost criterion' [AHU], i.e. l(n) : t
in the notation of [CRJ). In this model, a machine consists of a finite pro.
gram, an infinite array X¡,Xr,... of registers (each capable of holding an
arbitrary integer), and separate one-wey input- and output-tapes. The pro
gram consists of instructions for ADDITION and SUBTRACTION of two
register contents, the conditional jump "TRA rn iÍ Xi > 0" which causes

control to be transferred to line m of ühe program if the current content of
register X¡ is positive, instructions for the transfer of register contents with
indirect addressing, instructions for storing a constant, and the instruction
"READ X¡" (transfer the content of the next input cell on the input-tape
to register Xr) *d "PRINT X¡" (print the content of register X¡ on the
next cell of the output-tape).

The relationship between computation time on RAM's and T\rring ma,
chines is discussed in [CR] (Theorem 2), [AHU] (section 1.7), and [P] (chap,

ter 3). It is obvious that a multi-tape Thring machine of time complexity
t(n) can be simulated by a RAM of time complexity O(t(n)). With a lit-
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tle bit more work (see [P]) one c&n construct a simulating RAM of time

complexity O(n + (t(n)/logt(n))) (assuming that the output has length

O(n+(t(n)/lo9t(n)))). tn addition, Cook and Reckhow demonstrate the

existence of a universal RAM M' such ühat for any RAM M there is a

constant m such that M' can simulate ,t steps in the execution of M using

only rn.,t steps of its own. By a diagonal argument, they conclude a fine

time hierarchy theorem for RAM's.

Say that a recursive function t is lime constflctible on a RAM if there is

a RAM which can compute the function 1n ,- 1.r(n) in O(/(n)) many steps.

Let I be the set of recursive functions from N to N that are non-decrea.sing

and time constructible on I RAM. We adopt ? as our scale for measuring

üime complexity. Tlpicall¡ when one calculaües either arr upper or lower

bound on the running time of a computational procedure that bound is an

element of l.
Suppose that / is in ?. I,er DTIME(/) be the collection of recursive

sets ,4 ç {0, 1}' such that á can be computed by a RAM of time complexity

ou).

Deflnition. (1) Say that A has the same deterministic time enmplexity as

B (written A=c B) if for all f eT,.á is in DTIME(Í) if and only if B
isin DTIME(t).

(2) A cornplerity tgpe is an =c-eguivalence class.

We write O for DTIM.E(n), which is the least complexity type. Note,

for every complexity type C and every t inT either C Ç DTIME(I) or

C n DTI M E(I) : 0. We will investigate some basic properties of the partial

order
Po(c):({xlXeC},Ç'),

where C is an arbitrary complexity type and Ç' denotes inclusion modulo

finite sets (i.e. X ç' y if and only if X - Y is finite).
This paper is an expanded versíon of the expanded abstract [MSl] For a

number of basic results about complexity types (and a list of open research

problems) we refer to [MS2l.

2. Spr,rrrrr.¡c, DENsrry AND EMBEDDINc THEoREMS

We recall the following definition and results from [MS2], where iü is
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shown that for each recursive set ¿{ there is a normal form for the presen-
tation of the running times of the RAM's which compute .Á. To fix some
notation, let {/} denote the recursive function whose program on a R-A,M

is coded by /.
Deftnition. (t¡)¡en Ç N is called a chorccteristic squenceif f : i F-r ú¡ is
recursive and

(l) (Vd € N)[{ri} € ? and the program ú¡ is a wirness for rhe rime
constructibility of {ú¡}l;

(2) (vd,n € N)[{úi+r} (n) < {t¡} (n)].

Deffnition. Let A be a recursive subseü of {0, l}' and let C be a complexity
type. Then, (ú¡)¡.¡ is càcracúeristic tor A if (úr),.¡ is a characteristic
sequence and

(vl er)lA e DTIMnU) æ (li e N) (f(n) =o({¿¡} (")))1.

similarl¡ (ú¡),.n ß chomcteristic Jor c if (úi)j€N is characteristic for some
A e C (or equivalentl¡ for all z{ e C).

In [MS2f it is shown that for every recursive set .Á there is a sequence
(ú¡)¡e¡r that is characteristic for .a and for every characteristic sequence
there is a recursive set for which iü is charscüeristic.

Theorem. (splitting Theorem) For every ¡ecu¡sive set x, there are two
disjoint recu¡siræ seús.Á and B sudt that AtJ B : X and A =c B :c X.

