
jOLJRNAL OF COMPUTER AND SYSTEM SCIENCES 4, 168-192 (1992)

The Complexity Types of Computable Sets

WOLFGANG MAAS*

Institutes for Information Processing, Graz University of Technology,
A-8010 Grar, Austria

AND

THEODORE A. SLAMAN?

Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Received January 25, 1991

We analyze the fine structure of time complexity classes for RAMS, in particular the
equivalence relation A =c B (“A and B have the same time complexity”)* (for all time
constructible f: A E DTIME(f) o B E DTIME(f)). The =,-equivalence class of A is called its
complexity type. Characteristic sequences of time bounds are introduced as a technical tool for
the analysis of complexity types. We investigate the relationship between the complexity type
of a set and its polynomial time degree, as well as the structure of complexity types inside
P with regard to linear time degrees. Furthermore, it is shown that every complexity
type contains a sparse set and that the complexity types with their natural partial order
form a lattice. 0 1992 Academic Press. Inc.

1. INTRODUCTION

In the subsequent analysis of the fine structure of time complexity classes we
consider the following set of time bounds:

T:= {f:N+NIf(n) 2 n and f is time constructible on a RAM}.

f is called time constructible on a RAM if some RAM can compute the function
1” H If’“) in O(f(n)) steps. We do not allow arbitrary recursive functions as time
bounds in our approach in order to avoid pathological phenomena (e.g., gap
theorems [HU; HH]). In this way we can focus on those aspects of complexity
classes that are relevant for concrete complexity (note that all functions that are
actually used as time bounds in the analysis of algorithms are time constructible).

* Written under partial support by NSF Grant CCR 8903398. Part of this research was carried out
during a visit of the first author at the University of Chicago. The first author thanks the Department
of Computer Science at the University of Chicago for its hospitality.

+ Written under partial support by Presidential Young Investigator Award DMS-8451748 and NSF
Grant DMS-8601856.

168
0022~0000/92 $3.00
Copyright 0 1992 by Academic Press, Inc.
Ail rights of reproduction in any form reserved.

COMPLEXITY TYPES OF COMPUTABLE SETS 169

We use the random access machine (RAM) with uniform cost criterion as
machine model (see [CR; AHU; MY; P]) because this is the most frequently
considered model in algorithm design, and because a RAM allows more
sophisticated diagonalization constructions than a Turing machine. It does not
matter for the following which of the common versions of the RAM model with
instructions for ADDITION and SUBTRACTION of integers is chosen (note that
it is common to exclude MULTIPLICATION of integers from the instruction set
in order to ensure that the computation time of the RAM is polynomially related
to time on a Turing machine). In order to be specific we consider the RAM model
as it was defined by Cook and Reckhow [CR] (we use the common “uniform cost
criterion” [AHU], i.e., I(n) = 1 in the notation of [CR]). This model consists of a
finite program, an infinite array X0, X1, . . . of registers (each capable of holding an
arbitrary integer), and separate one-way input and output tapes. The program
consists of instructions for ADDITION and SUBTRACTION of two register
contents, the conditional jump “TRA m if X, > 0” which causes control to be
transferred to line m of the program if the current content of register Xi is positive,
instructions for the transfer of register contents with indirect addressing, instruc-
tions for storing a constant, and the instruction “READ X,” (transfer the content
of the next input cell on the input tape to register Xi) and “PRINT Xi)’ (print the
content of register Xi on the next cell of the output tape). The relationship between
computation time on RAMS and Turing machines is discussed in [CR, Theorem 2;
AHU, Section 1.7; and P, Chap. 31. It is obvious that a multi-tape Turing machine
of time complexity t(n) can be simulated by a RAM of time complexity O(t(n)).
With a little bit more work (see [P]) one can construct a simulating RAM of
time complexity O(n + (t(n)/log t(n))) (assuming that the output has length
O(n + (t(n)/log t(n)))). We define

there is a RAM of time complexity DTIME(f):={AC(O. l~*/O(()thatcomputes~ }-
For A and B contained in (0, 1 }* we define

A 6 c‘ B: o Vfe T(B E DTIME(f) = A E DTIME(f))

and

A =c B: o Vfe T(A E DTIME(f) o BE DTIME(f)).

Intuitively, A =c B if A and B have the same deterministic time complexity. The
=,-equivalence classes are called complexity types. We write 0 for DTIME(n),
which is the smallest complexity type. Note that for every complexity type % and
every f~ T one has either % c_ DTIME(f) or % n DTIME(f) = @.

Remark. Geske, Huynh, and Selman [GHS] have considered the related partial
order “the complexity of A is polynomially related to the complexity of B,” and the

170 MAASS AND SLAMAN

associated equivalence classes (“polynomial complexity degrees”). Our results for
complexity types (e.g., Theorems 5 and 6 below) provide corresponding results also
for polynomial complexity degrees.

In order to prove results about the structure of complexity types one needs a
technique to construct a set within a given time complexity while simultaneously
controlling its other properties. It is less difficult to ensure that a constructed set is
of complexity type V if one can associate with %? an “optimal” time bound fW E T
such that for all sets XEGY,

(f~ TIXEDTIMW-)) = {f~ TIf=Q(f,)).

In this case, we call 9 a principal complexity type. Blum’s speedup theorem [B]
asserts that there are complexity types that are not principal. For example, there is
a complexity type ‘3 such that for every x~%?,

Note that this effect occurs even if one is only interested in time constructible time
bounds (and sets X of “low” complexity).

In order to prove our results also for complexity types which are non-principal,
we show that in some sense the situation of Blum’s speedup theorem (where we can
characterize the functions f with XEDTTME(~) with the help of a “colinal”
sequence of functions) is already the worst that can happen (unfortunately this is
not quite true, since we cannot always obtain a cotinal sequence of functionsfi with
the same nice properties as in Blum’s speedup theorem). More precisely: we will
show that each complexity type can be characterized by a colinal sequence of time
bounds with the following properties.

DEFINITION. (ti)isN c N is called a characteristic sequence if t: it-+ ti is recursive
and

(1) ViE N({ ti} E T and program ti is a witness for the time-constructibility
of (4));

(2) vi, nEN({ti+l)(n)G {t,)(n)).
DEFINITION. Assume that A E (0, 1 } * is an arbitrary set and V is an arbitrary

complexity type. One says that (ti)iaN is characteristic for A if (ti)isN is a charac-
teristic sequence and

VIE T(A E DTIME(j) o 3iE N(f(n) = Q((ti)(n)))).

One says that (ti)ieN is characteristic for V if (ti)isN is characteristic for some A E %?
(or equivalently: for all A E U).

COMPLEXITY TYPES OF COMPUTABLE SETS 171

Remark. The idea of characterizing the complexity of a recursive set by a
sequence of “cotinal” complexity bounds is rather old (see, e.g., [MF; L; Ly; SS;
MW]). However, none of our predecessors exactly characterized the time com-
plexity of a recursive set in terms of a uniform cofinal sequence of time constructible
time bounds. This is the form of characterization which we employ in later proofs.
[L; MW] give corresponding results for space complexity of Turing machines.
Their results exploit the linear speedup theorem for space complexity on Turing
machines, which is not available for time complexity on RAMS. Time complexity
on RAMS has been considered in [SS], but only sufficient conditions are given for
the cofinal sequence of time bounds (these conditions are stronger than ours). The
more general results on complexity sequences in axiomatic complexity theory
[MF; SS] involve “overhead functions,” or deal with nonuniform sequences, which
makes the specialization to the notions considered here impossible. Because of the
lack of a fine time hierarchy theorem for multi-tape Turing machines, it is an open
problem whether one can give a similar characterization for the Turing machine
time complexity of a recursive set.

The relatonship between complexity types and characteristic sequences is clarified
in Section 2 of this paper. In Theorem 1, we show that every complexity type % is
associated with a sequence (tJirN that is characteristic for V. This fact will be used
in most of the subsequent results. We show in Theorem 2 that the converse of
Theorem 1 is also true: for every characteristic sequence (fi)itN there exists a
complexity type %? such that (ti)isN is characteristic for 59.

As an immediate consequence of the proofs of these results we show in
Theorem 3 that every complexity type contains a sparse set. As another conse-
quence we obtain in Theorem 4 that the complexity types of computable sets form
a lattice under the partial order <=.

In Section 3 we show that with the help of these tools one is able to prove
sharper versions of various familiar results about polynomial time degrees. It is
shown in Theorem 5 that every complexity type outside of P contains sets of incom-
parable polynomial time Turing degree. In Theorem 6 we construct a complexity
type that contains a minimal pair of polynomial time Turing degrees. A comparison
of the proofs of these results with the proofs of the related results by Ladner [La]
and Landweber, Lipton, and Robertson [LLR] shows that these sharper versions
pose a more serious challenge to our construction techniques (we apply finite injury
priority arguments and a constructive version of Cohen forcing).

In Section 4 we use the concepts and techniques that are introduced in this paper
for an investigation of the fine structure of P. We show in Theorem 7 that in P
each complexity type % #O contains a rich structure of linear time degrees. In
Theorem 8, we characterize those 9? that have a complete set under linear time
many-one reductions. The proofs of these two theorems provide evidence that finite
injury priority arguments are not only relevant for the investigation of sets “higher
up,” but also for the analysis of the finite structure of P. Finally, in Section 5 we
list some open problems.

172 MAASSANDSLAMAN

In this paper we give complete proofs for those results that had been reported
earlier in the extended abstract [MSl]. Furthermore, we have added Theorem 4, as
well as a list of open problems. Some recent results about complexity types are
reported in [MS2].

2. THE RELATIONSHIP BETWEEN COMPLEXITY TYPES AND CHARACTERISTIC SEQUENCES

THEOREM 1 (Inverse of the speedup theorem for time on RAMS). Fur every
recursive set A there exists a sequence (ti)iEN that is characteristic for A.

Proof: Fix e,, to, and c0 in N such that {eo} = A; for all n E N, n 6 {to}(n); for
all XE (0, I>*, {e,>(x converges in d {to}(lxJ) steps; and for all n EN, {t,,}(n))
converges in < cO. {to}(n) steps.

For i= ((i)O, (i),, (i)*)EN and YE (0, l}*, we define Q(i, y) to be the property
defined by the following conditions:

(1) If i(i)~Hy)l then i(ihHy)= {eo)b).
(2) If {(i)lHlvl)l then Wd(y) converges in less than or equal to

{(i)~l(lvl) steps and f(ihHlvl) converges in less than or equal (i)z . { (i)l }(1 yl)
steps.

Note that Vy Q(i, y) does not imply that {(i),} or {(i)l} are total functions.
One defines by recursion, functions iH ti and i I-+ ci such that for all 12 E N,

{ ti}(n) converges in < ci. {t,}(n) steps. As a first approximation, one would like
to define {t,}(n) by cases: If for every string y, {(i)l}(lyl)J and Q(i, y)) then
define { ti}(n) to be max(n, min({ li- r}(n), {(i),}(n))). Otherwise, define {t,}(n)
to be {ti-r}(n)*

Unfortunately, the required decision as to which case applies is not recursive.
However, it is possible to replace the immediate definition by cases with a recursive
“looking back” procedure. One defines ti to be a program that acts on input n as
follows: It first spends n steps to check whether “so far” it appears that Vy Q(i, y).
More precisely one fixes a canonical order of all y E (0, 1 } * and sequentially in y
verifies Q(i, y). Thus, if there is some y with I Q(i, y), then such y will be seen
during the “lock back” for all sufficiently large inputs.

If ti on input n finds during the “lock back” some y E (0, 1 }* for which Q(i, y)
does not hold, then ti simulates tip I on input y1 and outputs { ti-, j(n).

Otherwise, ti continues as follows with n. It simulates tieI and (i)l on input n.
If ((ihI({ti-~>(n) and {(i)lH n converges in ,< (i)z. {(i),}(n) steps (both can 1
be verified in 0({(i),}(n)) steps with the help of the constant ci-,) then ti outputs
max(n, {(i),}(n)). Otherwise it outputs {tl-,}(n). The constant ci is defined from
ci-r and (i)z in a straightforward manner.

This finishes the recursive definition of the programs (ti)iGN and the constants
CCi)iEN. One can easily verify by induction on i that ti is the program for a

COMPLEXITY TYPESOFCOMPUTABLESETS 173

total recursive function, and that (t,}(n) converges in d ci. {t,}(n) steps with
n < { tj}(n) < (ti-, }(n) for all n EN. Hence, (ti)icN is a characteristic sequence.

In order to prove that (ti)icN is characteristic for A one first shows by induction
on i that A EDTIME({~~)) f or all i E N. Assume that A = {eip 1 } and that
{pi._,}(x) converges in <di. {tip,)(1x() steps for all xE 10, I}*. If 3y 1 Q(i, y)
then (l,)(n) = {tip,}(n) f or almost all HEN, and nothing remains to be shown.
Assume then that Vy Q(i, y). We define ei to be a program that simulates for every
input XE (0, 1}* both {e,-r}(y) and {(i),}(y). Program ei outputs the result of
that computation which converges first (actually if {(i),}(y) J then { (i)O}(y) =
(e,_,}(y)). Note that by the delinition of Q if ((i),)(n)1 then ((i)Oj(y)
converges for all y E (0, 1 }“. Therefore {ei} = A and {ei} is of time complexity
Wmin((ti-,)(n), {(i)*}(n)))=O({ti}(n)) (we set min({t, ,)(n), {(i),)(n) :=
Cfi~- 1 I(n) if i(i),)(n) t).

Finally, assume that e, t , c E N are given such that {e) = A, { t) E T, { e t(x)
converges in d {t}(lxl) steps for all XE 10, 1 I*, and {t}(n) converges in
-4 >(1 t P f t n se s or all HEN. Set i:=(e,t,c). Then Vy Q(i,y) and (t,)(n)<

{t}(n) for all neN (by the definition of ti). Thus {t] =a({ ti>). 1

In fact, we can conclude the following stronger version of Theorem 1. Let A = * B
denote the condition that the symmetric difference of A and B is finite.

COROLLARY. For every recursive set A there exist recursive sequences (tr),th.,
(c;)~~N, (drJrc~, (eijreN such that

(1) (fiJiEN is characteristic for A

(2) {t,}(n) conuerges in <ci.(ti}(n) stepsfor all i, ntzN

(3) {e;}=* A and {e,}(x) converges in <d,.{ti}((xl) steps, for all ieN,
XE (0, l}*.

Proof. The four sequences are defined simultaneously by recursion. One defines
e, as a program that proceeds for any input XE (0, 1 }” as follows: First e, spends
n steps to check whether “so far” it appears that Vy Q(i, y) (see program t, in the
proof of Theorem 1). If it finds during this “looking back” some y with 1 Q(i, y)
then e, simulates eip, on input x. Otherwise ej simulates simultaneously eip 1 and
(i)O on input x, and the program (i)I on input n = 1x1. ei outputs the result of that
one of the computations {e,-,}(x), {(i,)O}(x) that converges first; except in the
case where {(i),}(n converges faster than any of these two computations, in which)
case {ei}(x) gives output 0 (note that in this case ((i)O}(x) does not converge in
d { (i),}(lxl) steps, thus 1 Q(i, x)).

The program ti and the constant ci are defined in the same way as in the proof
of Theorem 1. We define di := 10 . max(1 + dip,, 1 + (i)2).

The claimed properties of ti and ci have been verified in the proof of Theorem 1.
It remains to be shown (by induction on i) that (ei} = * A and (e;}(x) converges
in dd,. {ti}(lxl) steps for all iEN, XE (0, l}*.

174 MAASS AND SLAMAN

If there exists some XE (0, l}* s.t. {e,}(x)# {ei-,}(x) and (e,}(x)#A(x) then
-I Q(i, x) holds, thus {ei} = * (eiPl}. If there is no such x one also has
{ei} = * {ei-I}.

In every case the number of computation steps of e, on input x can be bounded by
10~(~x~+(numberofcomputationstepsof(e,~,}(x)))~10~(1+di~,)~{t,~,}(~x~).
Furthermore, if {ti)(lxl)< {ti-~I(lxl) then {(%Hlxl)< {ti-~>(lxlh {(4Hl4)
converges in <(zJ2. {(i),}(lx() steps, and {ti}(lxl)=max(lxl, {(i),}(JxJ)) (by the
definition of ti). In this case the computation of {ei}(x) takes no more than

lx1 + 10’(i)2’ {(i)I)(lxl)~ l”‘ll + ti)Z)’ (ri)(lxl)
steps. m

THEOREM 2 (Refinement of the speedup theorem for time on RAMS). For every
characteristic sequence (ti)ie N there is a set A such that (ti)ieN is characteristic

for A.

Proof: Fix an arbitrary sequence (fi)isN and a sequence (Ki)iGN of numbers
such that (t,}(n) converges in < Ki. {r,}(n) steps, for all i, n EN.