Pnof. I.et X be recureive, let C be the complexity type of X and let (ú,),er*
be a characteristic sequence ror x. lve build sets .,4 and B so thaü the
following conditions hold.

(l) .4 and B are disjoint and their union is equal to X.
(2) For every d, .Á and B are both elements of DTIME({|ù).
(3) If 9 is an element of ? and one of á or B is an element of DT I M E(g)

then X is an element of DTIME(g).
The first condiüion states that .A and B split x. The second and ühird

conditions together imply that both A and B are elements of C.
condiüion (l) imposes a simple constraint on the construction A ønd, B

must be constructed by dividing the elements of x into two disjoint sets.
The further actions we take during the construction operate within this
constraint.
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There are three ingredients to the proof: the strategies to ensure condi-

tions (2) and (3) and the mechanism by which the strategies are cornbined.

The strategies for (2) and the global organization of the construction are

taken from [MS2], whère they were used to show that every characteristic

sequence is characteristic for some recursive set.

we will eventually organize our construction as a stage by stage priority

construction. we will assign the scrategies a priority ranking. During stage

s, we will decide the values of A(o) and B(ø) for each string o of length

s by executing finitely many steps of finitely strategies with input ø. we

adopt the values for A(o) and B(ø) that satisfy the constraints imposed by

the strategies of highest priority. If ø and r are distinct strings of length s'

it is rea.sonable to think of the values of. A(o) and B(ø) as being determined

in parallel during stage s.

Time Gontrol strategies. The time control strategies are used to ensure

thaü A and B are no more complex than X.
suppose that / is in T. The time control strategy d¡ associated with

/ ensures that .A and B are in DTIME(Í). Ct will have a simulation

constant m¡, fixed th¡oughout the construction. It takes rn¡ many steps in

the universal RAM to simulate I step in the execution of the RAM which

computes /. C¡ limits the total number of steps taken in the execution of

strategies of lower priority during stage c to O(/(s)).

c¡ uses the following mechanism to impose this constrsint. For each

string a, c¡ divides the execution of the strategies of lower priority into

blocks of size ö many steps, where b is less than lø1. Each time that the

construcüion executes ö many steps for the sake of lower priorit¡ C¡ requires

the cor¡struction to rvn'm¡.b many steps in the simulation of the evaluaüion

of of / at lø1. If the computaüion of. f at løl converges then c¡ co¡rctrains tl¡e

strategies of lower priority to decide the values of .Á and B st o immediately.

Thus, within a constanü factor, the attention of the global construction is

equally shared between c¡ and all of the strategies of lower priority. since,

for all o, C¡ caills a halt to the computations of A(o) a'nd B(ø) when it
sees f(løl) converge, the function mapping løl to the total number of steps

in the construction devoted to evaluating strategies of priority less than or

equal to C¡ on input ø is O(/(lol)).
c¡ will ensure thaü ^Á a¡¡d B arein DTIME(/) provided that there are

only finitely many strings for which the strategies of higher priority than

c¡ choose values for.a and B which disagree with those chosen by c¡ and
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the strategies of lower PrioritY.

The complexlüy strategies. The complexity sürategies are used to en'

tl¡e fact that the only sürings thot we can put into .Á are those that already

belong to x. thus, if ø is not in x then we cannoü diagonalize against a

computation predicting that ø is noü in.A'

Let lvt and g be a R.AM and a function as above. Given an input süring

o, Rfi acts as follows.

(l) First,, Rf, takes løl many steps üo look back and see whether an

inequelitybetween.ÁandtheseücomputedbyMhasalreadybeen
estabtished. lf so then nf, halts its acüivity ar¡d does not impose

any consüreinü on the values of A(o) or B(o). Ifnoü then Rfa goes

to steP (2).

Ø nîtsimulates ühe executionof M on inpuü o.lt M halts then Æfa

goes to (3).