The claim of the theorem does not follow from any of the customary versions
of Blum’s speedup theorem [B], because it need not be the case that
{ ti} = o({ tiPI }). In fact it may occur that (ti} = (tip, } for many (or even for all)
iE N. Even worse, one may have that K,. (t,}(n) > Ki- I. {tip ,}(n) for many i,
neN (this may occur, for example, in the characteristic sequences that arise from
the construction of Theorem 1 if i does not encode a “faster” algorithms (i)O of time
complexity {(i)lHn)< {ti-l>(n ; in this case one may have that {t,}(n) = {tip, }(n) 1

and the computation of {t,](n) takes longer than the computation of {ti-,>(n)
because the former involves simulations of both { ti_ I }(n) and {(i), }(n)). Therefore
it is more difficult than in Blum’s speedup theorem to ensure in the following proof
that the constructed set A satisfies A E DTIME({ ti}) for every i E N. To achieve
A E DTIME({ ti}) it is no longer enough to halt for all j> i the attempts towards
making A(x) # (j}(x) after (tj>(lxI) steps, because the value of (t,}(lxI) may only
be known after Kj I { fj}(1x1) steps and it is possible that

lirn Kj. {tjj(n)
j,n+m {t,}(n) =O”*

Instead, in the following construction one simulates, together with (j}(x) and
{ti}(lxl), also the computations {t,}((xl), {tip,)(/xl); that one of these j+2
computations which converges first will halt the computation of A(x). It is
somewhat delicate to implement these simultaneous simulations of j + 2 computa-
tions (where j grows with 1x1) in such a way that for each fixed ie N the portion
of the total computation time for A(x) that is devoted to the simulation of {ti}([xl)
does not shrink whenj grows to infinity (obviously this property is needed to prove
that A e,DTIME({ ti})).

In the following we construct a RAM R that computes a set A for which (ti)iGN

COMPLEXITY TYPES OF COMPUTABLE SETS 175

is a characteristic sequence. We fix some coding of RAMS by binary strings
analogously as in [CR]. We arrange that each code for a RAM is a binary string
without leading zeros, so that one can also view it as binary notation for some
number j E N. We assume that the empty string codes the “empty” RAM (which has
no instructions). Thus one can associate with each binary string x the longest initial
segment of x that is a code for a RAM, which will be denoted by j, in the following.

The RAM R with input x E (0, l}* acts as follows. It first checks via “looking
back” for Ix/ steps whether the requirement “A # {j}” for j :=jx has already been
satisfied during the first 1x1 steps of the construction (for shorter inputs). If the
answer is “yes,” R decides without any further computation that x $ A. If the answer
is “no,” R on input x dovetails the simulations of t,, rj on input 1x1 and of j on
input x in the following manner. The simultaneous simulation proceeds in phases
p = 0, I) 2, At the beginning of each phase p the RAM R simulates one more step
of j on input x. If mi is the number of steps that R has used to simulate this step
ofj on input x, then R simulates subsequently mj steps of tj on input 1x1. If m, ,
is the number of steps that R has used so far in phase p (for the simulation of one
step ofj on x and mi steps of t, on 1x1), then R simulates subsequently m,_ , steps
of tj- I on input 1x1, etc. If the number of steps that R spends in phase p exceeds
1x1, R immediately halts and rejects x.

If R has finished phase p (by simulating m, steps of t, on input 1x1, where m, is
the total number of steps which R has spent in phase p for the simulation of t, , .., t,
on (xl and j on x) and none of the j+ 2 simulated computations has reached a
halting state during phase p, then R proceeds to phase p -t- 1.

If the computation of j on input x has converged during phase p then R puts x
into A if and only if {j}(x) =O. With this action the requirement “A # {,j)”
becomes satisfied and the computation of R on input x is finished.

If j on input x has not converged during phase p, but one of the other .j + 1
simulated computations (of t,, tj on I-XI) converges during phase p, then R
decides that x $ A and halts.

We now describe some further details of the program of R in order to make a
precise time analysis possible. In order to avoid undesirable interactions R reserves
for each simulated RAM a separate infinite sequence ARRAY, of registers, where
ARRAY, consists of the registers

J-2k+I.(*j+I)t j = 0, 1, 2,

Furthermore, we specify for each k EN a sub-array MEMORY, of ARRAY,, con-
sisting of the registers X++t (2j+ i) for j = 0, 2, 4, . . . in ARRAY,. For each k E N the
constructed RAM R uses ARRAY, for the simulation of the RAM coded by t,
(more precisely, R uses MEMORY, to simulate the registers of the RAM t,, and
it uses the remaining registers in ARRAY, to store the program that is coded by
tk). Furthermore, R uses ARRAY,, i to simulate the RAM coded by j = j., E N (this
does not cause a conflict since j and tj+ i are never simultaneously simulated).

We have made these arrays explicit because in order to simulate a step of the kth

176 MAASS AND SLAMAN

one of these machines that involves, say, the ith register of that machine, R has to
compute on the side (via iterated additions) the “real” address 2kf’ . (2 .2i+ 1) of
the corresponding register in MEMORY,. The number of steps required by this
side-computation depends on k, but is independent of i. Therefore there exist con-
stants c(k), k E N, that bound the number of steps that R has to spend to simulate
a single step of the kth one of these machines. It is essential that for any fixed
k ,< j, + 1 this constant c(k) is independent of the number j, + 2 of simulated
machines for input x (this follows from the fact that ARRAY, is independent of j,).

At the beginning of its computation on input x the RAM R computes j := j,.
Then R “looks back” for 1x1 steps to check whether “A # {j>” has already been
satisfied at some argument x’ such that j, is a prefix of x’ and x’ is a prefix of x.
Let xi, xk be a list of all such binary strings x’ (ordered according to their
length). We implement the “looking back” for argument x as follows. For each of
the shorter inputs x,, x2, . . . (one after the other) R carries out the same computa-
tion as discussed below for x, but without any “looking back” procedure. If it turns
out after 1x1 steps of this subcomposition that for one of these arguments xi
(iE { 1, k}) the construction satisfied the requirement A # {j}, then R
immediately halts and rejects x (note that for the first such xi we actually have then
A(xi) # {j}(x,)). Otherwise R continues the computation on input x as follows: R
calls a program for the recursive function iw tj and uses it to compute the numbers
to, ..*, tj. Afterwards R “decodes” each of the programs ti (is (0, j}), which are
given as binary string (the binary representations of the number ti E N). R uses for
each instruction S of program ti four registers in ARRAYi (that are not in
MEMORY,) to store the opcode and the up to three operands of S (similarly as
in the proof of Theorem 3 in [CR]). In the same way R “decodes” the program j.

If this preprocessing phase of R on input x takes more than 100. (xl steps
(in addition to the steps spend on “looking back”) then R immediately halts and
rejects x.

During the main part of its computation (while it simulates to, tj, j) R main-
tains in its odd-numbered registers (which do not belong to any of the arrays
ARRAY,), two counters that count the total number of steps that have been spent
so far in the current phase p, as well as the number of steps of the currently con-
sidered program that have already been simulated during phase p. In order to allow
enough time for the regular updating of both counters, as well as for the regular
comparison of the values of both counters with the preset thresholds (1x1, m,), it is
convenient to add every c steps the number c to each counter (where CE N is a
sufficiently large constant in the program of R).

In addition, R stores in its odd-numbered registers the input x, j,, the number
of the currently simulated program, and for each of the simulated programs the
address of the register that contains the opcode for the next instruction that has to
be executed for that program. With this information R can resume the simulation
of an earlier started program without any further “overhead steps” because each
simulated program only acts on the registers in its “own” array ARRAY,. Of
course, R always has to spend several steps to simulate a single instruction of any

COMPLEXITYTYPESOF COMPUTABLE SETS 177

of the stored programs to, tj, j. It has to apply a series of branching instructions
in order to go from the stored (numerical) value of the opcode in ARRAY, to the
actual instruction in its own program that corresponds to it, and it has to calculate
the “real” addresses of the involved registers in MEMORY,. However, it is obvious
that for each simulated program k there exists a constant c(k) (independent from
j= j, and x) that bounds the number of steps that R has to spend to simulate a
single instruction of program k.

We now verify that (ti)reN is characteristic for A.

CLAIM 1. A E DTIME({ ti}) for every i E N.

Proof Fix i and set S,:= {x E (0, 1 } * 1 j, < i). Every 2 E S, n A is placed into A
in order to satisfy the requirement “A # {j}” for some j < i. We then have
A(Z) # {j}(Z), and for sufficiently longer inputs x with j, = j the constructed
RAM R finds out during the first part of its computation on input x (while
“looking back” for 1x1 steps) that the requirement “A # (j}” has already been
satisfied. This implies that x $ A. Thus for each j < i only finitely many 2 are placed
into A in order to satisfy the requirement “A # {j}.” Therefore Si A A is finite. Since
Si E DTIME(n) it only remains to prove that S,n A E DTIME({ ti}).

We show that R uses for every input XE Si at most 0({ ti)(lxl)) computation
steps. By assumption we have {t,}(lx\)> Ix/, and therefore R usesonly O({ti}(lxl))
steps in its preprocessing phase for input x.

We had fixed constants K, E N such that the computation of program ti on input
n consists of B Ki. {t,}(n) steps (for all n EN). By construction the total number of
steps that R spends for input x on the simulation of j := j, on x and of ti+ , , r,
on 1x1 is bounded by 1x1 + Ti,,, where T,,, is the number of computation steps of
program ti on input 1x1 that are simulated by R on input x. By construction we
have T,, li d Ki. { ti}(1x1) + /xl (because the computation of R on x is halted at the
latest at the end of the first phase p, where (t,}(lxl) is seen to converge, and no
phase p consists of more than 1x1 steps of R).

Furthermore, we know that there is a constant c(t,) that bounds the number
of steps that R needs to simulate a single instruction of ti. Thus R spends
<c(ti).Ti,.,=O({ti}(lxl)) steps on the simulation of ti+,, t, on 1x1 and j on .Y.
Furthermore, the number of “overhead steps” of R for the updating of counters, the
comparison of their values with preset thresholds, and the switching of programs
can be bounded by a constant times the number of steps that R spends on the
actual simulations. Thus it just remains to be shown by induction on i-k that R
on input XE si spends for every k < i altogether at most 0((ti)((xl)) steps on the
simulation of tk on /xl. However, this follows immediately from the construction,
using the definition of the parameters mk and the observation that the constants
c(t,) do not depend on x. 1

CLAIM 2. Let U(j, n) he the maximal number of steps that program j uses on an
input of length n. Then

A= {j}~u(j,n)=S2({t,)(n)).

178 MAASSAND SLAMAN

Proof: Fix any je N such that A = {j}. Assume for a contradiction that it is not
the case that U(j, n) = 52({ ti} (n)), i.e., we have sup, ({ ti}(n)/U(j, n)) = cc. We show
that then the requirement “A # {j}” is satisfied at some argument x with j, = j.

Obviously we have for all sufficiently long x with j, = j that the computation of
R on x is not halted prematurely because the preprocessing phase takes too many
steps, or because a phase p in the main part of the computation requires more than
1x1 steps. Furthermore, for each i < j there exists by construction a constant ci such
that, for all x with j, = j, R simulates for each step in the computation of j on x
at most ci steps in the computation of ti on input 1x1. Therefore, our assumption
SUP” (~~jl+w(~~ n)) = cc, together with the fact that {to}(n) > ... 3 {tj>(n) for all
II EN, implies that there is some x with j, = j such that R on input x does not halt
prematurely because some {ti}(1x1) with i< j is seen to converge before {j}(x) is
seen to converge. For such input x the RAM R succeeds in satisfying the require-
ment “A # {j}” by setting A(x) # (j}(x). This contradiction completes the proof of
Claim 2. 1

Claim 1 and Claim 2 together imply the claim of the theorem. 1

As an immediate consequence we obtain from the preceding two theorems the
following result (recall that S c (0, 1 } * is called sparse if there is a polynomial p
such that tln(I{x~SI 1x1 =n>l <p(n)); see [Ma] for a contrasting result about
sparse sets):

THEOREM 3. Every complexity type contains a sparse set.

Proof Let %? be an arbitrary complexity type. By Theorem 1 there exists some
sequence (ti)jpN which is characteristic for V. In order to obtain a sparse set S such
that (ti)isN is characteristic for S we use a variation of the proof of Theorem 2. In
this variation of the construction one never places x into the constructed set unless
lj,l Glog I-4. I

Remarks.

(1) It is an open problem whether every complexity type contains a tally set.
(2) Further results about the relationship between extensional properties of a

set and its complexity type can be found in [MS2].

It is obvious that the partial order <c on sets (which was defined in Section 1)
induces a partial order <= on complexity types. In this paper we are not concerned
with the structure of this partial order <c; however, we want to mention the
following immediate consequence of Theorems 1 and 2.

THEOREM 4. The complexity types of computable sets with the partial order <e
form a lattice. Furthermore, tf the characteristic sequence (tj)isN is characteristic for
the complexity type W and the characteristic sequence (t,!‘)i, N is characteristic for the
complexity type W’, then the sequence (tmin)ieN with {t?(n)} = min({ t;}(n),
(t;‘}(n)) is characteristic for the infimum %?’ v W’ of W, W”, and the sequence

COMPLEXITY TYPESOF COMPUTABLE SETS 179

(t7”“)i,N with {t~““}(n)=max((t~}(n), {t:}(n)) h 1s c aracteristic for the supremum
w v GTT', of w, w.

ProoJ The key fact for the proof is the following elementary observation:
Suppose that two sets T and S are given to be recursive subsets of { 0, 1) *. Let
(fiJiEN and (s~),~~ be their characteristic sequences. Then

T>.SoVi3j({ti}=Q({s,})).

In order to apply this observation and prove the claim of the theorem one first
has to verify that one can find programs ty, ty for min({ t:>, {t,!‘}), respectively
max({t\), it:}), so that (tf”‘“)i,N and (tP”“)iEN are characteristic sequences. The
only nontrivial point is the requirement to define the recursive function it-+ tf^‘” in
such a way that for all iEN, {tmi”}(n) =min({ t,!}(n), {t,!‘}(n)) and tm”’ is a witness
for the time constructibility of this function. In order to achieve this, it is essential
that program ty’” “ knows” time constructibility factors c:, cl’ such that { tj}(rz) con-
verges in <cl. (t:}(n) steps and {t(‘)(n) converges in <c,!‘. {t,“}(n) steps. Since
program tyn has to compute min({ t:}(n), {t,!‘}(n)) . m a time constructible fashion,
it needs cl, c:’ in order to know when it is “safe” to abandon the simulation of the
longer one of the two computations (t;}(n), {t,!‘}(n) (after the shorter one has con-
verged). But this is no problem, since the proof of Theorem 1 shows (as in the
corollary to Theorem 1) that one can assume without loss of generality that recur-
sive sequences (c;)~~~, (c;‘)~~~ of time constructibility factors are given together
with the characteristic sequences (tOiEN and (ti’)itN.

Since (tmi”)itN is a characteristic sequence, there exists by Theorem 2 a set
Tmi” c (0, 1) * such that (ty)i,N is characteristic for Tmin. Let emin be the com-
plexity type of T”‘“. It is obvious that Vmin 6c G??’ and wmi” dC V”. In order to show
that VZmi” is the inlimum of %” and %?I’, one has to verify for an arbitrary complexity
type G$ with %? dC V and V GC %?” that GPin aC %?. Let the sequence (ti)ic N be
characteristic for V ((ti)iGN exists by Theorem 1). The key fact at the beginning of
this proof implies that Vi 3j ({t:} = 52({ t,})) and Vi3j({t:‘}=Q((t,})). Hence
Vi 3j ({ ty” } = Q({t,})), which implies that V”” > C Ce.

One verifies analogously that the complexity type qrnax which is defined by
ttT”“)icN is the supremum of ‘%‘I, %” with regard to dc. 1

3. TIME COMPLEXITY VERSUS POLYNOMIAL TIME REDUCIBILITY

In this section we study the relationship between the complexity type of a set and
its polynomial time Turing degree. We first introduce the customary recursion
theoretic vocabulary for the discussion of priority constructions. One important
part of the following constructions is the construction technique of Theorem 2,
which allows us to control the complexity type of a set that is constructed to meet
various other requirements. Therefore we will review briefly the construction of
Theorem 2 in recursion theoretic terms.

180 MAASS AND SLAMAN

A stage is just an integer s viewed in the context of a definition by recursion. A
strategy is just an algorithm to determine the action taken during stage n, recur-
sively based on various parameters of the construction. Typically, a strategy is used
to show that the sets being constructed have some specific property; we call this a
requirement. We organize our attempts to satisfy the requirements in some order
which we call the priority ordering. If requirement Q comes before requirement R,
we say that Q has higher priority and R has lower priority.