(3) If /1f retu¡ns nalue 1, then Rf¡ coruürains the construction from

putting ø inùo .,4. lf in ræt o € x then the cor¡süraint imposed

AV nî, implies that ø must be puü into B' (In thís ætq Rft has

diagonalizd A agaüut M.)
If /!f returns value 0, then Rf¡ consürains the consüruction to

put ø into Ail o isin X. (ln lhis cose, either Rf¡ has diagonalizd

A ogøírul M or we ean inler thot o is not in X')
Suppose thet / is a nonlinear elemenü oÍT, c is a constant and Mx is

a Mlrt that can be used to compute X in ùime c. /. Suppose that we

execute /ìf, within the constraint lmposed by ct. As noted earlier, thero

is a constant k¡ such that the effect of c¡ on Rft is to limiü the ocecution

o1 Rl¡ on input, o to k¡ '/(l"l) many steps.

halt. Thus, C1 is essentially invisible to Rf¡ in this case.
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Now assume ühat M does compute .Á. I¡r ùhis cose, if we reacl¡ (3) for a

süring ø iü ¡nust l¡e the case thaü M has outpuü answer 0 and ø is not in X.
Thus, the oction of, Rfa is providing a subset of the complement of X that

is computed in time less ühan or equal to k¡. /. In fact, we show thaü X
is in DTIME(g). Suppose that ø is given. If Mþ) converges in less than

fu - Í(l"l) many steps and ø is an elemenü of X then we could keep ø out

of .4 ond diagonalize. Thus, if g(løl) is less ühon kt . l(l"l) lhen o /, X,
On the oüher hand, if 9(løl) is greater than ,t¡./(l"D then we can evaluate

X(ø) in less than or equal to c.llk¡. cQoD many steps using Mx. Thus,

there is a constant factor I; such that tlre value of X(ø) can be deüermi¡red

in ,t .9(løl) many steps, using whichever case occurs first.

Hence, if ^Rfn is executed in the tilne control environmenü irnposed by a

function in the characteristic sequence for C then .á will soüisfy tl¡e associ-

ated complexity requirement.

Compatibility Between Complexity Strategies. We have already sl¡own

fhat Rf¡ will saüisfy iüs requireme¡rt if it is executed in a time control en-

vironment, inrposcd lry C¡ and X e DTIME([\.ln tl¡is contexü, we tnust,

slrow üh¡t ül¡e cffecl, of nfa o¡¡ tl¡e stral,egies of l<¡wer priority is csscn[iolly

finite. If M rJoes not ogrec with .á then /3fn's eflecü is expliciüþ firriüe, as

established by the look back in step (l). OUherwise, there may be infinitely
many strings ø such thú Rfa co¡¡strains the cor¡strucüion so ühat if o ê, X
then ø C ,4. However, none of these strings can belong to X. Thus, any

constraint imposed by nf'¡ on ø is vacuor¡s. Since any consüraint imposed

by a strategy Rf;a, or RP* on ø will olso be vacuous when ø / X, these

constraints are compatible. Although the effecü of Rf¿ is noü finiüe iü csn

only conüribute fìnitely many conflict¡ with ühe other sürategies oppeorirrg

in our construction.

Simultaneous Execution. The üime comploriüy straüegies impose a con-

straint on tlre way that we may disüribute tho computation steps in our
construction. In particulur, C¡ requlres that the tobal number of süeps de
voted üo all the strategies of lower priority must be of the same order as

the number of steps devoted to the analysis of /. lVe adapt a sct¡eme from

[MS2] by which we work within this cor¡straint and süill introduce inßn-
itely many strategies of lower prioriüy over the oourse of the construction.

We give ühe reasoning behind the proof ühat this scheme works without
reproducing all of the details fountl in [MS2l.

Let M' be a universal RAM. By the Cook-Reckhow theore¡n, for any
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strategy Q there is a consüant g such ühat M' can simulaüe t¿ mar¡y steps in

the execution oÍ Q using only q.n msny of its own steps. F\rrther, by using

distinct parüs of memory, given a finite sequence of strategies Qr, ... ,Qx
and the constants gt,... ¡et associated with simulating these strategies and

given numbers r¡, , . . r nßr M' can simulate n¡ man¡l steps in each Q¡ using

only !f=, Ç¡ 
. n¡ man/ of its own steps.

Consider the following pattern for dividing time resources between the

stretegies acting on the same input string ø. Iæt Q¡,..,Qx be strategies

and let Çr r . . . r Çß be their simulaüion constants as above. Lel t sweep denote

orre implementation of the following recursion, beginning with Step(k) with
s¡ equal to l.

Step(i) Execute s¡ malr/ steps of Q¡ øt o. Note thot this tokes

qi. sí rnony steps for M' .

(a) If i is greater than I then let s¡-r equal q¡ .s¡ * s¡

and go to Step(i - l). s¡-l is e4uøl to the totol
number of steps thøt it uould toke M' to rtn the

sweep at o thrcugh the esecution of the strategies

Q*,...,Q¡.
(b) Otherwise, end.