In the construction of Theorem 2 we built A to satisfy two families of
requirements. For each i, A had to be computable on a RAM, running in time
O({ ti}). Second, any RAM that computed A had to operate with time Q((to), for
some i. We assigned priority by interleaving the two types of requirements in order
of their indices.

For an element of the first family of requirements, we used a strategy which
imposed a sequence of time controls on the construction. The behavior of the ith
strategy was to terminate all action of lower priority in determining A(x) once the
construction had executed sufficiently many phases to exceed { ti}(1x1) many steps.
Suppose that strategies of higher priority only act finitely often to cause A to accept
strings. Then, using the finite data describing the higher priority activity we can
correctly compute A at x in time 0({ ti}) by first checking the data for an answer
at x. If the value of A at x is not included in the data then we run the construction
until the ith time control strategy calls a halt to lower priority activity. We then
read off the answer.

For each of the second family of requirements, we used a diagonalization
strategy. Namely, if {i} ever converges at an argument x before a strategy of higher
priority terminates our action then we define A at x to make A(x) # {i}(x). By our
association of at most one diagonalization strategy to each string, the two
possibilities were for (i> to disagree with A or to have running time .Q({ ti}). The
latter being the case when diagonalization is impossible, since the time control
associated with higher priority strategies terminates the diagonalization attempt at
every string.

We collectively refer to the time control and diagonalization strategies as the
%T-strategies.

The proof that the sequence (tj)icN is characteristic for A has two essential
features. The first is that each of the constituent strategies is injured finitely often.
The jth time control strategy sj is injured when the value of A at x is determined
differently from the one assumed by sj. In the proof of Theorem 2, this occurs when
the value of A is determined by a diagonalization strategy with index less than j.
The second feature, which occurs on a higher level, is that no single move in the
construction prohibits the subsequent application and complete implementation of
further time control and diagonalization strategies.

With this in mind, we can look for other families of strategies, which are
compatible with the V-strategies, to produce interesting examples within a given
complexity type. Our next result compares complexity with relative computability.

A Turing reduction is given by a RAM A4, augmented with the ability to query
an oracle as to whether it accepts the query string. We evaluate M relative to A by

COMPLEXITY TYPESOFCOMPUTABLE SETS 181

answering all with the value of A on the query string. M specifies a polynomial time
Turing reduction if there is a polynomial g such that for every oracle A and every
string x, if the evaluation of M with input x halts in less than g(1x1) steps. Say that
B is polynomial time Turing reducible to A, if there is a polynomial time Turing
reduction that, when evaluated on a string x relative to A returns value B(x). We
use the term Turing reduction to avoid confusion with the related notion of
many-one reduction. Note, the choice of RAMS in the definition of polynomial
time Turing reduction is not important; for example, the same class is obtained
using any of a variety of machine models.

THEOREM 5. A complexity type 4k contains sets A and B that are incomparable
with regard to polynomial time reductions if and only if%? $?L P.

Proof Let G? be fixed and let (ti)icN be characteristic for %‘. We build A and B
and use the q-strategies to ensure that A and B belong to %‘. In addition, we ensure
for each polynomial time Turing reduction (e),

{e)(A)= B+%‘G P

{e}(B)=A+%?GP,
(3.1)

We will describe the strategies for the new requirement, the inequality strategies. In
fact, since they are symmetric, we only describe the strategy to ensure the first of
the two implications in (3.1). These strategies are combined with the earlier ones
using the same combinatorial pattern as before.

We describe the eth new strategy. We first arrange, by a variation of looking
back, that no strategy of lower priority is implemented until we have established
{ej(A,x)ZB(x 1 f or some specific string x. Let I, be the greatest length of a string
which is accepted into A or B by the effect of a strategy of higher priority. Let A,,
and BO be A and B restricted to strings of length less than or equal to I,. Again,
by looking back, we may assume that A,, B,, and I, are known. For each length
1, we use a string x, of length I to attempt to establish the inequality. (The choice
of x, is made to ensure that x, will not even potentially be used by some strategy
of higher priority.) We simulate the computation relative to the oracle that is equal
to A,, on strings of length less than 1, and empty elsewhere. If we are able to com-
plete the simulation without being canceled by a time control strategy of higher
priority, then we define B(x,) to disagree with the answer returned by the simula-
tion.

There are two possible outcomes for this strategy. We could succeed in
establishing the inequality between {e}(A) and B. In this case, the inequality
strategy is compatible with the ‘X-strategies. It only requires that finitely may strings
are in B and it places no permanent impediment to the implementation of all of the
q-strategies. These are the two features we already isolated as determining com-
patibility.

On the other hand, the inequality between {e}(A) and B might never be
571/442-2

182 MAASSANDSLAMAN

established. This can only occur if for every I, the inequality strategy is terminated
before completion of its simulation of {e}(A, x,) by some time control strategy of
higher priority. But then the time control imposed by that higher priority strategy
must be polynomial, since it is bounded by a constant times the running time of
{e}. In this case, V is contained in P.

Thus, either the inequality strategies are compatible with the g-strategies and we
may use the framework developed earlier to build A and B in V of incomparable
polynomial time Turing degrees or V is contained in P. 1

The inequality strategies are, in some ways, simpler than the V-strategies. In the
style of Ladner’s early constructions [La], they act to establish an inequality
during the first opportunity to do so. If no opportunity arises, we conclude that $7
is contained in P. On the other hand, these strategies have a feature not appearing
in the earlier argument. If an inequality strategy never finds a string at which it can
establish the desired inequality, then it completely halts the implementation of
lower priority strategies. This behavior is acceptable in the context of our construc-
tion, since if it occurs then we may conclude that the theorem is true for a fairly
trivial reason. Of course, these types of strategies appear in basic looking back
constructions. Here, we interleaved them with other finite injury strategies.

Minimal pairs. In Theorem 5, we gave a construction showing that in every
complexity type there is a pair of sets which are polynomial time Turing incom-
parable. Thus, in the sense of Theorem 5, complexity type is never directly tied to
relative computability. In this section, we ask whether there is any correlation
between informational content as expressed by polynomial time Turing degree and
complexity type. We give a partial negative answer in Theorem 6.

THEOREM 6. There is a complexity type V which contains sets A and B that form
a minimal pair with regard to polynomial time reductions (i.e., A, B# P, but for all
X, X<, A and X 6, B implies that XE P).

Proof: We build A and B by recursion. A condition is a specification of an oracle
on all strings whose lengths are bounded by a fixed integer; i.e., a finite approxima-
tion to an oracle. For U a condition, let domain(U) denote the set of strings on
which U is defined. During stage n, we specify conditions A,, and B, on A and B
with domains at least including (0, 1 } ” so that A,_ i E A,, and B,- I E B,.

Readers familiar with recursion theoretic forcing and priority methods (see [Le])
will recognize our building a pair of Cohen generic subsets of (0, 1 } *. Their mutual
genericity with respect to polynomial time Turing reductions implies that they form
a minimal pair of P-degrees. We use the priority method to arrange that A and B
meet enough dense sets for genericity to apply.

The fact that A and B are recursive follows from the observation that the recur-
sion step in the generation of A, and B, is computable. In fact, there is a RAM that
implements this recursion. When we speak of a step in the construction we are
referring to a step in the execution of this RAM.

COMPLEXITY TYPES OF COMPUTABLE SETS 183

In the construction, we take steps to ensure that A and B satisfy the claims of
the theorem by ruling out each possible counterexample. Thus, we individually
satisfy the following individual requirements:

Gci. If (d} = A then there is a RAM that runs at least as fast as {d) and
computes B. Similarly, for A and B with roles reversed.

H,,f. If {e} and {f} are polynomial time oracle RAMS such that {e}(A) =
{f)(B), then th eir common value X is in P. In fact, in satisfying H,, I we will exhibit
the polynomial time algorithm to compute X.

We ensure each of these requirements by use of an associated strategy. We will
shortly sketch how the strategies operate. First, we give some indication of their
context, since it is somewhat different than that in the earlier constructions. As
before, we assign a priority ranking to the requirements. We invoke the first n
strategies during stage n and thereby arrange that every strategy is in use during all
but finitely many stages. We determine the action taken in the main recursion
during stage n by means of a nested (minor) recursion of length n in which we
calculate the effects of strategies. During stage n, we extend A and B so as to agree
with the common value chosen by the maximum possible initial segment of
strategies. Provided that for each strategy C,

(1) for all but finitely many stages, the conditions on A and B chosen by Z
are the same as those chosen by all higher priority strategies and

(2) for any sets A and B which are produced by a construction whose opera-
tion during all but finitely many stages is determined by 2, A and B satisfy the
requirement associated with C,

then A and B constructed as above will satisfy all of the requirements. We will first
sketch the operation of the strategies and then the way be which they are combined
in the minor recursion.