There is a fixed number of steps to each sweep, depending only on the

sequence {. In particular, the number of süeps to a sweep does not depend

on the length of the string which is taken as inpuü for the strategies. F\r-
ther, for each d, the number of steps assigned to Q¡ during a sweep is exactly
as many steps as are needed to simulate the total activity of all strategies

of lower priority independently of the number k - í of sürategies of lower
priority that occur in the considered sweep. The first property ensures that
for each sequence ofstrategies d there is an s such that one s\r¡eep through
the sequence { t"k"s less than c steps to execute. The second property
shows that we can combine strategies in a global cor¡struction and respect

the constraints imposed by the time control strategies.

The Global Construction. We build A and B by combining the strate
gies Cqc,¡ for t¡ in (ú¡)¡en, the characteristic sequence for C; the strate
giæ Rf1,1or M; a RAM, to ensure that if M¡ computes .A in time g¡ then
X e DTI M E(Sù; and the symmetric strategies n7rr. We give these stratç
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gies the following prioriüy ordering.

c1r,¡, Rî'tr, RP¡ar,c1q¡, Rf;a", RPu""''

We construct .Á and B by stages. During stage s we decide the values

of .Á and B on all strings ø of lengüh s' Letting a be a string of length s'

the construcbion operates on ø as follows'

We alternate between two activities: executing sweeps through the se'

quence of strategies and updating sequence of active strategies and the

tentaüive values to .A and B at o.

we let the initial sequence of acüive strategies be the initial segment of

the priority orderirrg do of length /. We determine / by executing the first

s steps of the following iteraüion.

(1) Begin wiüh / equal to I and f Ue (C¡r,¡).

(2) Given / and d of lengüh /, execute one su¡eep through Q

at argument o. Go to (3).

(3) A<l<l I to / and let, d b" ttto initial segnre¡rt of the priority

list of length /. Go to (2).

Let t be the largest value for which the iteratio¡t completed a sweep

before the løl steps were completed. Given thaü d is always take¡r to be a¡r

initial segment of the priority list, the number of steps needed to complete

e sweep is determi¡red solely by the length of @ and noü by the argumenü ø'

Tl¡us ühc length of f0 depends o'ly on løl a'd is a non-decrea.sing function

of løl with infinite lin¡it.

I,Iaving cleter¡nined Õo, *" execute t¡e followi¡¡g iteration, treginni'g

with Õ equal to Õr, A(") equal to X(o) and B(o) equal to 0'

Given the sequence f of currently active süraüegies, we iüerate the ex-

ecution of sweeps (continuing our simulations of {¿,} (l"l) and of Mío))

through d until a time control straüegy Clr¡¡ computes the value of {úi} (lol)

and calls a halt for the strategies of lower priority. we form the updated

sequence of active strategies by omitting c1r,¡ and all strategies of lower

priority and retai¡ring the others. If during the iteration of the sweeps, a

strat"gy Rf;¡, or Ilft, irnposed a constraint on the value of A(o) or B(o)

then we adopt the uptlated values imposed by the strategy of highest prior-

ity as our tentative valuqs. If i is greaüer than I then we continue as above

with the tru¡rcatecl sequence of active strategies. otlterwise, we end the
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evaluation of the consùruction on ø when c¡r,¡ calls a halü, i.e. when our

simutation of the evaluation of (¿r) (løl) converges. we extend ühe defini'

tions o[ .A and B lo o by adopting the values curre¡¡t when c¡rr] calls a

halt.
The time expended for the salce of determining ,4 and B st, o is eiüher

spent in the iniüial setting up of {s, in the constant number of steps spenü

in reading oft the constraints imposed during the earlier iteration of sweeps

and going to the next iteration or in executing e sweep. The first two

i¡¡volve only O(løl) many steps in operational overhead.

By the obsenration ùhaü the length of a sweep does not depend on the

stage wfuen it is executedr we see that for every sürategy .9 t[ere is an s

such that .S is in {o "" 
.orputed by every string of length greater than or

equat to s. we have already argued thaü the complexity strategies only act

in a rvay thaü is incompaüibte with the actio¡ls of lower priority sürategies

finitety often. This finite injury does noü eflect the ability of the lower pri-

ority strategies to satisfy t[eir requirements. By operating with sweeps and

an additionat overhead of size O(lol) and halting the actions of sürategies

of lower priority upon request, we have ensurcd tlrat except for the finitely

nrany exceptional strings mentioned above the construction respects every

C¡r,¡. Thus, for alt i.A and B are in DTIlvlE(lti]). Similarl¡ for each

conrptexity strategy Rf¡, or ltf¡, and each argument ø of sufficienü length,

that strategy receives o({¿¡} (løl) many steps during the series of sweeps at

argument o. t\rrther, excepü for finiteþ many sürings, all of its constraints

are respected by the construction, eitlrer because it stops issuing constraints

due to having found an inequality or because all of its constrainüs are vac-

uous. Thus, alt of ühe complexity requirements are also satisfied. E
we can draw some corotlaries from the splitüing theorem and its proof.

Theorem. For every non-trivial complexíty type C the partìal ordet Po(c)

of sets in C orderd by inclusion mod frnite (Ç') åas neithet mw<imal nor

mínimal elements,

t.er PO¡¡(C) be the parùial order

({x I x ecv x= (o,l}' Y x =0},ç').

POo,t(C) is the result of adjoining a greatest and a least elemenü Lo PO(C).

coroilary. For every complexíty typeC tl¡ere is an embeddÍng E from the

countable atornless Boolean algebra (CBA), regarded as a pattial order,
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into PO¡,¡(C). Fbrther, this enbeùling associates tlrc Doolean operatiorrs

in CBA to the usu¿l seú theoretic ones.

Prcot. This corollary does not follow directly from the splitting theorem

but rather from a modesüly stronger version, which has almost ühe same

proof. We first describe l¡ow to ol¡tain the embedding E. Then, we rea<l

off the needed strong splitting theorem. FinallS we indicate how to alter

the proof of ühe original splitting ül¡eorem to prove the stronger form.

Therc is a sta¡¡dard sche¡ne to eml¡ed CBA itúo a partial order tl¡aü

satisfies the splitting tl¡eorem. We stort with ôo an it¡termediate ele¡nent of

CBA and Xo an element of C. We set, E(ôe) equal to Xo. Tl¡en we extend

.0 to the Boolean closure of {üe} by mapping -ôo üo the complement of Xs,

0 to Ø and I to {0,1}'.
During tlre recursion step of our construc0ion, we start with an isomor-

phism .E betrveen two lìnite Doolean algebras B contained in CBA and

.E(B) contained in PO¡,¡(C). Given a new element b ol CBA,let ßr be

the finite subalgebra of CBA generated by B and (ô). Leü {or,... ,a¡} be

the atoms of B. The non-zero clcnrents i¡l 6¡ of the fornr ô Â a¡ or -û Â o¡

gcnerate 66 under join. Tlurs, it, is enough to exte¡¡d .g to these ele¡nents

and leü the u¡rion operation deter¡nine E's extension to all of B¡. Naively,

for eaclr i suclr tl¡aü ö Aa; * a¡ and bna¡ f 0, we could find images for
öÂa¡ and -bAa¡ by splitting .E(a¡) in POs,¡(C) into two sets z{¡,6 and /¡,¡.
However, to generaüe I by taking unions we need to ensure that these sets

have a stronger splitting property: th¿ü all finite unions of the ,4¡,¡ belong

to C.

This conclusion will follow once we know ühe following. Every set X in
C can be spliü into two sets Xo and X¡ auch thaù for every / in 1, if there

is a set U in DTIM^E(/) with eitl¡er XflU = Xo or XnU = X¡ then X
isin DTIME(/). Symbolicall¡ Xs and X¡ satisfy the condition

(*) (v! er) 
[tue 

*'"y";:]i;;;,1,*"u:"'J

Now suppose that for each d such thaü ôÂc¡ I o¡ and blra¡ 10, we produce

sets .,4¡,s and .Á¡,¡ to spliü .8(c¡) and eatisfy (r) for X = E(a¡l' Xo = At.o

and X¡ = A.J. If U is a finite union of the A¿¡ and U is noü a element

of E(B) tlren there must, be an i' and a j'such that UñE(øt) = A¿.,j..

Applying (*), for all / e T if LI e DTIME(/) then E(a¿) e Df II'IE(!|.
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Thus, E(c¡) (c IJ. tiviall¡ U is no more complex than E(a¡) since U is

a lìnite union of sets from C. Consequentl¡ U is in C.