We turn now to our specific strategies. We view a strategy Z as a procedure. It
is called with arguments A,_ 1, B,- 1, AFrauit, BFra”lt and default-time. These
arguments have the following types: the first four are conditions and the final one
is an integer. Their intended roles in the construction are to have A, ~ 1 and B, ,
as the conditions on A and B determined in the previous stage; the next two, AFrau”
and BFra”lt, are the default conditions on A and B which will be used at the end
of stage n if C does not disallow their use; default-time is the number of steps
needed to run the construction up to the point of calling C, which is enough to
compute AFfa”lt and BFfault. The strategy returns two conditions A, and B, which
extend A,._ l and B,- ‘. In the construction, they indicate the conditions that C
intends be used as the stage n computation of A and B.

G,. The strategy g, to ensure the satisfaction of the requirement G, acts as
follows:

184 MAASS AND SLAMAN

(1) First, check for a string y in domain(A,-,) such that (d}(y) converges
in less than n steps and gives a value that is different from A, _ i(y). If there is such
a y, return A$rau’t and BFfa”lt. (Zn step (l), we look back to see whether G, is already
satisfied by an inequality between {d) and A.)

(2) Otherwise, check for a string y in domain(A~“fa”“) -domain(A.- ,) such
that (d} converges at y in less than default-time many steps. If there is such a y
then for A,, return the extension A* of A,-, that is identically equal to 0 at every
string in domain(A~‘““”) - domain(A,- i) other than y. At y, A* is defined to dis-
agree with {d}(y). For B,, return the extension B* of B, _ i that is identically equal
to 0 on every string in domain (Bzrautt) - domain(B, _ 1). (We look for an argument
where it is faster to compute {d} than it is to run the default computation. Zf we find
one then we define A, to establish A # {d}.)

(3) If neither of these cases applies, then return AFfault and BFfa”lt. (Zf no
action is required, return the default values.)

If there is a y such that the evaluation of (d}(y) takes less time than the evalua-
tion of the default value for B(y), then g, ensures that {d} #A. Otherwise, g,
ensures that B is always given by the default calculation and so can be computed
in less time than the evaluation of (d}. Thus, g, ensures that if {d} = A then there
is an algorithm to compute B that runs in less time.

In addition, the values for A and B returned by g, only deviate from the input
default values finitely often. Once g&s outputs are identical with the ultimate values
of A, and B,, if g, ever returns a value other than its input default value then, by
(l), it automatically returns the default during every stage large enough to verify
{d) #A.

H . Let (e} and {f } be polynomial time oracle RAMS. Let p be a polynomial
that ‘bounds their running times. The strategy h e,/ to ensure the satisfaction of H,,J
acts as follows:

(1) First, check for a string y such that {e}(A,-,, Y)#{~}(B,~,, y) is
verified by a computation of length less than n. If there is such a y, return AFfa”lt
and B2fa”‘t. (Look back to see whether the requirement is already satisfied by the
inequality {e}(A) # {f}(B).)

(2) Otherwise, check for a y of length less than or equal to default-time such
that there are two extensions A’ and A” of A,-, such that {e}(A’, y) and
{ e}(A”, y) are defined by computations with queries only to the domains of A’ and
A” and have different values. If there is such a y, then return the value B* for
B, that extends B,_, and is identically equal to 0 on every string in
K4 11

< p(defaulr-rime) - domain(B, _ ,). Return as value for A,, whichever of A’ and A”
establishes {e}(A,, y)# {f}(B,, y), for the (returned) value B,= B*. (Zf the
condition A,, _ 1 does not already decide the value of {e } (A, y) for all y’s of length less
than or equal to default-time then use the split in (e} to make (e}(A) # {f}(B). We
attempt to meet a set of conditions associated with mutual genericity.)

COMPLEXITY TYPES OF COMPUTABLE SETS 185

(3) If neither of these cases apply, then return AFfa”lt and Bzefau’t. (As in gd,
if no action is required then return the default values.)

Assume that h,f is respected during all but finitely many stages. If the inequality
between {e}(A) and {f}(B) . is established in (2) then the requirement is trivially
satisfied.

Assume that {e}(A) and {f j(B) are equal and let X be their common value. Let
y be a string such that h,,, is respected during the stage when ,4(y) is defined. We
compute X(y) as follows: First, compute the largest m so that the evaluation of
A E?F and Bd,“!“,” involves less than 1 y(steps. Then, evaluate {e}(A *, y), where A *
is equal to A$!?“,” on domain(AE!Y”,“) and is identically equal to 0 elsewhere.

Since its operations are explicitly evaluated in polynomial time, it is clear that
this procedure can be implemented on a RAM in polynomial time. To see that it
correctly computes X, note that since h,, is respected during almost every stage
and does not establish the inequality between {e}(A) and (f}(B), the default
values for A and B are the ones actually used in the construction. Further, the m
computed by y is the stage when h,, examines all conditions extending A, _ ,
(= Ad,“!?“,“) to find a pair of conditions that gives a pair of incompatible values for
$;t Y. BY assumption, h,, could not split the values of {e}, so every extension

m-1 gives the same answer to { e}(-, y) as A gives. In particular,
{e}(A*, y)= {e)(A, y)=X(y), as desired.

Note, that this strategy also only returns conditions different from the input
default values finitely often by the same argument that applied to g,.

The Construction. This method of combining strategies also appears in [SSl].
We let A, and B, be the trivial conditions with empty domain. During stage n, we
set up the minor recursion to invoke the first n strategies in the priority ordering.
First, we execute the n th strategy with arguments A, _ 1, B, _ I ; AFraurt and BFfa”“,
given by the trivial extensions of A,- l and B,-, which are identically 0 on every
string of length less than or equal to n not in the domains of A, _, and B, _ 1 ; and
default-time, equal to the number of steps needed to compute these quantities. By
recursion, in decreasing order of priority, we execute the next strategy with
arguments A,, _ , , B, _ , ; Arfa”lt and BFfault, obtained from the previous strategy’s
returned values; and default-time, equal to the number of steps needed to compute
the construction through the point of executing the previous strategy. The output
of the highest priority strategy (namely, the last strategy executed) gives the values
for A, and B,.

Suppose that C is one of the above strategies. Then, C is in operation for all but
finitely many stages. Hence, it determines the default value given to the strategies
of higher priority for all but finitely many stages. Further, each strategy of higher
priority than Z only returns conditions different from the its input default values at
most finitely often. So, the values returned by C will be the ones used by the
construction during all but finitely many stages. By the above remarks, this is
enough to conclude that the requirement associated with Z is satisfied. 1

186 MAASSANDSLAMAN

Remark. It is an open problem whether every complexity type W P P contains
a minimal pair.

4. ON THE FINE STRUCTURE OF P

Linear time degrees. In contrast to many results in structural complexity theory
that are only relevant for sets outside of P, the investigation of complexity types
also leads to some challenging questions about the fine structure of P itself. One
may argue that the exploration of the possibilities and limitations of construction
techniques for sets in P may potentially be useful in order to distinguish P from
larger complexity classes (e.g., PSPACE).

Those time bounds f that are commonly used in the analysis of algorithms for
problems in P have the property that

for every constant c E iV, and that f agrees almost everywhere with some concave
function g (i.e., Vk > n(g(n) < (n/k) g(k))). These two properties together entail the
useful fact that DTIME(f) is closed under linear time Turing reductions (we
assume that the query tape is erased after each query). Note also that the first
property alone guarantees already that DTIME(f) is closed under linear time
many-one reductions.

In view of the preceding fact it is of interest to analyze for sets in P a slightly
different notion of complexity type, where the underlying set T of time bounds is
replaced by the class TL of those f in T that satisfy the two additional properties
above. This version has the advantage that each linear time Turing degree is con-
tained in a single complexity type (in other words: each complexity type is closed
under the equivalence relation =,;,,). Therefore we assume in this subsection that T
has been replaced by TL.

Linear time reductions have provided the only successful means to show that
certain concrete sets have exactly the same time complexity (e.g., Dewdney [D]
proved that BIPARTITE MATCHING = ,in VERTEX CONNECTIVITY (“are
there > k disjoint uu-paths in G, for U, u, k given”)). The following result implies
that this method is not general.

THEOREM 7. Every complexity type g $Z DTIME(n) of polynomial time com-
putable sets contains infinitely many different linear time degrees, and the linear time
degrees in %? are dense. Furthermore, V contains incomparable linear time degrees, but
no smallest linear time degree.

ProoJ: Assume that % $Z DTIME(n). The construction of sets A, B in % that are
incomparable with regard to linear time reductions proceeds as in the proof of
Theorem 5.

COMPLEXITYTYPESOFCOMPUTABLESETS 187

In order to show that V contains no smallest linear time degree we fix some
arbitrary set A E 5%. We construct a set BE %? with A $ lin B by deleting from A all
elements that lie in certain “intervals” 1, m := {X E (0, 1 >* 1~ < (xl 6 m}. Since
A $ DTIME(n) one can falsify each possible linear time reduction from A to B by
choosing the length m -n of the removed interval I,,, sufficiently large (for given
n define m via “looking back”). In order to guarantee that in addition BE %‘, we
combine these strategies in a finite injury priority argument with the “%-strategies”
from the proof of Theorem 2 (see the discussion at the beginning of Section 3).

In order to show that the linear time degrees in V are dense we assume that sets
A, BE%? are given with Bcli,A. Let B:= jO^x\x~B) and A:= {l"x~.x~A).
Then we have A =,in A u B (thus A” u fi E 55’ and B clin A’ u B). One constructs in the
usual manner (with “looking back” as in [La]) a linear time computable set L such
that for D:=(dnL)uB one has D dIln B and 2 u B %,I” D. Furthermore, it is
obvious from the definition of D that B<,,, D <,,” A u B. Thus DE % and
B<li,D<,i,~ui?=,,,A.

Finally, we observe that the existence of sets A, B in % with A 6 ,,n B (see the
beginning of the proof) implies that there is a set GE w with B cli,, G: set

Thus an iterative application of the preceding density result implies that ‘ix contains
infinitely many linear time degrees. 1

Complete sets. Often linear time functionals appear in proofs where one shows
that some particularly natural set is complete in some complexity class. One shows
that K is complete within a complexity class by showing that for any A in the class
there is a linear time function @ such that

(%)(a E A 0 @(a) E K).

In other words, every A in the complexity class is many-one reducible to K by
means of a linear time function. This condition is much stronger than the one
asserting that K is complete with regard to Turing reductions.

DEFINITION. If %? is a complexity type and K E % then K is complete in % if for
every A in %? there is a linear time function @ such that

(Vo)(o E A o @(a) E K).

In [CR], Cook and Reckhow show that any principal complexity type has a
complete set. In the following theorem, we analyze the non-principal case.

DEFINITION. A non-principal complexity type %? is dominated by linear composi-
tion if there is a function F such that %? E DTIME(F) and a constant c such that
for every f in T, if %? c DTIME(f) then

lim f(c.n)/F(n) = cc.
,I + m

188 MAASSANDSLAMAN

THEOREM 8. A non-principal complexity type W has a complete set K if and only
if%? is dominated by linear composition.

Proof: We begin by showing that the first condition implies the second. Suppose
that K is in % but that V is not dominated by linear composition. We build a set
A so that A is in %? but for any linear time function @, there is a string 0 such that
40) Z K(@(a)).

We use the assumptions on 97 to make the following calculation. Suppose that F
is in T, %?G DTIME(F) and that c is a constant. By the fact that ‘3 is not
dominated by linear composition, there is a g in T such that g E DTIME(g) and
a constant mg with

lirr$f g(c.n)/F(n) g mg.

Since 59 is not principal, there is an f such that %? G DTIME(f) and
lim, + m f (n)/g(n) = 0. For this f,

(Vm)[lim inff(c.n)/F(n) p m].
n-m

We will use the family of time control strategies to ensure that A is in %‘. The
additional inequality requirements state that A should not be reduced to K by any
linear time function. We begin by describing the strategy to satisfy a single
inequality requirement. With an eye to the future, we will design our strategy to
work in the environment produced by finitely many time control strategies.
Further, we will show that this strategy is compatible with the further implementa-
tion of strategies for all the remaining time control requirements.

Let F be given so that K is in DTIME(F). F will be viewed as the defining
parameter in a time controlled environment, henceforth called the F-environment.
Let M be a RAM which computes K in time O(F). By working in the
F-environment, we ensure that A can be computed by a RAM that runs in time
O(F). Let @ be a linear time function on strings. We also ensure that @ does not
reduce A to K.

The F-environment is determined as follows: There is a simulation constant msim
such that our strategy determining whether (r is an element of A will be terminated
once we have executed msim . F(1~)) many steps.

Since @ can be evaluated in linear time, let p be a constant such that for all 6,
the evaluation of @(a) takes only p . (01 many steps. As calculated above, there is
an f in T such that %? E DTIME(f) and for all m, lim inf, _ o. f(p . n)/F(n) 2 m.
Potentially, we use strategies for all RAMS Mj to attempt to satisfy the requirement.
One of the strategies associated with a RAM that computes K with running time
satisfying the above property off will ensure that @ does not reduce A to K.

The strategy associated with the RAM Mi is a straightforward diagonalization
strategy. During stage s, we operate the strategy as follows: To begin with, by
looking back, we ensure that this strategy has a purely finite effect if @ does not

COMPLEXITY TYPES OF COMPUTABLE SETS 189

reduce A to K. That is, we terminate the strategy once we observe a string G* such
that A(o*) is not equal to K(@(a*)), where we compute K using M. If this
inequality is not observed then we fix a string 0 of length s. First, we simulate the
computation of @(a). Second, we simulate the execution of M, on input G(G).
Finally, we define A(a) to be unequal to 44,(@(a)).

If we reach the conclusion of the above three steps, then we ensure that @ does
not reduce A to the set computed by M,. Now consider the number of steps needed
to execute this strategy on 0. Let fi be the running time for M;. The calculation of
@(a) involves U(101) many steps. Consequently, its simulation involves 0(/(T])
many steps as well. Let p be the constant associated with this simulation. Thus the
first step of our strategy is over in p . 1~1 many steps. The second step of the strategy
is to simulate the execution of M; on an input r, equal to @(cr), of length less than
or equal top. (01. Since Mi runs in timefi, this simulation takes O(f,(p. la\)) many
steps. Let pI be given so that the second step of our strategy involves at most
PI ‘.fifi(P ’ Id 1 maw steps.

Finally, the last step of the strategy is to specify the value of A(cr). This involves
only a constant number, pz, of steps. Thus, the entire strategy can be executed in
p.14 +~~.fi(~.bl)+~~ many steps.

The inequality strategy will be terminated prematurely if and only if its execution
exceeds msim . F(Ial) many steps. We have already calculated that there is a RAM
Mi that computes K such that for every m, lim inf,, r fi(c .n)/F(n) 2 m. Suppose
that M,, is such an Mi. There are infinitely many n such that p, . f,(c . n)/F(n) <
msi,/2. Since %? is not linear lim, _ a (p . n + p2)/F(n) is equal to 0. Thus there is an
n such that

If the requirement is not already seen to be satisfied by looking back during stage
n, the M,-strategy will not be terminated prematurely and will ensure that @ fails
to reduce A to K on its associated string of length n.

In organizing the global construction, we will have finitely many diagonal
strategies active during any particular stage, all attempting to establish A # K(Q).
No two of these will operate with the same string G. All of them are compatible
with the time control strategy associated with F. Finally, since one of these
strategies must ensure that A is not equal to K(a), the collective action of all of the
strategies associated with the inequality requirement will be finite. These are the
properties which we have isolated as implying compatibility with the global require-
ment that A be in the same complexity class as K.

We now consider the global construction of A. There is only one other ingredient
to be described. In the above analysis, we worked relative to a particular RAM M
which computed K and discussed the inequality strategies relative to the single time
control strategy derived from F. In general, we will have to incorporate time control
strategies derived from other RAMS M* that potentially compute K in less time.
These strategies operate exactly as the time control strategies of the earlier section.
Each one imposes a time control on the collection of all lower priority strategies so

190 MAASS AND SLAMAN

that the actions of the lower priority strategies will be terminated in O(f*), where
f * is the running time of M*.