Thus, we have reduced the proof of the corollary to proving the sürong

splitting tl¡eorem. Tl¡is form of the spliüüing theorem is proven using a

slightty differenù version of the complexity strategies Æf;" and Itf;. Instead

of simutating the output of M and atüempüing to diagonalize, we simulate

tlre computation of U and aütempü to diflerenüiate XñU from Xe and Xr.
Consider the case for Xs. If we are unable to complete the simulation

evaluating U(ø) then U is aü least as complex as X at ø. If we see o €. U,

we issue the constraint ühaü o is not in Xo and diagonalize between Xo and

U. (This is anatogous to step (3) in nf1 in step 3-case l, when we ensured

that Àf did noü compute .4.) When ute see o I U we issue the constrainü

that ø ê. Xo iÎ o € X end ensure that if Xs(ø) = U(o) then üI is aü leasü as

compticated as X at ø. (This is analogous to süep &case 2 in Rf¡, when we

ensured thaü either M did noü compuüe .Á or we could compute X in order

of the running time of M many steps.) If Xo is produced by a construction

tlrat irnplements ühis sürategy within a time constraint stratery C¡ md U
is equal to Xs ühen, there is are constants c¡ snd c2 such ühat for every ø

either the simulaüion ot U(ol takes longer than c¡ , Í(l"D many steps or we

can compute thaü ø is not an element of X in c2 times the running time to

evaluate U(ø). But then U is not a counter example to the strong splitüing

of X by Xo and Xr.
These strong splitting sürategies can be combined with the time control

strategies as in the proof of the splitüing theorem. tr
Suppooe that, X and Y are subseüg of (0,1)'. Let Y C X denote the

condition that l' is a subset of X and that X - Y is infinite.

Definltlon. We say that X is at leo'ltì as æmples u Y if for all t in T,

X e DTIME(/) implies thaü Í e DTIME(/). In this case, we write

Y<cX.
Theorem. (Densiüy Theorem) Assume thatY C X and Y 3c X. Then

there îs a set A sucå ühat A--c X andY 
S 

.á 
S 

X.

Pmo/. [fost of the ingredients in the proof of the density theorem are the

s&me as in the splitting theorem, so we abbreviate our discussion.

For the sake of Y c A C X, we musü put very element of.Y into .4 and

restricü the etementsãf ¡i" come from X. Thus we csnnot use strategies

n'hich issue constraints of the form o I A. For ühese, we musü subst¡tute
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o I Y + o I A. We analyze the resulting complexity strategy ftf,
in iüs outcome wlten M computes .á. Given a string ø' there are three

c&ses: we infer that o ê Y (and hence in X) from M(o) = l; we infer

o É X ftom M(o) = 0; or we compute X in less üime than it takes to

evaluate M(ø) using the RAM associated with the time control strategy

that caused Rfn to halt. Consequenùly, we can design an algorithm to
compute X that converges at leasü as fast as the one associated witlr tl¡e
time control straüegies of higher prioriüy. t¡

Corollary. For every complexity cla.ss C, PO1J(C) is dense

It is easy to see thaü PO¡J(C) is isomorphic to the countable atomless

Boolean algebra if C is equal to 0. F\rrühermore, for every complexity

tyþe, CBA ca¡ be embedded in POst(C). However, the following corollary
suggests that the structure of POP) is substantially more complicated than

CBAwhen C is non-trivial.
Obviousl¡ every complexity type is closed under complementation and

so not closed under union or intersection. However, iü could still be the

case that any two sets .Á and B with an upper bound in PO(C) have a least

upper bound in PO(C). This is ruled ouü by the following result.

Corollary. Suppose that C ìs not equal to O and A and B belong to C.

Then, A and B have a least upper bound in PO(C) if and only if Av B e C.

Prool. Assume that AUB ÉC and thaü D is an upper bound both.Á and

B in PO(C). Then AUB c D and AvB <s D. By ühe density tl¡eorem

there is a set D' such ths;".{ uB c D' c D and D' =c D. Thus, D is
not a least upper bound for.ÁuB.-D 

oo

A Question, We are left with an intriguing situaüion. Whetl¡er tl¡e union of
two elemenüs.Á and.B from C is an element of C is a first order property of
.á and B in PO(C). Thus, noü all pairs from C are alike in PO(C). Can this
inhomogeneity in PO(C) be used to show that the sürucüure is complicated.

In particular, is the firsü order theory of PO(C) non-recursive?
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