We organize the global construction as follows. First, we fix a RAM M, which
computes K and a characteristic sequence f for %‘. During any stage s we will have
finitely many active time control strategies Ci, C, associated with fi, fk.
Second, for some linear @, we will have finitely many strategies Rj associated with
the inequality requirement associated with @ that were active during the previous
stage:

(1) By looking back, we check whether the inequality requirement for Qk has
already been satisfied on some short string. If so then we set A(o) = 0 for each g
of length s, say that Qk is satisfied, cancel all of the Rj associated with ak and go
to (2).

If not, we assign each strategy Rj a unique string of length s and execute the
strategies Rj within the constraint imposed by the sequence of active Cj. If the
strategy for cr is terminated by time control or g is not associated with any strategy,
we set A(o)=O.

As in the proof of Theorem 2, we activate strategies at a slow enough rate
(logarithmic) so that the number of strategies is small enough to allow the time
control strategies to function correctly. If possible within this constraint, we add the
strategy Rjo to our list of active strategies, where R,, is associated with the least
linear time function that has not been satisfied andj,, is the least index of a strategy
associated with that function such that Rj,, had not been active earlier. We go to the
next stage without executing (2).

(2) Under the same proviso as in (l), we introduce a strategy C, for the least
I such that C, is not satisfied and the strategy C, has not been active during any
earlier stage. We go to the next stage.

Suppose that A is built according to the above blueprint. By the earlier analysis,
the global effect of the family of strategies associated with a single linear time func-
tional @ will be finite. This ensures that every Ci will eventually be introduced.
Hence, A will be no more complex than %Y, Similarly, for each @ we will reach a
stage after which we sequentially introduce and execute the strategies associated
with @ until one of them establishes the inequality that ensures that A is not equal
to K(Q). Thus, A + K is an element of Q? and is a counter example to the complete-
ness of K. This completes the first half of the proof.

For the second half of the proof, we must show that if %? is non-principal and
dominated by linear composition, then there is a complete element in %?. This
follows almost immediately from the Cook-Reckow theorem, that every principal
complexity type has a complete element.

Since % is dominated by linear composition, let F be an element of T such that
%? c DTIME(F) and let c be a constant such that for all fin T, if % E DTIME(f)
then

,,liima f(c .n)/F(n) = co.

COMPLEXITY TYPES OF COMPUTABLE SETS 191

Let K be a complete element of DTIME(F). Let K,. be defined by c E K, if and
only if there is a r in K such that G is the sequence 0’ IT’ * 1 * r. Here * denotes con-
catenation and Ok is the sequence of zeros of length k. By the above equation, K,
is in DTIME(f) for every f with %? E DTIME(f). Clearly, K can be reduced to K,
in linear time. Consequently, since %? c DTIME(F) every set in V can be reduced
to K,.. If we take the joint of K with some element of V’, we obtain a set in W which
is complete in %?‘. 1

5. OPEN PROBLEMS

There are various results in structural complexity theory which state that there
exist, in some complexity class K, sets with a certain property Q. Each such result
gives rise to the more precise question, which complexity types in K contain sets
with property Q. As examples we mention the open questions whether every com-
plexity type contains a tally set (i.e., a subset of {O}*) and whether every com-
plexity type % $G P contains a minimal pair of polynomial time Turing degrees. The
answers to a number of open problems of this type appear to be of interest on their
own. Furthermore, their solutions may help to enlarge our reservoir of construction
techniques for computable sets (in particular, also for sets of Jaw” complexity).

Another problem area is the characterization of the structure of the degrees of
computability of the sets in a complexity type W. For example, one would like to
know whether the sets in %? realize infinitely many different types in the first-order
language of the partial order of the degrees in %?, and whether this theory is
decidable. Other open problems arise if one compares the degree structures of
different complexity types. For example, we do not know whether the structure of
polynomial time Turing degrees of sets in a complexity type W $Z P is the same for
each such complexity type, and we do not know whether Theorem 8 specifies the
only difference between the structure of linear time degrees within a non-zero com-
plexity type 59 c P.

The global structure of the complexity types ordered by dc should have some
interesting features. In particular, it is not clear whether the complexity types of the
familiar complexity classes occupy a distinguished position in this structure. By
padding, one can produce a non-trivial homomorphism but this simple approach
would seem to require that the padding function be a polynomial. It would be
remarkable if the ideal of complexity types contained in P were preserved by all
homomorphisms or even all automorphisms of the complexity types at large,
ordered by dc.

Finally, we would like to point out that all other resource-bounds for computa-
tions (e.g., nondeterministic time, or deterministic space) also give rise to the con-
sideration of corresponding equivalence classes (or “complexity types”) of those sets
that are equivalent with regard to these complexity measures. Many questions that
relate complexity types for deterministic computations with complexity types for
nondeterministic computations or space bounded computations are obviously very

192 MAASS AND SLAMAN

hard. However, some of these may turn out to be easier to answer than the related
“global” questions about inclusions among the corresponding complexity classes.
As an example we would like to mention the problem whether there are sets A, B
such that A Zc B (i.e., A and B have different deterministic time complexity),
but for all space constructible space bounds f we have A 6DSPACE(f) o
BE DSPACE(f).

REFERENCES

[AHU] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, MA, 1974.

CBI M. BLUM, A machine-independent theory of the complexity of recursive functions, J. Assoc.
Comput. Mach. 14 (1967), 322-336.

[CR] S. A. Coon AND R. A. RECKHOW, Time-bounded random access machines, J. Comput. System
Sci. 7 (1973), 354-375.

CD1 A. K. DEWDNEY, Linear time transformations between combinatorial problems, Internat. J.
Comput. Math. 11 (1982), 91-110.

[GHS] J. G. GFXE, D. T. HLJYNH, AND A. L. SELMAN, A hierarchy theorem for almost everywhere
complex sets with applications to polynomial complexity degrees, in “Proceedings, 4th Annual
Symposium on Theoretical Aspects of Computer Science,” Lecture Note in Computer Science,
Vol. 247, pp. 125-135, Springer-Verlag, New York/Berlin, 1987.

[HH] J. HARTMANIS AND J. E. HOPCROFT, An overview of the theory of computational complexity,
J. Assoc. Comput. Mach. 18 (1971), 444475.

WI R. LADNER, On the structure of polynomial-time reducibility, J. Assoc. Comput. Mach. 22
(1975), 155-171.

[LLR] L. LANDWEBER, R. LIPTON, AND E. ROBERTSON, On the structure of sets,in NP and other
classes, Theoret. Comput. Sci. 15 (1981), 181-200.

WeI M. LERMAN, “Degrees of Unsolvability,” Springer-Verlag, New York/Berlin, 1983.
CL1 L. A. LEVIN, On storage capacity for algorithms, Soviet Math. Dokl. 14 (1973), 14641466.
KY1 N. LYNCH, Helping: Several formalizations, J. Symbolic Logic 40 (1975), 555-566.
[MSl] W. MAASS AND T. A. SLAMAN, The complexity types of computable sets (extended abstract),

in “Proc. of the 4th Annual Conf. on Structure in Complexity Theory 1989,” pp. 231-239,
I.E.E.E. Computer Society Press, Washington, 1989.

[MS21 W. MAASS AND T. A. SLAMAN, Extensional properties of sets of time bounded complexity
(extended abstract), in “Proceedings, 7th Int. Conf. on Fundamentals of Computation Theory”
(J. Csirik, J. Demetrovics, and F. Gisceg, Eds.), Lecture Notes in Computer Science, Vol. 380,
pp. 318-326, Springer-Verlag, Berlin, 1989.

[MY] M. MACHTEY AND P. YOUNG, “An Introduction to the General Theory of Algorithms,” North-
Holland, Amsterdam, 1978.

[Ma] S. MAHANEY, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis,
J. Comput. System Sci. 25 (1982), 13@143.

[MF] A. R. MEYER AND P. C. FISCHER, Computational speed-up by effective operators, J. Symbolic
Logic 37 (1972), 55-68.

[MW] A. R. MEYER AND K. WINKLMANN, The fundamental theorem of complexity theory, Math.
Centre Tracts 108 (1979), 97-112.

CPI W. J. PAUL, “Komplexitaetstheorie,” Teubner, Stuttgart, 1978.
WI C. P. SCHNORR AND G. STUMPF, A characterization of complexity sequences, 2. Math. Logik

Grundlag. Math. 21 (1975), 47-56.
[SSl] J. SHINODA AND T. A. SLAMAN, On the theory of the PTIME degrees of the recursive set, in

“Proceedings, of Structure in Complexity Theory, 1988,” pp. 252-257.

